Hyperkahler manifolds,

lecture 3: Spinors

NRU HSE, Moscow

Misha Verbitsky, September 21, 2019

http://bogomolov-lab.ru/KURSY/HK-2019/

Clifford algebras

DEFINITION: The Clifford algebra of a vector space V with a scalar product q is an algebra generated by V with a relation xy + yx = q(x, y)1, that is, a quotient of $T^{\otimes}V := k \oplus V \oplus V \otimes V \oplus ... \oplus T^{\otimes i}V$ by an ideal generated by xy + yx = -2g(x, y) for all $x, y \in V$.

EXAMPLE: If g = 0, Clifford algebra is Grassmann algebra.

CLAIM: dim $Cl(V,g) = 2^{\dim V}$.

Proof: Consider Cl(V,g) as a filtered algebra with *r*-th term of filtration given by *r*-th power of $V \subset Cl(V)$. **Its associated graded algebra is Grassmann algebra.**

REMARK: The Clifford algebra is $\mathbb{Z}/2\mathbb{Z}$ **graded:** $Cl(V,g) = Cl_{even}(V,g) \oplus Cl_{odd}(V,g)$.

DEFINITION: Let $A = A_{\text{even}} \oplus A_{\text{odd}}$ be a graded associative algebra. Let A^{\perp} be the same vector space with new multiplication $a \bullet a' := (-1)^{\tilde{a}\tilde{a}'}aa'$.

EXERCISE: Prove that $Cl(V,g)^{\perp} = Cl(V,-g)$.

Graded tensor product

DEFINITION: Let $A := A_{\text{even}} \oplus A_{\text{odd}}$, $B := B_{\text{even}} \oplus B_{\text{odd}}$ be graded associative algebras. Define **the graded tensor product** $A \otimes B$ as $A \otimes B$ with multiplication given by $a \otimes b \cdot a' \otimes b' = (-1)^{\tilde{b}\tilde{a}'}aa' \otimes bb'$, where \tilde{x} denotes the parity of x.

EXAMPLE: Graded tensor product of Grassmann algebras **gives the Grassmann algebra of a direct sum:**

 $\Lambda^* V \tilde{\otimes} \Lambda^* W \cong \Lambda^* (V \oplus W)$

EXAMPLE: The same is true for Clifford algebras:

 $Cl(V,g) \otimes Cl(V',g') = Cl(V \oplus V',g+g').$

Pseudoscalar

LEMMA (*): Let $A := A_{even} \oplus A_{odd}$, $B := B_{even} \oplus B_{odd}$ be graded associative algebras. Suppose that B contains an even element (pseudoscalar) ε with the following properties:

$$\varepsilon^2 = 1, \varepsilon b = (-1)^{\tilde{b}} b \varepsilon.$$

Then $A \otimes B \cong A \otimes B$ (the graded tensor product is isomorphic to the usual one).

Proof: Consider a subalgebra $A' \subset A \widetilde{\otimes} B$ generated by elements $a \widetilde{\otimes} \varepsilon^{\tilde{a}}$ and $B' = 1 \otimes B \subset A \widetilde{\otimes} B$. Then

1. $A' \cong A$ commutes with $B' \cong B$.

2. $A' \otimes B' = A \tilde{\otimes} B$ as a vector space.

REMARK (*): If in the definition of pseudoscalar we replace $\varepsilon^2 = 1$ by $\varepsilon^2 = -1$, Lemma (*) will give $A \otimes B \cong A^{\perp} \otimes B$.

M. Verbitsky

Unit pseudoscalar

Let (V,g) be an oriented real vector space with orthogonal basis $e_1, ..., e_n$ such that $g(e_i, e_i) = \pm 1$. Unit pseudoscalar in Cl(V,g) is $\varepsilon := e_1 e_2 e_3 ... e_n$.

EXERCISE: Prove $\varepsilon e_i = (-1)^{n-1} e_i \varepsilon$.

EXERCISE: Prove that $\varepsilon^2 = (-1)^{\frac{(n-1)(n-2)}{2}}(-1)^q$ if g has signature (p,q).

