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Holomorphic vector bundles

DEFINITION: A 9-operator on a smooth bundle is a map V. -2» ASL (M) ®
V, satisfying 0(fb) = o(f) @ b+ fo(b) for all f € C°M,bec V.

REMARK: A 0-operator on B can be extended to
9: AN (M)eV — ATl gV,
using d(n ®b) =0(n) @b+ (=1)"y A J(b), where b e V and n € A9 (M).

DEFINITION: A holomorphic vector bundle on a complex manifold (M, I)
is a vector bundle equipped with a 9-operator which satisfies 52 = 0. In this
case, O is called a holomorphic structure operator.

EXERCISE: Consider the Dolbeault differential 8 : APO(M) — AP L(M) =
APO(M) @ADL (M). Prove that it is a holomorphic structure operator on
AP:O(M).

DEFINITION: The corresponding holomorphic vector bundle (APO(M1),d) is
called the bundle of holomorphic p-forms, denoted by QP(M).
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REMINDER: Chern connection

DEFINITION: Let (B,V) be a smooth bundle with connection and a holo-
morphic structure & B— A% (M) ® B. Consider a Hodge decomposition of
V, V= VO,l + Vl,O,

voOl: v A0t ev, v v ALY eV

We say that V is compatible with the holomorphic structure if V91 = 3.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth
complex vector bundle equipped with a Hermitian metric and a holomorphic
structure operator 0.

DEFINITION: A Chern connection on a holomorphic Hermitian vector
bundle is a connection compatible with the holomorphic structure and pre-
serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-
nection exists, and is unique.
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REMINDER: Curvature of a connection

DEFINITION: Let V: B—s BAIM be a connection on a smooth budnle.
Extend it to an operator on B-valued forms

B Y Al (M)®B 5 A2(M)@B - A3S(M)®B s ...

using V(n ® b) = dn + (=1)7n A Vb. The operator V2 : B— B® A2(M) is
called the curvature of V. The operator V : Ai(M)® B — AT1(M) @ B is
often denoted dy.

REMARK: The algebra of End(B)-valued forms naturally acts on A*M ® B.
The curvature satisfies V2(fb) = d?fb+df AVb—df AVb+ fV2b = fV2b, hence
it is C°°M-linear. We consider it as an End(B)-valued 2-form on M.

REMARK: (Bianchi identity)

Clearly, [V,V?4] = [V2,V] 4+ [V,V?] = 0, hence [V,V?2] = 0. This gives
the Bianchi identity: dy(©p) = 0, where © is considered as a section of
A2(M)®End(B), and dy : A2(M)Q®End(B) — A3(M)®End(B) the operator
defined above.
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REMINDER: Curvature of a holomorphic line bundle

REMARK: If B is a line bundle, End B is trivial, and the curvature ©p of
B is a closed 2-form.

DEFINITION: Let V be a unitary connection in a line bundle. The coho-
mology class ¢1(B) := —V2_7T1[@B] € H2(M) is called the real first Chern class
of a line bunlde B.

An exercise: Check that ¢1(B) is independent from a choice of V.

REMARK: When speaking of a *‘‘curvature of a holomorphic bundle’,
one usually means the curvature of a Chern connection.

REMARK: Let B be a holomorphic Hermitian line bundle, and b its non-
degenerate holomorphic section. Denote by n a (1,0)-form which satisfies
V90 = n®b. Then d|b|? = Reg(V10,b) = Ren|p|?. This gives V1:0p =

2
%b — 29 10g |bb.

REMARK: Then ©5(b) = 20d10g |blb, that is, © 5 = —209 1049 |b|.

COROLLARY: If ¢ = e2/g — two metrics on a holomorphic line bundle,
©, ©' their curvatures, one has ©' — © = —290f
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do-lemma

THEOREM: (“d0-lemma”)
Let M be a compact Kaehler manifold, and n € AP9(M) an exact form. Then
n = 80a, for some a € AP~La=1(pp).

Its proof uses Hodge theory.

COROLLARY: Let (L,h) be a holomorphic line bundle on a compact com-
plex manifold, © its curvature, and n a (1,1)-form in the same cohomology
class as [®]. Then there exists a Hermitian metric A’ on L such that its
curvature is equal to 7.

