Hyperkahler manifolds,

lecture 4: Bochner vanishing

NRU HSE, Moscow

Misha Verbitsky, September 28, 2019

http://bogomolov-lab.ru/KURSY/HK-2019/

Clifford algebras (reminder)

DEFINITION: The Clifford algebra of a vector space V with a scalar product q is an algebra generated by V with a relation xy + yx = -2q(x, y)1, that is, a quotient of $T^{\otimes}V := k \oplus V \oplus V \otimes V \oplus ... \oplus T^{\otimes i}V$ by an ideal generated by xy + yx = -2g(x, y) for all $x, y \in V$.

THEOREM: (Bott periodicity over C)

Clifford algebra Cl(V,q) of a complex vector space $V = \mathbb{C}^n$ with q nondegenerate is isomorphic to $Mat(\mathbb{C}^{n/2})$ (n even) and $Mat(\mathbb{C}^{\frac{n-1}{2}}) \oplus Mat(\mathbb{C}^{\frac{n-1}{2}})$ (n odd).

Spin(n, n): an explicit construction

Let $W = U \oplus V$ be a vector space with U, V dual and the quadratic form pairing (u, v) and (u', v') as follows $q((u, v), (u', v')) = \langle u, v' \rangle + \langle u', v \rangle$.

DEFINITION: Consider the exterior multiplication operator $e_u : \Lambda^*(U) \longrightarrow \Lambda^{*+1}(U)$ with $e_u(\alpha) = u \land \alpha$ and the convolution operator $i_v : \Lambda^*(U) \longrightarrow \Lambda^{*-1}(U)$, with $i_v(\alpha)(v_1, ..., v_k) = \alpha(v, v_1, ..., v_k)$.

CLAIM: These operators satisfy the following relations: $i_v, i_{v'}$ anticommute for all v, v'; $e_u, e_{u'}$ anticommute for all v, v'; finally, $\{i_v, e_u\} = \langle u, v \rangle \cdot Id$, where $\{\cdot, \cdot\}$ (as usual) denotes the supercommutator, $\{a, b\} = ab - (-1)^{\tilde{a}\tilde{b}}ba$.

REMARK: These are the same relation as in Clifford algebra! This defines a map $CI(W) \rightarrow Mat(\Lambda^*(U))$.

EXERCISE: Fix a basis u_i in U, and let v_j be the dual basis in V. For any pair of monomials A, B in $\Lambda^*(U)$, find a product of a sequence of of i_{v_i} , e_{u_i} which maps A to B and puts all other monomials to 0.

CLAIM: The natural map $Cl(W) \rightarrow Mat(\Lambda^*(U))$ is an isomorphism.

Proof: See the previous exercise.

Spinorial group Spin(2*n*) (reminder)

EXERCISE: Let V be a vector space over a field of characteristic 0. Prove that **the automorphism group** Aut(Mat(V)) **is isomorphic to** PGL(V) (the quotient of GL(V) by its center).

DEFINITION: (Elie Cartan, 1913)

Spinor representation of the Lie algebra $\mathfrak{so}(2n)$ is its representation on \mathbb{C}^{2^n} induced by the isomorphism $\mathfrak{pgl}(2^n) = \mathfrak{sl}(2^n) = \operatorname{Aut}(\operatorname{Cl}(2n))$. **Spinor representation** of the Lie algebra $\mathfrak{so}(2n+1)$ is any of two representations of $\mathfrak{so}(2n+1)$ on \mathbb{C}^{2^n} induced by the isomorphism $\mathfrak{pgl}(2^n) = \mathfrak{sl}(2^n) = \operatorname{Aut}(\operatorname{Cl}^{\pm}(2n+1))$, where $\operatorname{Cl}^{pm}(V) = \operatorname{Mat}(2^n)$ is one of two components of $\operatorname{Cl}(2n+1) = \operatorname{Mat}(\mathbb{C}^n) \oplus \operatorname{Mat}(\mathbb{C}^n)$,

DEFINITION: Spinor group Spin(k) is a double cover of SO(k) obtained as a Lie group of $\mathfrak{so}(V)$ acting on its spinorial representation.

Principal bundles (reminder)

DEFINITION: Let G be a Lie group. **Principal** G-bundle over a manifold M is a smooth fibration $P \mapsto M$ with a smooth G-action which acts freely and transitively on fibers.

EXAMPLE: Frame bundle on a smooth *n*-manifold M is the bundle of all frames (basises) in T_xM , for all $x \in M$.

DEFINITION: Let $H \rightarrow G$ be a group homomorphism, and P a principal Hbundle. Then the quotient $P_G := P \times G/H$ (with H acting on both components in a natural way) is called **an associated principal bundle**, and P is called **reduction of the principal** G-bundle P_G to the group H.

DEFINITION: Let G be a Lie group, and $G \longrightarrow GL(n, \mathbb{R})$ a group homomorphism. A G-structure on a manifold M is a reduction of the principal frame bundle to G.

DEFINITION: Let G be a Lie group, V its representation, and P a principal G-bundle on M. The quotient $P \times V/G$ is a vector bundle over M, called **the** associated vector bundle.

Spin-structures and spinor bundles (reminder)

DEFINITION: A spin-structure on an oriented *n*-manifold *M* is a reduction of its structure group to Spin(n). A manifold is called **spin** if it admits a spin-structure.