REMARK: This gives

$$\varepsilon^{2} = (-1)^{n(n-1)/2} (-1)^{q} = (-1)^{(p-q)(p-q-1)/2} = \begin{cases} +1 & p-q \equiv 0, 1 \mod 4\\ -1 & p-q \equiv 2, 3 \mod 4. \end{cases}$$

DEFINITION: Denote the Clifford algebra of a real vector space of signature (p,q) by Cl(p,q).

COROLLARY: $Cl(p+m, q+m') \cong Cl(p, q) \otimes Cl(m, m')$ when m+m' is even, and $m-m' \equiv 0 \mod 4$.

Proof: The pseudoscalar ε in Cl(m, m') satisfies $\varepsilon^2 = 1$. Applying Lemma (*), we obtain $Cl(p,q) \otimes Cl(m,m') \cong Cl(p,q) \otimes Cl(m,m')$. Then we apply the isomorphism $Cl(V,g) \otimes Cl(V',g') = Cl(V \oplus V',g+g')$.

Bott periodicity over $\ensuremath{\mathbb{C}}$

COROLLARY: Let A[i] denote the tensor product $A \otimes Mat(i, \mathbb{R}) \cong Mat(i, A)$. **Then** $Cl(p+1, q+1) \cong Cl(p, q)[2]$.

Proof: Use the previous corollary and an isomorphism $Cl(1,1) = Mat(2,\mathbb{R})$ (prove it).

THEOREM: (Bott periodicity over \mathbb{C}) Clifford algebra Cl(V,q) of a complex vector space $V = \mathbb{C}^n$ with q nondegenerate is isomorphic to $Mat(\mathbb{C}^{n/2})$ (n even) and $Mat(\mathbb{C}^{\frac{n-1}{2}}) \oplus Mat(\mathbb{C}^{\frac{n-1}{2}})$ (n odd).

Proof: Use the previous corollary and isomorphisms $CI(\mathbb{C}) = \mathbb{C} \oplus \mathbb{C}$, $CI(0) = \mathbb{C}$.

Bott periodicity over \mathbb{R} .

COROLLARY: $Cl(p + m, q + m') \cong Cl(q, p) \otimes Cl(m, m')$ if m + m' is even, and $m - m' \equiv 2 \mod 4$.

Proof: In Cl(m, m') the pseudoscalar ε satisgies $\varepsilon^2 = -1$. Applying Remark (*), we obtain $Cl(p,q)^{\perp} \otimes Cl(m,m') \cong Cl(p,q) \otimes Cl(m,m') \cong Cl(p+m,q+m')$. Then we use an isomorphism $Cl(p,q)^{\perp} = Cl(p,q)$.

COROLLARY: $Cl(p+2,q) \cong Cl(q,p)[2]$ and $Cl(p,q+2) \cong Cl(q,p) \otimes \mathbb{H}$.

Proof: We use the previous corollary and the isomorphisms $CI(2,0) = Mat(2,\mathbb{R})$, $CI(0,2) = \mathbb{H}$.

COROLLARY: (Bott Periodicity modulo 4):

The previous corollary immediately gives $Cl(p + 4,q) \cong Cl(q,p + 2)[2] = Cl(p,q) \otimes Mat(2,\mathbb{H})$ and $Cl(p,q+4) \cong Cl(q+2,p) \otimes \mathbb{H} = Cl(p,q) \otimes Mat(2,\mathbb{H})$.

Bott periodicity over \mathbb{R} (2).

EXERCISE: Prove the isomorphism $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H} = Mat(4, \mathbb{R})$.

COROLLARY: (Bott Periodicity modulo 8):

This isomorphism and the previous corollary give Cl(p + 8, q) = Cl(p, q)[16], Cl(p, q + 8) = Cl(p, q)[16].

