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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM — TM which satisfies 12 = —Idp,,.

T he eigenvalues of this operator are ++/—1. The corresponding eigenvalue
decomposition is denoted TM = 7% M @ T1.0(M).

DEFINITION: An almost complex structure is integrable if VX,Y € TLOM,
one has [X,Y] € T1OM. In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.

REMARK: The commutator defines a C°°M-linear map
N := N2(T19) — 70.107, called the Nijenhuis tensor of I. One can rep-
resent N as a section of A29(M) @ TO101.

Exercise: Prove that CP"™ is a complex manifold, in the sense of the above

definition.
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Kahler manifolds

DEFINITION: A Riemannian metric g on an almost complex manifiold M
is called Hermitian if g(Iz,Iy) = g(z,y). In this case, g(z, Iy) = g(Iz, I?%y) =
—g(y, Iz), hence w(x,y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form w € AL1(M) is called the Hermitian
form of (M, 1,g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).
DEFINITION: A complex Hermitian manifold (M, I,w) is called Kahler if

dw = 0. The cohomology class [w] € H2(M) of a form w is called the Kahler
class of M, and w the Kahler form.
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Examples of Kahler manifolds.

Definition: Let M = CP"™ be a complex projective space, and g a U(n 4+ 1)-
invariant Riemannian form. It is called Fubini-Study form on CP"™. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-
aging with U(n+ 1).

Remark: For any x € CP"™, the stabilizer St(x) is isomorphic to U(n). Fubini-
Study form on T, CP™ = C" is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kahler. Indeed, dw|; is a U(n)-invariant 3-
form on C", but such a form must vanish, because —1Id € U(n)

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of CP") is
Kahler. Indeed, a restriction of a closed form is again closed.
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Connections

Notation: Let M be a smooth manifold, TM its tangent bundle, A'M the
bundle of differential -forms, C°°M the smooth functions. The space of
sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle B isa map B — AlM® B
which satisfies

V(fb) =df @ b+ fVb
forallbe B, f e C°°M.

REMARK: A connection V on B gives a connection B* 2 ALM @ B* on
the dual bundle, by the formula

d({b, 8)) = (Vb,B) + (b, V"B)

These connections are usually denoted by the same letter V.

REMARK: For any tensor bundle B .= B*®B*"®..QB* R BQB®..® B a
connection on B defines a connection on B; using the Leibniz formula:

V(b1 ®bp) =V (b1) @by + b1 @ V(b2).
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Levi-Civita connection

DEFINITION: Torsion of a connection VisT(X,Y) :=VyxY-VyX—[X,Y],
where X,Y € T'M.

An exercise: Prove that torsion is a C*°M-linear.

DEFINITION: Let (M,g) be a Riemannian manifold. A connection V is
called orthogonal if V(g) = 0. It is called Levi-Civita if it is torsion-free.

THEOREM: (“the main theorem of differential geometry”)
For any Riemannian manifold, the Levi-Civita connection exists,
and it is unique.
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Levi-Civita connection and Kahler geometry

THEOREM: Let (M, 1I,g) be an almost complex Hermitian manifold. Then
the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form w is
closed.

(ii) One has V(I) = 0, where V is the Levi-Civita connection.
REMARK: The implication (ii) = (i) is clear. Indeed, [X,Y] = VxY —

Vy X, hence it is a (1,0)-vector field when X,Y are of type (1,0), and then [
Is integrable. Also, dw = 0, because V is torsion-free, and dw = Alt(Vw).

The implication (i) = (ii) is proven by the same argument as used to construct
the Levi-Civita connection.
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Holonomy group

DEFINITION: (Cartan, 1923) Let (B, V) be a vector bundle with connec-
tion over M. For each loop v based in x € M, let V, ¢ : Bz — B|x be
the corresponding parallel transport along the connection. The holonomy
group of (B,V) is a group generated by V, v, for all loops ~v. If one takes
all contractible loops instead, V%v generates the local holonomy, or the
restricted holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its
restricted holonomy vanishes.

REMARK: If V(¢) = 0 for some tensor ¢ € B®¥" g (B*)®J, the holonomy
group preserves o.

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its
evi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in O(T;:M, g|z) = O(n).
EXAMPLE: Holonomy of a Kahler manifold lies in U(TxM, glz, I|z) = U(n).

REMARK: The holonomy group does not depend on the choice of a
point = € M.
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Ambrose-Singer theorem

DEFINITION: Let (B, V) be a bundle with connection, © € A2(M)®End(B)
its curvature, and a,b € T, M tangent vectors. An endomorphism ©(a,b) €
End(B)|, is called a curvature element.

THEOREM: (Ambrose-Singer) The restricted holonomy group of B,V at
z € M is a Lie group, with its Lie algebra generated by all curvature
elements ©(a,b) € End(B)|; transported to z along all paths.
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Holonomy representation

DEFINITION: Let (M, g) be a Riemannian manifold, G its holonomy group.
A holonomy representation is the natural action of G on T'M.

THEOREM: (de Rham) Suppose that the holonomy representation is not
irreducible: T, M = V7 & Vo. Then M locally splits as M = My x M>, with
Vi=TMq, Vo =TM>.