Proof: Let ©’ be the curvature of the Chern connection associated with A’.
Then ©' —© = —288f, wgere f = log(h’h™1). Then ® -0 =n—0 = —299f
has a solution f by dd-lemma, because n — © is exact. m
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Calabi-Yau manifolds

REMARK: Let B be a line bundle on a manifold. Using the long exact
sequence of cohomology associated with the exponential sequence

0—Zy — C°M — (C*°M)* — 0,
we obtain 0 — H1(M, (C>®°M)*) — H2(M,Z) — 0.

DEFINITION: Let B be a complex line bundle, and &g its defining element
in H1(M, (C*®°M)*). Its image in H2(M,Z) is called the integer first Chern
class of B, denoted by ¢1(B,Z) or ¢1(B).

REMARK: A complex line bundle B is (topologically) trivial if and only
if c1(B,7Z) = 0.

THEOREM: (Gauss-Bonnet) A real Chern class of a vector bundle is an
image of the integer Chern class c¢q(B,Z) under the natural homomorphism
H?2(M,Z) — H?(M,R).

DEFINITION: A first Chern class of a complex n-manifold is ¢1 (A™9(M)).

DEFINITION:.:
A Calabi-Yau manifold is a compact Kaehler manifold with ¢q(M,Z) = 0.
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Ricci form of a Kahler manifold

THEOREM: (Bogomolov) Let M be a compact Kahler n-manifold with
c1(M,Z) = 0. Then the canonical bundle K,; := Q" (M) is trivial.

Proof: Follows from the Calabi-Yau theorem (later today). =

In other words, a manifold is Calabi-Yau if and only if its canonical bundle is
trivial.

DEFINITION: Let (M,w) be a Kahler manifold. The metric on K,; can be

written as |Q|? = QﬁnQ. The Ricci form on M is the curvature of the Chern

connection on K,;. The manifold M is Ricci-flat if its Ricci form vanishes.

REMARK: Since a canonical bundle K,; of a Calabi-Yau manifold is trivial, it
admits a metric with trivial connection. Calabi conjectured that this metric
on Kj,; is induced by a Kahler metric w on M and proved that such a
metric is unique for any cohomology class [w] € HL:1(M,R). Yau proved that
it always exists.

DEFINITION: A Ricci-flat Kahler metric is called Calabi-Yau metric.
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Calabi-Yau theorem and Monge-Ampere equation

REMARK: Let (M,w) be a Kahler n-fold, and €2 a non-degenerate section
of K(M), Then |22 = Quan. If wy is a new Kaehler metric on (M,I), h,hq
h _ Wi

h1 — W™

the associated metrics on K(M), then

REMARK: For two metrics wq,w in the same Kahler class, one has w1 —w =
dd®yp, for some function ¢ (dd°-lemma).

COROLLARY: Let M be a Calabi-Yau manifold, w its Kahler form, €2 a
non-degenerate section of the canonical bundle. A metric w1 = w + 89 is
Ricci-flat if and only if (w + ddp)" = w"/, where —209f = O, (such f
exists by 90-lemma).

Proof. Step 1: For f such that —200f = ©f,,, the curvature of the metric
h— "R on Ky is equal to O, + 289f = 0.

whelf

Proof. Step 2: w; is Ricci-flat if and only if the induced metric on K,
is flat, which is equivalent to (w + dd¢)" = w"e/. =

To find a Ricci-flat metric it remains to solve an equation (w + dd)™ =
w"el for a given 7.
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The complex Monge-Ampere equation

To find a Ricci-flat metric it remains to solve an equation (w + ddp)™ =
w"el for a given 7.

THEOREM: (Calabi-Yau) Let (M,w) be a compact Kaehler n-manifold,
and f any smooth function. Then there exists a unique up to a constant
function ¢ such that (w++v/—=180p)" = Aefw”, where A is a positive constant
obtained from the formula [, Ae/w™ = [, w™.

DEFINITION.:
(W~ V=1 00p)" = Aelw™,

is called the Monge-Ampere equation.
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Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi) A complex Monge-Ampere equation has at
most one solution, up to a constant.

