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Holomorphic vector bundles

DEFINITION: A ∂-operator on a smooth bundle is a map V
∂−→ Λ0,1(M)⊗

V , satisfying ∂(fb) = ∂(f)⊗ b+ f∂(b) for all f ∈ C∞M, b ∈ V .

REMARK: A ∂-operator on B can be extended to

∂ : Λ0,i(M)⊗ V −→ Λ0,i+1(M)⊗ V,

using ∂(η ⊗ b) = ∂(η)⊗ b+ (−1)η̃η ∧ ∂(b), where b ∈ V and η ∈ Λ0,i(M).

DEFINITION: A holomorphic vector bundle on a complex manifold (M, I)

is a vector bundle equipped with a ∂-operator which satisfies ∂
2

= 0. In this

case, ∂ is called a holomorphic structure operator.

EXERCISE: Consider the Dolbeault differential ∂ : Λp,0(M)−→ Λp,1(M) =

Λp,0(M)⊗Λ0,1(M). Prove that it is a holomorphic structure operator on

Λp,0(M).

DEFINITION: The corresponding holomorphic vector bundle (Λp,0(M), ∂) is

called the bundle of holomorphic p-forms, denoted by Ωp(M).
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REMINDER: Chern connection

DEFINITION: Let (B,∇) be a smooth bundle with connection and a holo-

morphic structure ∂ B −→ Λ0,1(M) ⊗ B. Consider a Hodge decomposition of

∇, ∇ = ∇0,1 +∇1,0,

∇0,1 : V −→ Λ0,1(M)⊗ V, ∇1,0 : V −→ Λ1,0(M)⊗ V.

We say that ∇ is compatible with the holomorphic structure if ∇0,1 = ∂.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth

complex vector bundle equipped with a Hermitian metric and a holomorphic

structure operator ∂.

DEFINITION: A Chern connection on a holomorphic Hermitian vector

bundle is a connection compatible with the holomorphic structure and pre-

serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-

nection exists, and is unique.
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REMINDER: Curvature of a connection

DEFINITION: Let ∇ : B −→B⊗Λ1M be a connection on a smooth budnle.

Extend it to an operator on B-valued forms

B
∇−→ Λ1(M)⊗B ∇−→ Λ2(M)⊗B ∇−→ Λ3(M)⊗B ∇−→ ...

using ∇(η ⊗ b) = dη + (−1)η̃η ∧ ∇b. The operator ∇2 : B −→B ⊗ Λ2(M) is

called the curvature of ∇. The operator ∇ : Λi(M)⊗B ∇−→ Λi+1(M)⊗B is

often denoted d∇.

REMARK: The algebra of End(B)-valued forms naturally acts on Λ∗M ⊗B.

The curvature satisfies ∇2(fb) = d2fb+df ∧∇b−df ∧∇b+f∇2b = f∇2b, hence

it is C∞M-linear. We consider it as an End(B)-valued 2-form on M.

REMARK: (Bianchi identity)

Clearly, [∇,∇2] = [∇2,∇] + [∇,∇2] = 0, hence [∇,∇2] = 0. This gives

the Bianchi identity: d∇(ΘB) = 0, where Θ is considered as a section of

Λ2(M)⊗End(B), and d∇ : Λ2(M)⊗End(B)−→ Λ3(M)⊗End(B) the operator

defined above.
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REMINDER: Curvature of a holomorphic line bundle

REMARK: If B is a line bundle, EndB is trivial, and the curvature ΘB of
B is a closed 2-form.

DEFINITION: Let ∇ be a unitary connection in a line bundle. The coho-
mology class c1(B) :=

√
−1
2π [ΘB] ∈ H2(M) is called the real first Chern class

of a line bunlde B.

An exercise: Check that c1(B) is independent from a choice of ∇.

REMARK: When speaking of a “curvature of a holomorphic bundle”,
one usually means the curvature of a Chern connection.

REMARK: Let B be a holomorphic Hermitian line bundle, and b its non-
degenerate holomorphic section. Denote by η a (1,0)-form which satisfies
∇1,0b = η ⊗ b. Then d|b|2 = Re g(∇1,0b, b) = Re η|b|2. This gives ∇1,0b =
∂|b|2
|b|2 b = 2∂ log |b|b.

REMARK: Then ΘB(b) = 2∂∂ log |b|b, that is, ΘB = −2∂∂ log |b|.

COROLLARY: If g′ = e2fg – two metrics on a holomorphic line bundle,
Θ,Θ′ their curvatures, one has Θ′ −Θ = −2∂∂f
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∂∂-lemma

THEOREM: (“∂∂-lemma”)

Let M be a compact Kaehler manifold, and η ∈ Λp,q(M) an exact form. Then

η = ∂∂α, for some α ∈ Λp−1,q−1(M).