Proof. Step 1: Using the parallel transform, we extend V7 @& V5 to a splitting
of vector bundles T'M = By & B>, preserved by holonomy.

Step 2: The sub-bundles By, B> C TM are integrable: [By,B1] C B; (the
Levi-Civita connection is torsion-free)

Step 3: Taking the leaves of these integrable distributions, we obtain a
local decomposition M = My x M»>, with V7 =TMq, Vo =T Mo>.

Step 4: Since the splitting T'M = By & B> is preserved by the connection,
the leaves M4, M> are totally geodesic.

Step 5: Therefore, locally M splits (as a Riemannian manifold):
M = My x Mo, where M1, M> are any leaves of these foliations. =
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The de Rham splitting theorem

COROLLARY: Let M be a Riemannian manifold, and Holg(M) Ly End(TpM)
a reduced holonomy representation. Suppose that p is reducible: T,M =
VieVo®...®d V. Then G = Holg(M) also splits: G = G1 x G X ... x G,
with each G; acting trivially on all V; with j 7 3.

Proof: Locally, this statement follows from the local splitting of M proven
above. To obtain it globally in M, use the Lasso Lemma. m

THEOREM: (de Rham) A complete, simply connected Riemannian manifold
with non-irreducible holonomy splits as a Riemannian product.

REMARK: It is easy to find non-complete or non-simply connected coun-
terexamples to de Rham theorem.
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Simons’ theorem

DEFINITION: A symmetric space is a complete Riemannian manifold X
such that for all x € X there exists an isometry of X fixing x and acting as
—1inT,X.

EXERCISE: Prove that isometry group acts transitively on any sym-
metric manifold.

THEOREM: (Simons, 1962) Let M be a manifold with irreducible holonomy.
Then either M is locally symmetric, or Hol(M) acts transitively on the
unit sphere in 7T, M.

o, M

e\

James Harris Simons, b. 1938
12




Hyperkahler manifolds, lecture 1 M. Verbitsky
Berger’s theorem

THEOREM: (Berger's theorem, 1955) Let G be an irreducible holonomy
group of a Riemannian manifold which is not locally symmetric. Then G
belongs to the Berger’s list:

Berger’s list
Holonomy Geometry
SO(n) acting on R" Riemannian manifolds
U(n) acting on R=" Kahler manifolds
SU(n) acting on R°", n > 2 | Calabi-Yau manifolds
Sp(n) acting on R*" hyperkihler manifolds
Sp(n) x Sp(1)/{+1} quaternionic-Kahler
acting on R4, n > 1 manifolds
G- acting on R’ Go-manifolds
Spin(7) acting on R® Spin(7)-manifolds

REMARK: There is one more group acting transitively on a sphere: Spin(9)
acting on S1° ¢ R16. In 1968, D. Alekseevsky has shown that a manifold

with holonomy Spin(9) is always locally symmetric.

REMARK: A similar list exists for non-orthogonal irreducible holonomy without torsion
(Merkulov, Schwachhofer, 1999).
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Marcel Berger (1927 - 2016)
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Hyperkahler manifolds

REMARK: A Riemannian manifold is Kahler if and only if the holonomy
of its Levi-Civita connection belongs to U(n).

DEFINITION: Let V = R* = H" be a quaternionic vector space. Quater-
nionic Hermitian form is a Eucidean metric h on V which is invariant under

the action of I, J, K. A unitary quaternionic map is an H-linear map V — V
which preserves the metric.

DEFINITION: Sp(n) = U(n,H) is the group of unitary quaternionic matrices.

DEFINITION: A hyperkahler manifold is a Riemannian manifold such that
the holonomy of its Levi-Civita connection belongs to Sp(n)
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Hyperkahler manifolds (2)

DEFINITION: (E. Calabi, 1978)

Let (M,g) be a Riemannian manifold equipped
with three complex structure operators I,J K
TM — TM, satisfying the quaternionic relations

[P=J2=K?=]JJK = —1d.

Suppose that I, J, K are Kahler. Then
(M,I,J K,qg) is called hyperkahler.

REMARK: This is the same as Hol(M) C Sp(n).
Indeed, if Hol(M) C Sp(n), we have 3 complex
structures I,J, K : TM — TM, such that V(I) =
V(J) = V(K) = 0, which implies that I,J, K are
Kahler. Conversely, if I,J, K are Kahler, we have
V({I)=V(J)=V(K)=0.
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Holomorphic symplectic geometry

REMARK: A hyperkahler manifold (M, I, J, K) is equipped with 3 symplectic
forms wy, wy, wg, with

wi(z,y) =gz, ly), wi(z,y) = g(=z, Jy), wig(z,y) ;= g(z, Ky).

LEMMA: The form Q2 := wj++v—1lwg is a holomorphic symplectic 2-form
on (M,I). m

Converse is also true, as follows from the famous conjec-
ture, made by Calabi in 1952.

THEOREM: (S.-T. Yau, 1978)
Let M be a compact, holomorphically symplectic Kahler manifold. Then M
admits a hyperkahler metric, which is uniquely determined by the coho-
mology class of its Kahler form wy.

Hyperkahler geometry is essentially the same as holomorphic symplectic ge-
ometry
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