Class assignment 5: Hypercomplex manifolds

Exercise 5.1. Let (M, I, J, K) be a hypercomplex manifold, $d_I := IdI^{-1}, d_J := JdJ^{-1}, d_K := KdK^{-1}$, and $D := dd_Id_Jd_K : \Lambda^*(M) \longrightarrow \Lambda^{*+4}(M)$. Prove that D is independent from the choice of a basis I, J, K in quaternions.

Exercise 5.2. Let (M, I, J, K) be a hypercomplex manifold, and ∇ a torsion-free connection preserving I, J, K (such connection is called the Obata connection). Consider M as a complex manifold (M, I). Prove that $\nabla^{0,1} = \bar{\partial}$ on $\Lambda_I^{p,0}(M)$, where

$$\bar{\partial}: \Lambda^{p,0}_I(M) \longrightarrow \Lambda^{p,1}_I(M) = \Lambda^{p,0}_I(M) \oplus \Lambda^{0,1}_I(M)$$

Prove that $\nabla^{1,0}_X(\eta) = J(\partial J^{-1}(\eta) \,\lrcorner\, X)$ for any $\eta \in \Lambda^{p,0}_I(M)$ and $X \in T^{1,0}_I(M)$.

Exercise 5.3. Construct a nilpotent Lie group with a non-trivial left invariant hypercomplex structure.

Definition 5.1. Let (M, I, J, K) be a hypercomplex manifold, and g a quaternionic Hermitian metric. Consider the corresponding 2-form $\Omega := \omega_J + \sqrt{-1}\omega_K \in \Lambda^{2,0}(M, I)$. The metric g is called HKT if $\partial \Omega = 0$, where $\partial : \Lambda^{2,0}(M, I) \longrightarrow \Lambda^{3,0}(M, I)$ is the standard Hodge differential.

Exercise 5.4. Let (M, I, J, K) be a hypercomplex manifold, g a quaternionic Hermitian metric, and $\Omega := \omega_J + \sqrt{-1}\omega_K \in \Lambda^{2,0}(M, I)$. Prove that $\partial \Omega = 0$ if and only if $d\omega_I$ has weight 1 with respect to the natural SU(2)-action on 3-forms.

Exercise 5.5. Let g be a Kähler metric on (M, I), where (M, I, J, K) is hypercomplex, and g_1 be g averaged with the natural SU(2)-action. Prove that g_1 is HKT.

Issued 09.10.2019