Its proof uses Hodge theory.

COROLLARY: Let (L, h) be a holomorphic line bundle on a compact com-

plex manifold, Θ its curvature, and η a (1,1)-form in the same cohomology

class as [Θ]. Then there exists a Hermitian metric h′ on L such that its

curvature is equal to η.

Proof: Let Θ′ be the curvature of the Chern connection associated with h′.
Then Θ′−Θ = −2∂∂f , wgere f = log(h′h−1). Then Θ′−Θ = η−Θ = −2∂∂f

has a solution f by ∂∂-lemma, because η −Θ is exact.
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Calabi-Yau manifolds

REMARK: Let B be a line bundle on a manifold. Using the long exact
sequence of cohomology associated with the exponential sequence

0−→ ZM −→ C∞M −→ (C∞M)∗ −→ 0,

we obtain 0−→H1(M, (C∞M)∗)−→H2(M,Z)−→ 0.

DEFINITION: Let B be a complex line bundle, and ξB its defining element
in H1(M, (C∞M)∗). Its image in H2(M,Z) is called the integer first Chern
class of B, denoted by c1(B,Z) or c1(B).

REMARK: A complex line bundle B is (topologically) trivial if and only
if c1(B,Z) = 0.

THEOREM: (Gauss-Bonnet) A real Chern class of a vector bundle is an
image of the integer Chern class c1(B,Z) under the natural homomorphism
H2(M,Z)−→H2(M,R).

DEFINITION: A first Chern class of a complex n-manifold is c1(Λn,0(M)).

DEFINITION:
A Calabi-Yau manifold is a compact Kaehler manifold with c1(M,Z) = 0.
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Ricci form of a Kähler manifold

THEOREM: (Bogomolov) Let M be a compact Kähler n-manifold with

c1(M,Z) = 0. Then the canonical bundle KM := Ωn(M) is trivial.

Proof: Follows from the Calabi-Yau theorem (later today).

In other words, a manifold is Calabi-Yau if and only if its canonical bundle is

trivial.

DEFINITION: Let (M,ω) be a Kähler manifold. The metric on KM can be

written as |Ω|2 = Ω∧Ω
ωn . The Ricci form on M is the curvature of the Chern

connection on KM . The manifold M is Ricci-flat if its Ricci form vanishes.

REMARK: Since a canonical bundle KM of a Calabi-Yau manifold is trivial, it

admits a metric with trivial connection. Calabi conjectured that this metric

on KM is induced by a Kähler metric ω on M and proved that such a

metric is unique for any cohomology class [ω] ∈ H1,1(M,R). Yau proved that

it always exists.

DEFINITION: A Ricci-flat Kähler metric is called Calabi-Yau metric.
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Calabi-Yau theorem and Monge-Ampère equation

REMARK: Let (M,ω) be a Kähler n-fold, and Ω a non-degenerate section
of K(M), Then |Ω|2 = Ω∧Ω

ωn . If ω1 is a new Kaehler metric on (M, I), h, h1

the associated metrics on K(M), then h
h1

=
ωn1
ωn.

REMARK: For two metrics ω1, ω in the same Kähler class, one has ω1−ω =
ddcϕ, for some function ϕ (ddc-lemma).

COROLLARY: Let M be a Calabi-Yau manifold, ω its Kähler form, Ω a
non-degenerate section of the canonical bundle. A metric ω1 = ω + ∂∂ϕ is
Ricci-flat if and only if (ω + ddcϕ)n = ωnef , where −2∂∂f = ΘK,ω (such f

exists by ∂∂-lemma).

Proof. Step 1: For f such that −2∂∂f = ΘK,ω, the curvature of the metric

h−→ h∧h
ωnef

on KM is equal to ΘK,ω + 2∂∂f = 0.

Proof. Step 2: ω1 is Ricci-flat if and only if the induced metric on KM
is flat, which is equivalent to (ω + ddcϕ)n = ωnef .

To find a Ricci-flat metric it remains to solve an equation (ω + ddcϕ)n =
ωnef for a given f.
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The complex Monge-Ampère equation

To find a Ricci-flat metric it remains to solve an equation (ω + ddcϕ)n =

ωnef for a given f.

THEOREM: (Calabi-Yau) Let (M,ω) be a compact Kaehler n-manifold,

and f any smooth function. Then there exists a unique up to a constant

function ϕ such that (ω+
√
−1∂∂ϕ)n = Aefωn, where A is a positive constant

obtained from the formula
∫
M Aefωn =

∫
M ωn.

DEFINITION:

(ω +
√
−1 ∂∂ϕ)n = Aefωn,

is called the Monge-Ampere equation.
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Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi) A complex Monge-Ampere equation has at
most one solution, up to a constant.

