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Clifford algebras

DEFINITION: The Clifford algebra of a vector space V with a scalar
product q is an algebra generated by V with a relation xy+yx = q(x, y)1, that
is, a quotient of T⊗V := k ⊕ V ⊕ V ⊗ V ⊕ ...⊕ T⊗iV by an ideal generated by
xy + yx = −2g(x, y) for all x, y ∈ V .

EXAMPLE: If g = 0, Clifford algebra is Grassmann algebra.

CLAIM: dim Cl(V, g) = 2dimV .

Proof: Consider Cl(V, g) as a filtered algebra with r-th term of filtration given
by r-th power of V ⊂ Cl(V ). Its associated graded algebra is Grassmann
algebra.

REMARK: The Clifford algebra is Z/2Z graded: Cl(V, g) = Cleven(V, g)⊕
Clodd(V, g).

DEFINITION: Let A = Aeven ⊕ Aodd be a graded associative algebra. Let
A⊥ be the same vector space with new multiplication a • a′ := (−1)ãã

′
aa′.

EXERCISE: Prove that Cl(V, g)⊥ = Cl(V,−g).
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Graded tensor product

DEFINITION: Let A := Aeven ⊕ Aodd, B := Beven ⊕ Bodd be graded asso-

ciative algebras. Define the graded tensor product A⊗̃B as A ⊗ B with

multiplication given by a ⊗ b · a′ ⊗ b′ = (−1)b̃ã
′
aa′ ⊗ bb′, where x̃ denotes the

parity of x.

EXAMPLE: Graded tensor product of Grassmann algebras gives the Grass-

mann algebra of a direct sum:

Λ∗V ⊗̃Λ∗W ∼= Λ∗(V ⊕W )

EXAMPLE: The same is true for Clifford algebras:

Cl(V, g)⊗̃Cl(V ′, g′) = Cl(V ⊕ V ′, g + g′).
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Pseudoscalar

LEMMA (*): Let A := Aeven⊕Aodd, B := Beven⊕Bodd be graded associative

algebras. Suppose that B contains an even element (pseudoscalar) ε with

the following properties:

ε2 = 1, εb = (−1)b̃bε.

Then A⊗̃B ∼= A ⊗ B (the graded tensor product is isomorphic to the usual

one).

Proof: Consider a subalgebra A′ ⊂ A⊗̃B generated by elements a⊗̃εã and

B′ = 1⊗B ⊂ A⊗̃B. Then

1. A′ ∼= A commutes with B′ ∼= B.

2. A′ ⊗B′ = A⊗̃B as a vector space.

REMARK (*): If in the definition of pseudoscalar we replace ε2 = 1 by

ε2 = −1, Lemma (*) will give A⊗̃B ∼= A⊥ ⊗B.
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Unit pseudoscalar

Let (V, g) be an oriented real vector space with orthogonal basis e1, ..., en such
that g(ei, ei) = ±1. Unit pseudoscalar in Cl(V, g) is ε := e1e2e3...en.

EXERCISE: Prove εei = (−1)n−1eiε.

EXERCISE: Prove that ε2 = (−1)
(n−1)(n−2)

2 (−1)q if g has signature (p, q).

REMARK: This gives

ε2 = (−1)n(n−1)/2(−1)q = (−1)(p−q)(p−q−1)/2 =

+1 p− q ≡ 0,1 mod 4

−1 p− q ≡ 2,3 mod 4.

DEFINITION: Denote the Clifford algebra of a real vector space of
signature (p, q) by Cl(p, q).

COROLLARY: Cl(p+m, q+m′) ∼= Cl(p, q)⊗Cl(m,m′) when m+m′ is even,
and m−m′ ≡ 0 mod 4.

Proof: The pseudoscalar ε in Cl(m,m′) satisfies ε2 = 1. Applying Lemma
(*), we obtain Cl(p, q) ⊗ Cl(m,m′) ∼= Cl(p, q)⊗̃Cl(m,m′). Then we apply the
isomorphism Cl(V, g)⊗̃Cl(V ′, g′) = Cl(V ⊕ V ′, g + g′).
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Bott periodicity over C

COROLLARY: Let A[i] denote the tensor product A⊗Mat(i,R) ∼= Mat(i, A).

Then Cl(p+ 1, q + 1) ∼= Cl(p, q)[2].

Proof: Use the previous corollary and an isomorphism Cl(1,1) = Mat(2,R)

(prove it).