	$\parallel 1$	2	3	4	5	6	7	8
$\ \operatorname{Cl}(i,0) \ $	$\ \mathbb{R}^2$	R [2]	C[2]	IT[2]	$\mathbb{H}[2] \oplus \mathbb{H}[2]$		C[8]	R[16]
CI(0, <i>i</i>)	\mathbb{C}	\mathbb{H}	$\mathbb{H} \oplus \mathbb{H}$		C[4]	R[8]	$\mathbb{R}[8] \oplus \mathbb{R}[8]$	R [16]

Pseudoscalar on an odd-dimensional space

DEFINITION: For any odd-dimensional space V, the pseudoscalar $\varepsilon = e_1e_2...e_{2n+1}$ commutes with a multiplication by generators of Cl(V), hence defines an automorphism of Cl(V). If V were a complex vector space, we can always chose the basis $e_1, e_2, ..., e_{2n+1}$ in such a way that $\varepsilon^2 = 1$. This gives the eigenvalue decomposition $Cl(V) = Cl^+(V) \oplus Cl^-(V)$.

CLAIM: Each of the algebras $Cl^+(V)$, $Cl^-(V)$ is isomorphic to $Mat(\mathbb{C}^r)$.

Proof: Eigenvalues of ε acting on Cl(V) are equal to ± 1 because $\varepsilon^2 = 1$. On the other hand, an automorphism of V which exchanges e_1 and e_2 maps ε to $-\varepsilon$, hence permutes the eigenspaces. Therefore, the subalgebras Cl⁺(V), Cl⁻(V) are isomorphic. We obtain that the decomposition Cl(V) = Mat(2ⁿ, C) \oplus Mat(2ⁿ, C) coincides with the eigenspace decomposition defined by ε .

REMARK: The center of Cl(V) is isomorphic to $\mathbb{C} \oplus \mathbb{C}$. The orthogonal group O(V) acts on Cl(V) and on \mathbb{Z} by automorphisms, and maps ε to $\pm \varepsilon$. In particular, SO(V) acts on $Cl^{\pm}(V)$ by automorphisms.

Automorphisms of matrix algebra

EXERCISE: Let V be a vector space over a field of characteristic 0. Prove that **the automorphism group** Aut(Mat(V)) **is isomorphic to** PGL(V) (the quotient of GL(V) by its center).

Spinorial group Spin(2*n*)

DEFINITION: Let $V = \mathbb{C}^{2n}$ be a vector space over \mathbb{C} with non-degenerate scalar product. The group SO(V) acts on CI(V) be automorphisms, giving an action

$$SO(V) \hookrightarrow Aut(Mat(2^n, \mathbb{C})) = PGL(2^n, \mathbb{C})$$

as shown above.

DEFINITION: (Elie Cartan, 1913)

Spinor representation of the Lie algebra $\mathfrak{so}(V)$ is its representation on \mathbb{C}^{2^n} induced by the isomorphism $\mathfrak{pgl}(2^n) = \mathfrak{sl}(2^n)$.

DEFINITION: Spinor group Spin(2n + 1) is a double cover of SO(2n + 1) obtained as a Lie group of $\mathfrak{so}(V)$ acting on its spinorial representation.

Spinorial group Spin(2*n*)

DEFINITION: Let $V = \mathbb{C}^{2n}$ be a vector space over \mathbb{C} with non-degenerate scalar product. The group SO(V) acts on CI(V) be automorphisms, and defines a homomorphism

 $SO(V) \hookrightarrow Aut(Mat(2^n, \mathbb{C})) = PGL(2^n, \mathbb{C}).$

DEFINITION: (Elie Cartan, 1913)

Spinor representation of the Lie algebra $\mathfrak{so}(V)$ is its representation on \mathbb{C}^{2^n} induced by the isomorphism $\mathfrak{pgl}(2^n) = \mathfrak{sl}(2^n)$.

DEFINITION: Spinor group Spin(2n) is a double cover of SO(2n) obtained as a Lie group of $\mathfrak{so}(V)$ acting on its spinorial representation.

EXERCISE: In even- and odd-dimensional case, prove that Spin(r) is, indeed, a double cover of SO(r).

