Hyperkahler manifolds, lecture 3 M. Verbitsky

Hyperkahler manifolds,

lecture 3: Spinors

NRU HSE, Moscow

Misha Verbitsky, September 21, 2019

http://bogomolov-lab.ru/KURSY/HK-2019/



Hyperkahler manifolds, lecture 3 M. Verbitsky

Clifford algebras

DEFINITION: The Clifford algebra of a vector space V with a scalar
product ¢ is an algebra generated by V with a relation zy+yx = gq(x,y)1, that
is, a quotient of T®V ‘= kdV AV RV D ...H»T®V by an ideal generated by
xy + yr = —2¢g(x,y) for all z,y € V.

EXAMPLE: If ¢ = 0, Clifford algebra is Grassmann algebra.
CLAIM: dim CI(V, g) = 2dimV,

Proof: Consider CI(V, g) as a filtered algebra with r-th term of filtration given
by r-th power of V C CI(V). Its associated graded algebra is Grassmann
algebra. =

REMARK: The Clifford algebra is Z/27 graded: CI(V,g) = Cleven(V, g) ®
Clodd(V, g).

DEFINITION: Let A = Aeven ® Aogq be a graded associative algebra. Let
~ e~/
A1l be the same vector space with new multiplication a e d’ := (—1)% qqd/.

EXERCISE: Prove that CI(V,¢)L = CI(V, —g).
g,
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Graded tensor product

DEFINITION: Let A := Aecven ® Aoqq, B := Beven ® Bpoggq be graded asso-
ciative algebras. Define the graded tensor product A®B as A ® B with
multiplication given by a ®b-a’ @ ¥ = (=1)%ad’ ® b/, where 7 denotes the
parity of =x.

EXAMPLE: Graded tensor product of Grassmann algebras gives the Grass-
mann algebra of a direct sum:

NVENW 2 A (V @ W)

EXAMPLE: The same is true for Clifford algebras:

CI(V,g)®CI(V,d)y=Cl(Va V', g+ ).
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Pseudoscalar

LEMMA (*): Let A := Aeven®PAoqd, B := Beven® Boqq be graded associative
algebras. Suppose that B contains an even element (pseudoscalar) ¢ with
the following properties:

e2 = 1,eb = (—1)%%e.

Then ARB = A ® B (the graded tensor product is isomorphic to the usual
one).

Proof: Consider a subalgebra A’ ¢ A®B generated by elements a®e? and
B'=1® BC A®B. Then

1. A’ =2 A commutes with B’ = B.
2. A B = A®B as a vector space. =

REMARK (*): If in the definition of pseudoscalar we replace €2 = 1 by
e2 = —1, Lemma (*) will give A®B = A1 ® B.
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Unit pseudoscalar

Let (V,g) be an oriented real vector space with orthogonal basis eq, ..., e, Such
that g(e;,e;) = £1. Unit pseudoscalar in CI(V,g) is € := ejeses...en.

EXERCISE: Prove se; = (—1)" lege.

(n—1)(n—2)
EXERCISE: Prove that 2 = (—1) 2 (—1)9 if g has signature (p,q).

REMARK: This gives

1 —q=0,1 d 4
2 — (_1)n(n—1)/2(_1)q — (_1)(p—q)(p—q—1)/2 _ +1 »p = 0, mo
-1 p—¢=2,3 mod 4.
DEFINITION: Denote the Clifford algebra of a real vector space of
signature (p,q) by Cl(p,q).

COROLLARY: Cl(p+m,q+m') = Cl(p, q¢) @ Cl(m,m') when m+m' is even,
and m —m/ =0 mod 4.

Proof: The pseudoscalar ¢ in Cl(m,m’) satisfies e2 = 1. Applying Lemma
(*), we obtain Cl(p,q) ® Cl(m,m') = Cl(p,q)® Cl(m,m’). Then we apply the
isomorphism CI(V, ) CI(V',d) =Cl(Ve V' g+g) =

5
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Bott periodicity over C

COROLLARY: Let Ali] denote the tensor product AQMat(i,R) = Mat(s, A).
Then Ci(p+ 1,9+ 1) = Cl(p, ¢)[2].