THEOREM: (Bott periodicity over C)

Clifford algebra Cl(V, q) of a complex vector space V = Cn with q non-

degenerate is isomorphic to Mat
(
Cn/2

)
(n even) and Mat

(
C
n−1

2

)
⊕Mat

(
C
n−1

2

)
(n odd).

Proof: Use the previous corollary and isomorphisms Cl(C) = C⊕C, Cl(0) = C.
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Bott periodicity over R.

COROLLARY: Cl(p + m, q + m′) ∼= Cl(q, p) ⊗ Cl(m,m′) if m + m′ is even,

and m−m′ ≡ 2 mod 4.

Proof: In Cl(m,m′) the pseudoscalar ε satisgies ε2 = −1. Applying Remark

(*), we obtain Cl(p, q)⊥ ⊗Cl(m,m′) ∼= Cl(p, q)⊗̃Cl(m,m′) ∼= Cl(p+m, q +m′).

Then we use an isomorphism Cl(p, q)⊥ = Cl(p, q).

COROLLARY: Cl(p+ 2, q) ∼= Cl(q, p)[2] and Cl(p, q + 2) ∼= Cl(q, p)⊗ H.

Proof: We use the previous corollary and the isomorphisms Cl(2,0) = Mat(2,R),

Cl(0,2) = H.

COROLLARY: (Bott Periodicity modulo 4):

The previous corollary immediately gives Cl(p + 4, q) ∼= Cl(q, p + 2)[2] =

Cl(p, q)⊗Mat(2,H) and Cl(p, q + 4) ∼= Cl(q + 2, p)⊗ H = Cl(p, q)⊗Mat(2,H).
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Bott periodicity over R (2).

EXERCISE: Prove the isomorphism H⊗R H = Mat(4,R).

COROLLARY: (Bott Periodicity modulo 8):

This isomorphism and the previous corollary give Cl(p + 8, q) = Cl(p, q)[16],

Cl(p, q + 8) = Cl(p, q)[16].

1 2 3 4 5 6 7 8

Cl(i,0) R2 R[2] C[2] H[2] H[2]⊕ H[2] H[4] C[8] R[16]

Cl(0, i) C H H⊕ H H[2] C[4] R[8] R[8]⊕ R[8] R[16]
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Pseudoscalar on an odd-dimensional space

DEFINITION: For any odd-dimensional space V , the pseudoscalar ε =

e1e2...e2n+1 commutes with a multiplication by generators of Cl(V ), hence

defines an automorphism of Cl(V ). If V were a complex vector space, we can

always chose the basis e1, e2, ..., e2n+1 in such a way that ε2 = 1. This gives

the eigenvalue decomposition Cl(V ) = Cl+(V )⊕Cl−(V ).

CLAIM: Each of the algebras Cl+(V ), Cl−(V ) is isomorphic to Mat(Cr).

Proof: Eigenvalues of ε acting on Cl(V ) are equal to ±1 because ε2 = 1.

On the other hand, an automorphism of V which exchanges e1 and e2

maps ε to −ε, hence permutes the eigenspaces. Therefore, the subalge-

bras Cl+(V ), Cl−(V ) are isomorphic. We obtain that the decomposition

Cl(V ) = Mat(2n,C)⊕Mat(2n,C) coincides with the eigenspace decompo-

sition defined by ε.

REMARK: The center of Cl(V ) is isomorphic to C ⊕ C. The orthogonal

group O(V ) acts on Cl(V ) and on Z by automorphisms, and maps ε to

±ε. In particular, SO(V ) acts on Cl±(V ) by automorphisms.
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Automorphisms of matrix algebra

EXERCISE: Let V be a vector space over a field of characteristic 0. Prove

that the automorphism group Aut(Mat(V )) is isomorphic to PGL(V ) (the

quotient of GL(V ) by its center).
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Spinorial group Spin(2n)

DEFINITION: Let V = C2n be a vector space over C with non-degenerate

scalar product. The group SO(V ) acts on Cl(V ) be automorphisms, giving

an action

SO(V ) ↪→ Aut(Mat(2n,C)) = PGL(2n,C)

as shown above.

DEFINITION: (Elie Cartan, 1913)

Spinor representation of the Lie algebra so(V ) is its representation on C2n

induced by the isomorphism pgl(2n) = sl(2n).

DEFINITION: Spinor group Spin(2n+ 1) is a double cover of SO(2n+ 1)

obtained as a Lie group of so(V ) acting on its spinorial representation.

