Class assignment 3: spinors and Clifford algebras

Definition 3.1. The Clifford algebra of a vector space V with a scalar product q is an algebra generated by V with a relation xy + yx = -2q(x, y)1.

Exercise 3.1. Let $A = A_{\text{even}} \oplus A_{\text{odd}}$ be a graded associative algebra. Let A^{\perp} be the same vector space with new multiplication $a \bullet a' := (-1)^{\tilde{a}\tilde{a}'}aa'$. Prove that $\operatorname{Cl}(V,g)^{\perp} = \operatorname{Cl}(V,-g)$.

Definition 3.2. Let (V, g) be an oriented real vector space with orthogonal basis $e_1, ..., e_n$ such that $g(e_i, e_i) = \pm 1$. A unit pseudoscalar in Cl(V, g) is $\varepsilon := e_1 e_2 e_3 ... e_n$.

Exercise 3.2. Prove that the pseudoscalar is invariant with respect to the natural SO(n)-action. Prove that it is defined uniquely up to a sign.

Exercise 3.3. Prove the isomorphism $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H} = Mat(4, \mathbb{R})$.

Exercise 3.4. Let V be a vector space over a field of characteristic 0.

- a. Prove that the automorphism group $\operatorname{Aut}(\operatorname{Mat}(V))$ is isomorphic to PGL(V) (the quotient of GL(V) by its center).
- b. (*) Is it true for all fields?

Exercise 3.5. Prove that $\text{Spin}(3, \mathbb{C}) \cong SL(2, \mathbb{C})$.

Definition 3.3. Define the real spinor group $\text{Spin}(n, \mathbb{R})$ as a subgroup of the cover $\text{Spin}(n, \mathbb{C}) \longrightarrow SO(n, \mathbb{C})$, fixed by the natural anticomplex involution, obtained from the standard anticomplex involution of $SO(n, \mathbb{C})$.

Exercise 3.6. Prove that this involution is always lifted to an involution of $\text{Spin}(n, \mathbb{C})$.

Exercise 3.7. Prove that $\text{Spin}(3, \mathbb{R}) \cong SU(2)$.

Exercise 3.8. Prove that $\text{Spin}(n, \mathbb{R})$ is a non-trivial 2-sheeted cover of SO(n) for all $n \ge 3$.

Issued 25.09.2019

– 1 –