Proof. Step 1: Let ω1, ω2 be solutions of Monge-Ampere equation. Then
ωn1 = ωn2. By construction, one has ω2 = ω1 +

√
−1 ∂∂ψ. We need to show

ψ = const.

Step 2: ω2 = ω1 +
√
−1 ∂∂ψ gives

0 = (ω1 +
√
−1 ∂∂ψ)n − ωn1 =

√
−1 ∂∂ψ ∧

n−1∑
i=0

ωi1 ∧ ω
n−1−i
2 .

Step 3: Let P :=
∑n−1
i=0 ω

i
1 ∧ ω

n−1−i
2 . This is a strictly positive (n− 1, n− 1)-

form. There exists a Hermitian form ω3 on M such that ωn−1
3 = P .

Step 4: Since
√
−1 ∂∂ψ ∧ P = 0, this gives ψ∂∂ψ ∧ P = 0. Stokes’ formula

implies

0 =
∫
M
ψ ∧ ∂∂ψ ∧ P = −

∫
M
∂ψ ∧ ∂ψ ∧ P = −

∫
M
|∂ψ|23ω

n
3.

where | · |3 is the metric associated to ω3. Therefore ∂ψ = 0.
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Bochner’s vanishing

THEOREM: (Bochner vanishing theorem) On a compact Ricci-flat Calabi-

Yau manifold, any holomorphic p-form η is parallel with respect to the

Levi-Civita connection: ∇(η) = 0.

REMARK: Its proof is based on spinors: η gives a harmonic spinor, and on

a Ricci-flat Riemannian spin manifold, any harmonic spinor is parallel.

DEFINITION: A holomorphic symplectic manifold is a manifold admitting

a non-degenerate, holomorphic symplectic form.

REMARK: A holomorphic symplectic manifold is Calabi-Yau. The top ex-

terior power of a holomorphic symplectic form is a non-degenerate section

of canonical bundle.
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Hyperkähler manifold

REMARK: Due to Bochner’s vanishing, holonomy of Ricci-flat Calabi-

Yau manifold lies in SU(n), and holonomy of Ricci-flat holomorphically

symplectic manifold lies in Sp(n) (a group of complex unitary matrices

preserving a complex-linear symplectic form).

DEFINITION: A holomorphically symplectic Kähler manifold with holonomy

in Sp(n) is called hyperkähler.

REMARK: Since Sp(n) = SU(H, n), a hyperkähler manifold admits quater-

nionic action in its tangent bundle.
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EXAMPLES.

EXAMPLE: An even-dimensional complex vector space.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: T ∗CPn (Calabi).

REMARK: T ∗CP1 is a resolution of a singularity C2/±1.

REMARK: Let M be a 2-dimensional complex manifold with holomorphic

symplectic form outside of singularities, which are all of form C2/±1. Then

its resolution is also holomorphically symplectic.

EXAMPLE: Take a 2-dimensional complex torus T , then all the singularities

of T/±1 are of this form. Its resolution T̃/±1 is called a Kummer surface.

It is holomorphically symplectic.

REMARK: Take a symmetric square Sym2 T , with a natural action of T , and

let T [2] be a blow-up of a singular divisor. Then T [2] is naturally isomorphic

to the Kummer surface ˜T/±1.
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K3 surfaces

DEFINITION: A K3-surface is a deformation of a Kummer surface.

“K3: Kummer, Kähler, Kodaira” (a name is due to A. Weil).

“Faichan Kangri (K3) is the 12th highest mountain on Earth.”

THEOREM: Any complex compact surface with c1(M) = 1 and H1(M) = 0
is isomorphic to K3. Moreover, it is hyperkähler.
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Hilbert schemes

REMARK: A complex surface is a 2-dimensional complex manifold.

DEFINITION: A Hilbert scheme M [n] of a complex surface M is a clas-
sifying space of all ideal sheaves I ⊂ OM for which the quotient OM/I has
dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities
of the symmetric power SymnM .

THEOREM: (Fujiki, Beauville) A Hilbert scheme of a hyperkähler sur-
face is hyperkähler.

EXAMPLE: A Hilbert scheme of K3.

EXAMPLE: Let T is a torus. Then it acts on its Hilbert scheme freely
and properly by translations. For n = 2, the quotient T [n]/T is a Kummer
K3-surface. For n > 2, it is called a generalized Kummer variety.

REMARK: There are 2 more “sporadic” examples of compact hyperkähler
manifolds, constructed by K. O’Grady. All known compact hyperkaehler
manifolds are these 2 and the three series: tori, Hilbert schemes of K3,
and generalized Kummer.
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