11



Hyperkahler manifolds, lecture 3 M. Verbitsky

Spinorial group Spin(2n)

DEFINITION: Let V = C2n be a vector space over C with non-degenerate

scalar product. The group SO(V ) acts on Cl(V ) be automorphisms, and

defines a homomorphism

SO(V ) ↪→ Aut(Mat(2n,C)) = PGL(2n,C).

DEFINITION: (Elie Cartan, 1913)

Spinor representation of the Lie algebra so(V ) is its representation on C2n

induced by the isomorphism pgl(2n) = sl(2n).

DEFINITION: Spinor group Spin(2n) is a double cover of SO(2n) obtained

as a Lie group of so(V ) acting on its spinorial representation.

EXERCISE: In even- and odd-dimensional case, prove that Spin(r) is, in-

deed, a double cover of SO(r).
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Principal bundles

DEFINITION: Let G be a Lie group. Principal G-bundle over a manifold

M is a smooth fibration P 7→ M with a smooth G-action which acts freely

and transitively on fibers.

EXAMPLE: Frame bundle on a smooth n-manifold M is the bundle of all

frames (basises) in TxM , for all x ∈M .

DEFINITION: Let H −→G be a group homomorphism, and P a principal H-

bundle. Then the quotient PG := P×G/H (with H acting on both components

in a natural way) is called an associated principal bundle, and P is called

reduction of the principal G-bundle PG to the group H.

DEFINITION: Let G be a Lie group, and G−→GL(n,R) a group homomor-

phism. A G-structure on a manifold M is a reduction of the principal frame

bundle to G.

DEFINITION: Let G be a Lie group, V its representation, and P a principal

G-bundle on M . The quotient P × V/G is a vector bundle over M , called the

associated vector bundle.
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Spin-structures and spinor bundles

DEFINITION: A spin-structure on an oriented n-manifold M is a reduction

of its structure group to Spin(n). A manifold is called spin if it admits a spin-

structure.

REMARK: This happens precisely when the second Stiefel-Whitney

class w2(M) vanishes.

DEFINITION: A bundle of spinors on a spin-manifold M is a vector bundle

associated to the principal Spin(n)-bundle and a spin representation.

REMARK: The Levi-Civita connection is naturally extended from a con-

nection on the bundle of orthogonal frames to its double cover. This

defines the Levi-Civita connection on the spinor bundle.
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Spinor bundles and Dirac operator

DEFINITION: Consider the map TM⊗Spin −→ Spin induced by the Clifford

multiplication. One defines the Dirac operator D : Spin −→ Spin as a

composition of ∇ : Spin −→ Λ1M ⊗Spin = TM ⊗Spin and the multiplication.

DEFINITION: A harmonic spinor is a spinor ψ such that D(ψ) = 0.

THEOREM: (Bochner’s vanishing) A harmonic spinor ψ on a compact man-

ifold with vanishing scalar curvature Sc = Tr(Ric) satisfies ∇ψ = 0.

Proof: The coarse Laplacian ∇∗∇ is expressed through the Dirac op-

erator using the Lichnerowitz formula ∇∗∇ − D2 = −1
4Sc. When these

two operators are equal, any harmonic spinor ψ lies in ker∇∗∇, giving

(ψ,∇∗∇ψ) = (∇ψ,∇ψ) = 0.
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Bochner’s vanishing on Kaehler manifolds

REMARK: A Kaehler manifold is spin if and only if c1(M) is even, or,

equivalently, if there exists a square root of a canonical bundle K1/2.

REMARK: On a Kaehler manifold of complex dimension n, one has a

natural isomorphism between the spinor bundle and Λ∗,0(M)⊗K1/2 (for

n even) and Λ2∗,0(M)⊗K1/2 (for n odd).

REMARK: On a Kähler manifold, the Dirac operator corresponds to ∂+ ∂∗.

COROLLARY: On a Ricci-flat Kähler manifold, all α ∈ ker(∂+∂∗)
∣∣∣Λ∗,0(M)

ara parallel.

REMARK: ker ∂ + ∂∗ = ker{∂, ∂∗}, where {·, ·} denotes the anticommutator.

However, {∂, ∂∗} = {∂, ∂∗} as Kähler identities imply. Therefore, on a Kähler

manifold, harmonic spinors are holomorphic forms.

THEOREM: (Bochner’s vanishing) Let M be a Ricci-flat Kaehler manifold,

and Ω ∈ Λp,0(M) a holomorphic differential form. Then ∇Ω = 0.
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