Proof. Step 1: Let wi,wp be solutions of Monge-Ampere equation. Then
wy = w5. By construction, one has wy = wj ++v—1 00vy. We need to show

Y = const.
Step 2: wo = wy +V/—1 09y gives

n—1 '
0= (w1 +V—-190¢)" —w} =+v—-190¢% A Z wi A wg_l_z.

1=0

Step 3: Let P = Z?:_é w} /\wg_l_i. This is a strictly positive (n — 1,n — 1)-
form. There exists a Hermitian form w3z on M such that w3_1 = P.

Step 4: Since v/—190y A P = 0, this gives ¥00y A P = 0. Stokes’ formula
implies

0=/M¢/\85¢/\P= —/Mazp/\gw/\P= —/M|a¢|§w§.

where |- |3 is the metric associated to w3. Therefore 9y = 0. =
11
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Bochner’s vanishing

THEOREM: (Bochner vanishing theorem) On a compact Ricci-flat Calabi-
Yau manifold, any holomorphic p-form n is parallel with respect to the
Levi-Civita connection: V(n) = 0.

REMARK: Its proof is based on spinors: n gives a harmonic spinor, and on
a Ricci-flat Riemannian spin manifold, any harmonic spinor is parallel.

DEFINITION: A holomorphic symplectic manifold is a manifold admitting
a non-degenerate, holomorphic symplectic form.

REMARK: A holomorphic symplectic manifold is Calabi-Yau. The top ex-

terior power of a holomorphic symplectic form is a non-degenerate section
of canonical bundle.
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Hyperkahler manifold

REMARK: Due to Bochner’s vanishing, holonomy of Ricci-flat Calabi-
Yau manifold lies in SU(n), and holonomy of Ricci-flat holomorphically
symplectic manifold lies in Sp(n) (a group of complex unitary matrices
preserving a complex-linear symplectic form).

DEFINITION: A holomorphically symplectic Kahler manifold with holonomy
in Sp(n) is called hyperkahler.

REMARK: Since Sp(n) = SU(H, n), a hyperkahler manifold admits quater-
nionic action in its tangent bundle.
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EXAMPLES.

EXAMPLE: An even-dimensional complex vector space.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: T*CP"™ (Calabi).

REMARK: T*CP! is a resolution of a singularity Cz/il.

REMARK: Let M be a 2-dimensional complex manifold with holomorphic
symplectic form outside of singularities, which are all of form (CQ/il. Then
iIts resolution is also holomorphically symplectic.

EXAMPLE: Take a 2-dimensional complex torus T, then all the singularities

of T'/41 are of this form. Its resolution T/4+1 is called a Kummer surface.
It is holomorphically symplectic.

REMARK: Take a symmetric square SmeT, with a natural action of T', and
let T[2] be a blow-up of a singular divisor. Then Tl2] is naturally isomorphic
to the Kummer surface 7'/+1.
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K3 surfaces
DEFINITION: A K3-surface is a deformation of a Kummer surface.

“K3: Kummer, Kahler, Kodaira” (a name is due to A. Weil).

“Faichan Kangri (K3) is the 12th highest mountain on Earth.”

THEOREM: Any complex compact surface with ¢;(M) =1 and HY(M) =0
Is iIsomorphic to K3. Moreover, it is hyperkahler.
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Hilbert schemes
REMARK: A complex surface is a 2-dimensional complex manifold.

DEFINITION: A Hilbert scheme M of a complex surface M is a clas-
sifying space of all ideal sheaves I C O,; for which the quotient O,;/I has
dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities
of the symmetric power Sym™ M .

THEOREM: (Fujiki, Beauville) A Hilbert scheme of a hyperkahler sur-
face is hyperkahler.

EXAMPLE: A Hilbert scheme of K3.

EXAMPLE: Let T is a torus. Then it acts on its Hilbert scheme freely
and properly by translations. For n = 2, the quotient T[”]/T IS a Kummer
K3-surface. For n > 2, it is called a generalized Kummer variety.

REMARK: There are 2 more ‘sporadic’” examples of compact hyperkahler
manifolds, constructed by K. O'Grady. All known compact hyperkaehler
manifolds are these 2 and the three series: tori, Hilbert schemes of K3,
and generalized Kummer.
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