Principal bundles

DEFINITION: Let G be a Lie group. **Principal** G-bundle over a manifold M is a smooth fibration $P \mapsto M$ with a smooth G-action which acts freely and transitively on fibers.

EXAMPLE: Frame bundle on a smooth *n*-manifold M is the bundle of all frames (basises) in T_xM , for all $x \in M$.

DEFINITION: Let $H \rightarrow G$ be a group homomorphism, and P a principal Hbundle. Then the quotient $P_G := P \times G/H$ (with H acting on both components in a natural way) is called **an associated principal bundle**, and P is called **reduction of the principal** G-bundle P_G to the group H.

DEFINITION: Let G be a Lie group, and $G \longrightarrow GL(n, \mathbb{R})$ a group homomorphism. A G-structure on a manifold M is a reduction of the principal frame bundle to G.

DEFINITION: Let G be a Lie group, V its representation, and P a principal G-bundle on M. The quotient $P \times V/G$ is a vector bundle over M, called **the** associated vector bundle.

Spin-structures and spinor bundles

DEFINITION: A spin-structure on an oriented *n*-manifold *M* is a reduction of its structure group to Spin(n). A manifold is called **spin** if it admits a spin-structure.

REMARK: This happens precisely when the second Stiefel-Whitney class $w_2(M)$ vanishes.

DEFINITION: A bundle of spinors on a spin-manifold M is a vector bundle associated to the principal Spin(n)-bundle and a spin representation.

REMARK: The Levi-Civita connection **is naturally extended from a connection on the bundle of orthogonal frames to its double cover.** This defines the Levi-Civita connection on the spinor bundle.

Spinor bundles and Dirac operator

DEFINITION: Consider the map $TM \otimes \text{Spin} \longrightarrow \text{Spin}$ induced by the Clifford multiplication. One defines **the Dirac operator** D : Spin \longrightarrow Spin as a composition of ∇ : Spin $\longrightarrow \Lambda^1 M \otimes \text{Spin} = TM \otimes \text{Spin}$ and the multiplication.

DEFINITION: A harmonic spinor is a spinor ψ such that $D(\psi) = 0$.

THEOREM: (Bochner's vanishing) A harmonic spinor ψ on a compact manifold with vanishing scalar curvature Sc = Tr(Ric) satisfies $\nabla \psi = 0$.

Proof: The coarse Laplacian $\nabla^*\nabla$ is expressed through the Dirac operator using the Lichnerowitz formula $\nabla^*\nabla - D^2 = -\frac{1}{4}Sc$. When these two operators are equal, any harmonic spinor ψ lies in ker $\nabla^*\nabla$, giving $(\psi, \nabla^*\nabla\psi) = (\nabla\psi, \nabla\psi) = 0$.

Bochner's vanishing on Kaehler manifolds

REMARK: A Kaehler manifold is spin if and only if $c_1(M)$ **is even,** or, equivalently, if there exists a square root of a canonical bundle $K^{1/2}$.

REMARK: On a Kaehler manifold of complex dimension n, one has a natural isomorphism between the spinor bundle and $\Lambda^{*,0}(M) \otimes K^{1/2}$ (for n even) and $\Lambda^{2*,0}(M) \otimes K^{1/2}$ (for n odd).

REMARK: On a Kähler manifold, the Dirac operator corresponds to $\partial + \partial^*$.

COROLLARY: On a Ricci-flat Kähler manifold, all $\alpha \in \ker(\partial + \partial^*)|_{\Lambda^{*,0}(M)}$ ara parallel.

REMARK: ker $\partial + \partial^* = \text{ker}\{\partial, \partial^*\}$, where $\{\cdot, \cdot\}$ denotes the anticommutator. However, $\{\partial, \partial^*\} = \{\overline{\partial}, \overline{\partial}^*\}$ as Kähler identities imply. Therefore, **on a Kähler manifold, harmonic spinors are holomorphic forms**.

THEOREM: (Bochner's vanishing) Let M be a Ricci-flat Kaehler manifold, and $\Omega \in \Lambda^{p,0}(M)$ a holomorphic differential form. Then $\nabla \Omega = 0$.