Hyperkähler manifolds, exam

Each student receives a random selection of 15 test problems (the output of the randomizer is printed on a separate sheet). You are expected to be able to prove all theorems you use, unless stated otherwise. You are free to use the Riemann-Roch formula, provided you can state it correctly. The final score is given by s = b + 3, where b is the sum of points you got.

1 Holonomy groups and connections

Exercise 1.1. Let $V = \mathbb{C}^{2n}$ be the tautological representation of $\operatorname{Sp}(n)$. Prove that $\Lambda^{2k+1}(V)$ has no $\operatorname{Sp}(n)$ -invariant vectors.

Exercise 1.2. Let $V = \mathbb{C}^{2n}$ be the tautological representation of Sp(n). Prove that any Sp(n)-invariant vector in $\Lambda^2(V)$ is proportional to the symplectic form.

Exercise 1.3. Let $V = \mathbb{C}^{2n}$ be the tautological representation of Sp(n). Prove that $\Lambda^3(V)$ is an irreducible representation of Sp(n), or find counterexamples.

Exercise 1.4. Let M be a hyperkähler manifold with global holonomy $\operatorname{Sp}(n_1) \times \operatorname{Sp}(n_2) \times \ldots \times \operatorname{Sp}(n_k)$, with $2 \sum_{i=1}^k n_i = \dim_{\mathbb{C}} M$. Prove that M is simply connected.

Exercise 1.5 (3 points). Let (M, ω) be a symplectic manifold. Prove that M admits a torsion-free connection ∇ such that $\nabla(\omega) = 0$.

Exercise 1.6 (2 points). Find an example of a compact *n*-manifold M not admitting a Riemannian metric of signature (1, n - 1).

2 Hyperkähler manifolds

Remark 2.1. In this section you can use the Fujiki formula, provided you can state it correctly.

Definition 2.1. An algebraic function $A : \mathbb{R}^n \longrightarrow \mathbb{R}$ is a continuous function which is given as one of the branches of a multi-valued function μ with the graph $\Gamma_{\mu} \subset \mathbb{R}^n \times \mathbb{R}$ which is an irreducible algebraic variety.

Issued 25.10.2019

- 1 -

Exercise 2.1 (2 points). Let $A : \mathbb{R}^n \longrightarrow \mathbb{R}$ be an algebraic function, and $S \subset Gr(k, n)$ an open subset in the Grassmanian, with k > 1. Assume that A is polynomial on each $l \in S$. Prove that A is polynomial.

Exercise 2.2 (2 points). Let M be a hyperkähler manifold of maximal holonomy, and $M \longrightarrow B$ a surjective holomorphic map to a Kähler manifold B. Prove that dim B = 0, n, 2n, where $2n = \dim_{\mathbb{C}} M$.

Exercise 2.3 (3 points). Let $L \subset M$ be a complex Lagrangian submanifold in a compact hyperkähler manifold. Prove that L is projective.

Exercise 2.4. Let M be a hyperkähler manifold of maximal holonomy, and $M \longrightarrow B$ a surjective holomorphic map to a Kähler manifold B, dim $B < \dim M$. Prove that B is projective.

Exercise 2.5. Let $\eta \in H^2(M)$ be a non-zero class on a hyperkähler manifold of maximal holonomy, dim_{\mathbb{C}} M = 2n. Prove that $\eta^n \neq 0$.

3 Trianalytic subvarieties

Exercise 3.1. Find a compact hypercomplex manifold (M, I, J, K) such that for any induced complex structure L = aI + bJ + cK, the manifold (M, L) has non-trivial divisors.

Exercise 3.2. Let (M, I, J, K) be a hyperkähler manifold, and $\phi : (M, I) \longrightarrow (M, I)$ a holomorphic automorphism which acts trivially on $H^2(M)$. Prove that its graph is trianalytic.

Exercise 3.3 (3 points). Let T be a complex 2-dimensional torus, $\operatorname{Hilb}^{n}(T)$ its Hilbert scheme, and $\operatorname{Hilb}^{n}(T) \xrightarrow{a} T = \operatorname{Alb}(\operatorname{Hilb}^{n}(T))$ the Albanese map. Prove that the fundamental group of $a^{-1}(0)$ is finite.

Definition 3.1. We call the universal cover of $a^{-1}(0)$ the generalized Kummer variety.

Exercise 3.4 (2 points). Let ι be an involution of the torus mapping x to -x. Prove that it gives a holomorphic involution of the generalized Kummer variety, and its fixed point set is trianalytic.

