Hyperkahler manifolds,

lecture 1: holonomy

NRU HSE, Moscow

Misha Verbitsky, September 18, 2019

http://bogomolov-lab.ru/KURSY/HK-2019/

Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case I is called a **complex structure operator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.

REMARK: The commutator defines a $\mathbb{C}^{\infty}M$ -linear map $N:=\Lambda^2(T^{1,0})\longrightarrow T^{0,1}M$, called the Nijenhuis tensor of I. One can represent N as a section of $\Lambda^{2,0}(M)\otimes T^{0,1}M$.

Exercise: Prove that $\mathbb{C}P^n$ is a complex manifold, in the sense of the above definition.

Kähler manifolds

DEFINITION: A Riemannian metric g on an almost complex manifold M is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called the Hermitian form of (M,I,g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called **Kähler** if $d\omega = 0$. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called **the Kähler** class of M, and ω the Kähler form.

Examples of Kähler manifolds.

Definition: Let $M = \mathbb{C}P^n$ be a complex projective space, and g a U(n+1)-invariant Riemannian form. It is called **Fubini-Study form on** $\mathbb{C}P^n$. The Fubini-Study form is obtained by taking arbitrary Riemannian form and averaging with U(n+1).

Remark: For any $x \in \mathbb{C}P^n$, the stabilizer St(x) is isomorphic to U(n). FubiniStudy form on $T_x\mathbb{C}P^n = \mathbb{C}^n$ is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, $d\omega|_x$ is a U(n)-invariant 3-form on \mathbb{C}^n , but such a form must vanish, because $-\operatorname{Id} \in U(n)$

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of $\mathbb{C}P^n$) is Kähler. Indeed, a restriction of a closed form is again closed.

Connections

Notation: Let M be a smooth manifold, TM its tangent bundle, $\Lambda^i M$ the bundle of differential i-forms, $C^{\infty}M$ the smooth functions. The space of sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle B is a map $B \stackrel{\nabla}{\longrightarrow} \Lambda^1 M \otimes B$ which satisfies

$$\nabla(fb) = df \otimes b + f\nabla b$$

for all $b \in B$, $f \in C^{\infty}M$.

REMARK: A connection ∇ on B gives a connection $B^* \xrightarrow{\nabla^*} \Lambda^1 M \otimes B^*$ on the dual bundle, by the formula

$$d(\langle b, \beta \rangle) = \langle \nabla b, \beta \rangle + \langle b, \nabla^* \beta \rangle$$

These connections are usually denoted by the same letter ∇ .

REMARK: For any tensor bundle $\mathcal{B}_1 := B^* \otimes B^* \otimes ... \otimes B^* \otimes B \otimes B \otimes ... \otimes B$ a connection on B defines a connection on \mathcal{B}_1 using the Leibniz formula:

$$\nabla(b_1 \otimes b_2) = \nabla(b_1) \otimes b_2 + b_1 \otimes \nabla(b_2).$$

Levi-Civita connection

DEFINITION: Torsion of a connection ∇ is $T(X,Y) := \nabla_X Y - \nabla_Y X - [X,Y]$, where $X,Y \in TM$.

An exercise: Prove that torsion is a $C^{\infty}M$ -linear.

DEFINITION: Let (M,g) be a Riemannian manifold. A connection ∇ is called **orthogonal** if $\nabla(g) = 0$. It is called **Levi-Civita** if it is torsion-free.

THEOREM: ("the main theorem of differential geometry")
For any Riemannian manifold, the Levi-Civita connection exists, and it is unique.

Levi-Civita connection and Kähler geometry

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then the following conditions are equivalent.

- (i) The complex structure I is integrable, and the Hermitian form ω is closed.
- (ii) One has $\nabla(I) = 0$, where ∇ is the Levi-Civita connection.

REMARK: The implication (ii) \Rightarrow (i) is clear. Indeed, $[X,Y] = \nabla_X Y - \nabla_Y X$, hence it is a (1,0)-vector field when X,Y are of type (1,0), and then I is integrable. Also, $d\omega = 0$, because ∇ is torsion-free, and $d\omega = \text{Alt}(\nabla \omega)$.

The implication (i) \Rightarrow (ii) is proven by the same argument as used to construct the Levi-Civita connection.

Holonomy group

DEFINITION: (Cartan, 1923) Let (B, ∇) be a vector bundle with connection over M. For each loop γ based in $x \in M$, let $V_{\gamma,\nabla}: B|_x \longrightarrow B|_x$ be the corresponding parallel transport along the connection. The **holonomy group** of (B, ∇) is a group generated by $V_{\gamma,\nabla}$, for all loops γ . If one takes all contractible loops instead, $V_{\gamma,\nabla}$ generates **the local holonomy**, or **the restricted holonomy** group.