Proof: Use the previous corollary and an isomorphism CI(1,1) = Mat(2,R)
(prove it). =

THEOREM: (Bott periodicity over C)
Clifford algebra CI(V,q) of a complex vector space V = C" with ¢ non-

1 n—1
degenerate is isomorphic to Mat (C”/Q) (n even) and Mat (CT dMat (CT>
(n odd).

Proof: Use the previous corollary and isomorphisms CI(C) = CoC, CI(0) = C.
m



Hyperkahler manifolds, lecture 3 M. Verbitsky

Bott periodicity over R.

COROLLARY: Cl(p+m,q+m') = Cl(q,p) ® Cl(m,m") if m + m/ is even,
and m —m' =2 mod 4.

Proof: In Cl(m,m’) the pseudoscalar e satisgies e2 = —1. Applying Remark
(*), we obtain Cl(p,q)+ ® Cl(m,m') = Cl(p, )& Cl(m,m') = Cl(p +m, g+ m).
Then we use an isomorphism Cl(p,q)+ = Cl(p,q). =

COROLLARY: Cl(p+2,9) = Cl(g,p)[2] and Cl(p,q+ 2) = Cl(q,p) ® H.

Proof: We use the previous corollary and the isomorphisms CI(2,0) = Mat(2,R),
Cl(0,2) =H. =

COROLLARY: (Bott Periodicity modulo 4):
The previous corollary immediately gives Cl(p + 4,q) = Cl(gq,p + 2)[2] =
Cl(p,¢) ® Mat(2,H) and Cl(p,q+4) = Cl(¢ + 2,p) ® H = Cl(p, q) ® Mat(2, H).
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Bott periodicity over R (2).
EXERCISE: Prove the isomorphism H ®p H = Mat(4,R).

COROLLARY: (Bott Periodicity modulo 8):
This isomorphism and the previous corollary give Cl(p + 8,q) = Cl(p,q)[16],

Cl(p,q + 8) = Cl(p,q)[16].

1] 2 3 4 5 6 7 8
Cl(:,0) | R?2 | R[2] | C[2] | H[2] | H[2] ® H[2] | H[4] C[8] R[16]
Cl(0,i)| C | H |H®H)| H[2] C[4] R[8] | R[8] @ R[8] | R[16]
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Pseudoscalar on an odd-dimensional space

DEFINITION: For any odd-dimensional space V, the pseudoscalar ¢ =
eren...eop41 COmmutes with a multiplication by generators of CI(V), hence
defines an automorphism of CI(V). If V were a complex vector space, we can
always chose the basis eq,ep,...,ex, 41 IN Such a way that e2 = 1. This gives
the eigenvalue decomposition CI(V) = CIT (V) @ CI= (V).

CLAIM: Each of the algebras CIT(V), CI—(V) is isomorphic to Mat(C").
Proof: Eigenvalues of ¢ acting on CI(V) are equal to +1 because €2 =
On the other hand, an automorphism of V which exchanges e; and es
maps € to —e, hence permutes the eigenspaces. Therefore, the subalge-
bras CIT(V), CI=(V) are isomorphic. We obtain that the decomposition
CI(V) = Mat(2",C) @ Mat(2",C) coincides with the eigenspace decompo-
sition defined by .

REMARK: The center of CI(V) is isomorphic to C @ C. The orthogonal
group O(V) acts on CI(V) and on Z by automorphisms, and maps ¢ to
+e. In particular, SO(V) acts on CIE¥(V) by automorphisms.
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Automorphisms of matrix algebra
EXERCISE: Let V be a vector space over a field of characteristic 0. Prove

that the automorphism group Aut(Mat(V)) is isomorphic to PGL(V') (the
quotient of GL(V) by its center).
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Spinorial group Spin(2n)

DEFINITION: Let V = C2" be a vector space over C with non-degenerate
scalar product. The group SO(V) acts on CI(V) be automorphisms, giving
an action

SO(V) — Aut(Mat(2",C)) = PGL(2",C)

as shown above.

DEFINITION: (Elie Cartan, 1913)
Spinor representation of the Lie algebra so(V) is its representation on C2"
induced by the isomorphism pgl(2™) = sl(2™).

DEFINITION: Spinor group Spin(2n + 1) is a double cover of SO(2n + 1)
obtained as a Lie group of so(V) acting on its spinorial representation.