Exercise 3.5 (2 points). Let (M, I, J, K) be a hyperkähler manifold, and $X \subset (M, I)$ a complex subvariety of dimension 2. Prove that $\int_X \omega_I^2 \geq \frac{1}{2} \int_x (\Omega \wedge \overline{\Omega})$. Prove that equality is realized if and only if X trianalytic.

Issued 25.10.2019

-2 -

Exercise 3.6 (2 points). Let $X \subset T^{4n}$ be a trianalytic subvariety in a compact torus. Prove that X is a union of subtori.

Exercise 3.7. Let X be a hyperkähler manifold (not necessarily compact) with $b_2(X) = 1$. Prove that there exists an induced complex structure L on X such that (X, L) contains no compact complex subvarieties.

4 Hypercomplex manifolds

Exercise 4.1. Let M be a compact hypercomplex manifold, $\dim_{\mathbb{R}} M = 4n$ and η a closed SU(2)-invariant 2-form. Suppose that η has maximal rank in some point $m \in M$. Prove that $\int_{M} \eta^{2n} \neq 0$.

Exercise 4.2. Let be a compact hypercomplex manifold, $\dim_{\mathbb{R}} M = 4n$ and V the bundle of SU(2)-invariant 2-forms. Prove that $\dim V = \dim \operatorname{Sym}^2_{\mathbb{C}} \Lambda^{1,0}(M, I)$.

Exercise 4.3. Let (M, I, K, K) be a compact hypercomplex manifold, and $\eta \in \Lambda^{2,0}(M, I)$ a 2-form which satisfies $\partial \eta = 0$, $J\eta = \bar{\eta}$. Prove that $d\eta$ has weight 1 with respect to SU(2).

Exercise 4.4 (2 points). Let (M, I, K, K) be a compact hypercomplex manifold, and $V \subset \Lambda^{2,0}(M, I)$ a space of 2-forms which satisfy $\partial \eta = 0$, $J\eta = \bar{\eta}$. Prove that V is finitely dimensional, or find a counterexample.

Exercise 4.5 (2 points). Let M be a compact hypercomplex manifold, $\dim_{\mathbb{R}} M = 4n$ and V the space of closed SU(2)-invariant 2-forms. Prove that V is finitely-dimensional.

Exercise 4.6. Let M be a compact hypercomplex manifold, and η the curvature of the Obata connection of the canonical bundle of (M, I).

- a. Prove that η is SU(2)-invariant.
- b. (2 points) Prove that $\eta^{2n} = 0$, where dim_{\mathbb{R}} M = 4n.

5 Stable bundles

Exercise 5.1. Let *B* be a flat Hermitian bundle over a Kähler manifold, and $B_1 \subset B$ a holomorphic sub-bundle, not necessarily flat. Denote the curvature of the Chern connection on B_1 by Θ_{B_1} . Prove that $\sqrt{-1} \operatorname{Tr}_B \Lambda(\Theta_{B_1}) \ge 0$, and equality happens if and only if the Chern connection of *B* preserves B_1 .

– 3 –

Exercise 5.2. Let (G, I) be a compact Lie group with a left-invariant complex structure. Prove that (G, I) admits a holomorphic, *G*-invariant map to a homogeneous projective manifold. Prove that the canonical bundle of (G, I) has no non-zero holomorphic sections, unless *G* is a compact torus.

Exercise 5.3. Let F be a stable coherent sheaf on a smooth Kähler manifold M. Prove that $F^{**} := \text{Hom}(\text{Hom}(F, \mathcal{O}_M), \mathcal{O}_M)$ is stable.

Exercise 5.4. Let X be a compact complex manifold equipped with a free action of the cyclic group G, and M := X/G.

- a. (2 points) Suppose that all stable coherent sheaves on M have rank1. Prove that all stable sheaves on X have rank 1.
- b. Suppose that all stable coherent sheaves on X have rank 1. Prove that all stable sheaves on M have rank 1.

(don't use Donaldson-Uhlenbeck-Yau unless you can prove it).

Definition 5.1. A vector bundle B with $c_1B = 0$ is called **Bogomolov** stable when all sections $B^{\otimes n} \otimes (B^*)^{\otimes M}$ are sections of rank one subsheaves which are direct summands.

Exercise 5.5. Using Donaldson-Uhlenbeck-Yau, prove that μ -stability implies Bogomolov stability.

Exercise 5.6 (2 points). Let *B* be a Bogomolov stable bundle on $\mathbb{C}P^n$, with $c_1(B) = 0$. Prove that *B* is μ -stable.

Exercise 5.7 (2 points). Prove that the tangent bundle $T\mathbb{C}P^2$ is stable (without using Donaldson-Uhlenbeck-Yau).