REMARK: A bundle is **flat** (has vanishing curvature) **if and only if its restricted holonomy vanishes.**

REMARK: If $\nabla(\varphi) = 0$ for some tensor $\varphi \in B^{\otimes i} \otimes (B^*)^{\otimes j}$, the holonomy group preserves φ .

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its Levi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in $O(T_xM, g|_x) = O(n)$.

EXAMPLE: Holonomy of a Kähler manifold lies in $U(T_xM, g|_x, I|_x) = U(n)$.

REMARK: The holonomy group does not depend on the choice of a point $x \in M$.

Ambrose-Singer theorem

DEFINITION: Let (B, ∇) be a bundle with connection, $\Theta \in \Lambda^2(M) \otimes \operatorname{End}(B)$ its curvature, and $a, b \in T_xM$ tangent vectors. An endomorphism $\Theta(a, b) \in \operatorname{End}(B)|_x$ is called a curvature element.

THEOREM: (Ambrose-Singer) The restricted holonomy group of B, ∇ at $z \in M$ is a Lie group, with its Lie algebra generated by all curvature elements $\Theta(a,b) \in \operatorname{End}(B)|_x$ transported to z along all paths.

Holonomy representation

DEFINITION: Let (M,g) be a Riemannian manifold, G its holonomy group. A holonomy representation is the natural action of G on TM.

THEOREM: (de Rham) Suppose that the holonomy representation is not irreducible: $T_xM = V_1 \oplus V_2$. Then M locally splits as $M = M_1 \times M_2$, with $V_1 = TM_1$, $V_2 = TM_2$.

Proof. Step 1: Using the parallel transform, we extend $V_1 \oplus V_2$ to a **splitting** of vector bundles $TM = B_1 \oplus B_2$, preserved by holonomy.

Step 2: The sub-bundles B_1 , $B_2 \subset TM$ are integrable: $[B_1, B_1] \subset B_i$ (the Levi-Civita connection is torsion-free)

Step 3: Taking the leaves of these integrable distributions, we obtain a local decomposition $M = M_1 \times M_2$, with $V_1 = TM_1$, $V_2 = TM_2$.

Step 4: Since the splitting $TM = B_1 \oplus B_2$ is preserved by the connection, the leaves M_1, M_2 are totally geodesic.

Step 5: Therefore, locally M splits (as a Riemannian manifold): $M = M_1 \times M_2$, where M_1, M_2 are any leaves of these foliations.

The de Rham splitting theorem

COROLLARY: Let M be a Riemannian manifold, and $\mathcal{H}ol_0(M) \stackrel{\rho}{\longrightarrow} End(T_xM)$ a reduced holonomy representation. Suppose that ρ is reducible: $T_xM = V_1 \oplus V_2 \oplus ... \oplus V_k$. Then $G = \mathcal{H}ol_0(M)$ also splits: $G = G_1 \times G_2 \times ... \times G_k$, with each G_i acting trivially on all V_j with $j \neq i$.

Proof: Locally, this statement follows from the local splitting of M proven above. To obtain it globally in M, use the Lasso Lemma. \blacksquare

THEOREM: (de Rham) A complete, simply connected Riemannian manifold with non-irreducible holonomy **splits as a Riemannian product.**

REMARK: It is easy to find non-complete or non-simply connected counterexamples to de Rham theorem.

Simons' theorem

DEFINITION: A symmetric space is a complete Riemannian manifold X such that for all $x \in X$ there exists an isometry of X fixing x and acting as -1 in T_xX .

EXERCISE: Prove that isometry group acts transitively on any symmetric manifold.

THEOREM: (Simons, 1962) Let M be a manifold with irreducible holonomy. Then either M is locally symmetric, or $\mathcal{H}ol(M)$ acts transitively on the unit sphere in T_xM .

James Harris Simons, b. 1938

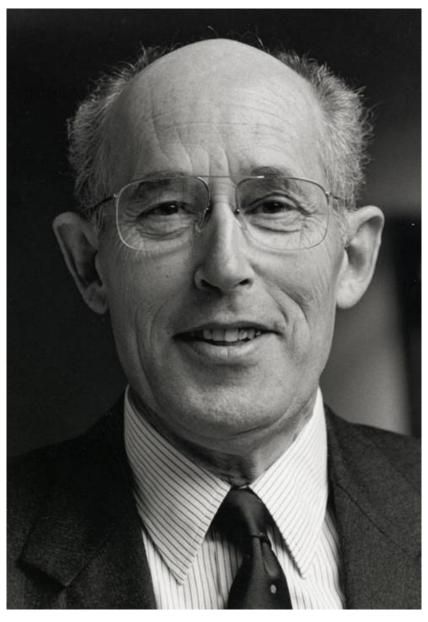
Berger's theorem

THEOREM: (Berger's theorem, 1955) Let G be an irreducible holonomy group of a Riemannian manifold which is not locally symmetric. **Then** G belongs to the Berger's list:

Berger's list	
Holonomy	Geometry
$SO(n)$ acting on \mathbb{R}^n	Riemannian manifolds
$U(n)$ acting on \mathbb{R}^{2n}	Kähler manifolds
$SU(n)$ acting on \mathbb{R}^{2n} , $n>2$	Calabi-Yau manifolds
$Sp(n)$ acting on \mathbb{R}^{4n}	hyperkähler manifolds
$Sp(n) \times Sp(1)/\{\pm 1\}$	quaternionic-Kähler
acting on \mathbb{R}^{4n} , $n>1$	manifolds
G_2 acting on \mathbb{R}^7	G_2 -manifolds
$Spin(7)$ acting on \mathbb{R}^8	Spin(7)-manifolds

REMARK: There is one more group acting transitively on a sphere: Spin(9) acting on $S^{15} \subset \mathbb{R}^{16}$. In 1968, D. Alekseevsky has shown that a manifold with holonomy Spin(9) is always locally symmetric.

REMARK: A similar list exists for non-orthogonal irreducible holonomy without torsion (Merkulov, Schwachhöfer, 1999).



Marcel Berger (1927 - 2016)

Hyperkähler manifolds

REMARK: A Riemannian manifold is Kähler if and only if the holonomy of its Levi-Civita connection belongs to U(n).

DEFINITION: Let $V = \mathbb{R}^{4n} = \mathbb{H}^n$ be a quaternionic vector space. Quaternionic Hermitian form is a Eucidean metric h on V which is invariant under the action of I, J, K. A unitary quaternionic map is an \mathbb{H} -linear map $V \longrightarrow V$ which preserves the metric.

DEFINITION: $Sp(n) = U(n, \mathbb{H})$ is the group of unitary quaternionic matrices.

DEFINITION: A hyperkähler manifold is a Riemannian manifold such that the holonomy of its Levi-Civita connection belongs to Sp(n)

Hyperkähler manifolds (2)

DEFINITION: (E. Calabi, 1978)

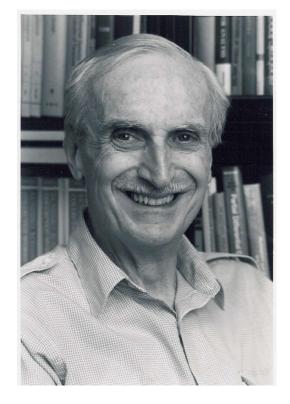
Let (M,g) be a Riemannian manifold equipped with three complex structure operators I,J,K: $TM \longrightarrow TM$, satisfying the quaternionic relations

$$I^2 = J^2 = K^2 = IJK = -\operatorname{Id}$$
.

Suppose that I, J, K are Kähler. Then (M, I, J, K, g) is called **hyperkähler**.

REMARK: This is the same as $\mathcal{H}ol(M) \subset Sp(n)$.

Indeed, if $\mathcal{H}\text{ol}(M) \subset \operatorname{Sp}(n)$, we have 3 complex structures $I, J, K : TM \longrightarrow TM$, such that $\nabla(I) = \nabla(J) = \nabla(K) = 0$, which implies that I, J, K are Kähler. Conversely, if I, J, K are Kähler, we have $\nabla(I) = \nabla(J) = \nabla(K) = 0$.



Eugenio Calabi, b. 1923

Holomorphic symplectic geometry

REMARK: A hyperkähler manifold (M, I, J, K) is equipped with 3 symplectic forms ω_I , ω_J , ω_K , with

$$\omega_I(x,y) := g(x,Iy), \ \omega_J(x,y) := g(x,Jy), \ \omega_K(x,y) := g(x,Ky).$$

LEMMA: The form $\Omega := \omega_J + \sqrt{-1}\omega_K$ is a holomorphic symplectic 2-form on (M,I).

Converse is also true, as follows from the famous conjecture, made by Calabi in 1952.

THEOREM: (S.-T. Yau, 1978)

Let M be a compact, holomorphically symplectic Kähler manifold. Then M admits a hyperkähler metric, which is uniquely determined by the cohomology class of its Kähler form ω_I .

Hyperkähler geometry is essentially the same as holomorphic symplectic geometry