11
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Spinorial group Spin(2n)

DEFINITION: Let V = C2" be a vector space over C with non-degenerate
scalar product. The group SO(V) acts on CI(V) be automorphisms, and
defines a homomorphism

SO(V) — Aut(Mat(2",C)) = PGL(2", C).

DEFINITION: (Elie Cartan, 1913)
Spinor representation of the Lie algebra so(V) is its representation on c2"
induced by the isomorphism pgl(2") = sl(2").

DEFINITION: Spinor group Spin(2n) is a double cover of SO(2n) obtained
as a Lie group of so(V) acting on its spinorial representation.

EXERCISE: In even- and odd-dimensional case, prove that Spin(r) is, in-
deed, a double cover of SO(r).
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Principal bundles

DEFINITION: Let G be a Lie group. Principal G-bundle over a manifold
M is a smooth fibration P — M with a smooth G-action which acts freely
and transitively on fibers.

EXAMPLE: Frame bundle on a smooth n-manifold M is the bundle of all
frames (basises) in T, M, for all x € M.

DEFINITION: Let H — G be a group homomorphism, and P a principal H-
bundle. Then the quotient P := PxG/H (with H acting on both components
in @ natural way) is called an associated principal bundle, and P is called
reduction of the principal G-bundle FP; to the group H.

DEFINITION: Let G be a Lie group, and G — GL(n,R) a group homomor-
phism. A G-structure on a manifold M is a reduction of the principal frame
bundle to G.

DEFINITION: Let G be a Lie group, V its representation, and P a principal
G-bundle on M. The quotient P x V/G is a vector bundle over M, called the

associated vector bundle.
13
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Spin-structures and spinor bundles

DEFINITION: A spin-structure on an oriented n-manifold M is a reduction
of its structure group to Spin(n). A manifold is called spin if it admits a spin-
structure.

REMARK: This happens precisely when the second Stiefel-Whitnhey
class w>(M) vanishes.

DEFINITION: A bundle of spinors on a spin-manifold M is a vector bundle
associated to the principal Spin(n)-bundle and a spin representation.

REMARK: The Levi-Civita connection is naturally extended from a con-

nection on the bundle of orthogonal frames to its double cover. This
defines the Levi-Civita connection on the spinor bundle.
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Spinor bundles and Dirac operator

DEFINITION: Consider the map T'"M ® Spin — Spin induced by the Clifford
multiplication. One defines the Dirac operator D : Spin — Spin as a
composition of V: Spin — /\1M®Spin = TM ® Spin and the multiplication.

DEFINITION: A harmonic spinor is a spinor 1 such that D(y) = 0.

THEOREM: (Bochner’'s vanishing) A harmonic spinor 1 on a compact man-
ifold with vanishing scalar curvature Sc¢ = Tr(Ric) satisfies V¢ = 0.

Proof: The coarse Laplacian V*V is expressed through the Dirac op-
erator using the Lichnerowitz formula V*V — D2 = —%Sc. When these
two operators are equal, any harmonic spinor ¢ lies in ker V*V, giving

(1, V¥*Vy) = (Vy, V) = 0. =
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Bochner’s vanishing on Kaehler manifolds

REMARK: A Kaehler manifold is spin if and only if ¢;{(M) is even, or,
equivalently, if there exists a square root of a canonical bundle K1/2

REMARK: On a Kaehler manifold of complex dimension n, one has a
natural isomorphism between the spinor bundle and A*0(M) ® K1/2 (for
n even) and A2*9(M) @ K1/2 (for n odd).

REMARK: On a Kahler manifold, the Dirac operator corresponds to 0+ 0*.

COROLLARY: On a Ricci-flat Kahler manifold, all o € ker(9+40*)
ara parallel.

/\*,O(M)

REMARK: kerd + 0* = ker{0,0*}, where {.,-} denotes the anticommutator.
However, {0,0*} = {0,0"} as Kahler identities imply. Therefore, on a Kahler
manifold, harmonic spinors are holomorphic forms.

THEOREM: (Bochner’s vanishing) Let M be a Ricci-flat Kaehler manifold,
and Q € AP.9(M) a holomorphic differential form. Then V< = 0.
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