REMARK: This happens precisely when the second Stiefel-Whitney class $w_2(M)$ vanishes.

DEFINITION: A bundle of spinors on a spin-manifold M is a vector bundle associated to the principal Spin(n)-bundle and a spin representation.

REMARK: The Levi-Civita connection **is naturally extended from a connection on the bundle of orthogonal frames to its double cover.** This defines the Levi-Civita connection on the spinor bundle.

Spin-structures on Calabi-Yau manifolds

REMARK: Let (M, I, g) be a Kähler manifold. The Hermitian form defines a pairing between the spaces $T^{1,0}(M)$ and $T^{0,1}(M)$, which are isotropic. **Therefore,** $Cl(TM \otimes \mathbb{C}, g) = Mat(\Lambda^{*,0}(M)).$

REMARK: The real structure on $Cl(TM \otimes \mathbb{C})$ exchanges i_v and $e_{\overline{v}}$, hence it exchanges $\Lambda^{p,0}(M)$ and $\Lambda^{n-p,0}(M)$. Therefore, the bundle $\Lambda^{*,0}(M)$ can be identified with spinors only for Calabi-Yau manifolds.

CLAIM: For any Calabi-Yau manifold, there is a spin structure such that $\Lambda^{*,0}(M)$ is a spinorial representation.

Proof: To construct such a structure, we need to exhibit a real structure τ on $\Lambda^{*,0}(M)$ which is compatible with the real structure on $Cl(\otimes \mathbb{C})$, that is, exchanging i_v and $e_{\overline{v}}$. For any (p,0)-form α , let $\tau(\alpha) := \frac{\overline{*\alpha}}{\Theta}$, where $\Theta \in \Lambda^{n,0}(M)$ is a parallel section which trivializes the canonical bundle.

Spinor bundles and Dirac operator (reminder)

DEFINITION: Consider the map $TM \otimes \text{Spin} \longrightarrow \text{Spin}$ induced by the Clifford multiplication. One defines **the Dirac operator** D : Spin \longrightarrow Spin as a composition of ∇ : Spin $\longrightarrow \Lambda^1 M \otimes \text{Spin} = TM \otimes \text{Spin}$ and the multiplication.

DEFINITION: A harmonic spinor is a spinor ψ such that $D(\psi) = 0$.

THEOREM: (Bochner's vanishing)

A harmonic spinor ψ on a compact manifold with vanishing scalar curvature Sc := Tr(Ric) satisfies $\nabla \psi = 0$.

Proof: Later today.

Bochner's vanishing on Kähler manifolds

REMARK: A Kähler manifold is spin if and only if $c_1(M)$ **is even,** or, equivalently, if there exists a square root of a canonical bundle $K^{1/2}$.

REMARK: On a Kähler manifold of complex dimension n, one has a natural isomorphism between the spinor bundle and $\Lambda^{*,0}(M) \otimes K^{1/2}$ (for n even) and $\Lambda^{2*,0}(M) \otimes K^{1/2}$ (for n odd).

REMARK: On a Kähler manifold, the Dirac operator corresponds to $\partial + \partial^*$.

COROLLARY: On a Ricci-flat Kähler manifold, all $\alpha \in \ker(\partial + \partial^*)|_{\Lambda^{*,0}(M)}$ ara parallel.

REMARK: ker $\partial + \partial^* = \text{ker}\{\partial, \partial^*\}$, where $\{\cdot, \cdot\}$ denotes the anticommutator. However, $\{\partial, \partial^*\} = \{\overline{\partial}, \overline{\partial}^*\}$ as Kähler identities imply. Therefore, **on a Calabi-Yau manifold, harmonic spinors are holomorphic forms**.

THEOREM: (Bochner's vanishing) Let M be a Ricci-flat Kähler manifold, and $\Omega \in \Lambda^{p,0}(M)$ a holomorphic differential form. Then $\nabla \Omega = 0$.

Gaussian curvature

CLAIM: Let ∇ be a Levi-Civita connection on a Riemannian manifold, and $R \in T^*M^{\otimes 3} \otimes TM$ its curvature tensor. Using an isomorphism $TM \cong T^*M$ given by the metric, we may consider R as an element in $T^*M^{\otimes 4}$. Then R is a section of Sym²(Λ^2T^*M), antisymmetric in 1,2 and 3,4 indices.

DEFINITION: Let V be a vectir space with non-degenerate scalar product g. A trace Tr_{12} : $V^{\otimes^n} \longrightarrow V^{\otimes^{n-2}}$ is defined as a map dual to the multiplication $A \longrightarrow g \otimes A$. The trace in *i*-th and *j*-th indices, denoted as Tr_{ij} : $V^{\otimes^n} \longrightarrow V^{\otimes^{n-2}}$, is defined as a map which acts in the *i*-th and *j*-th multiplier as Tr_{12} on the first two.

DEFINITION: Gaussian curvature of a Riemannian manifold is a scalar $Tr_{13}Tr_{24}(R)$, where R is the Riemannian curvature.

Clifford multiplication in Sym²($\Lambda^2 V$)

LEMMA 1: Let $R \in \text{Sym}^2(\Lambda^2 V)$, where V is a space with scalar product g. Denote the Clifford multiplication as $\sigma : V^{\otimes^4} \longrightarrow Cl(V)$. Then

 $\sigma(R) = \operatorname{Tr}_{13} \operatorname{Tr}_{24} R + \sigma(\operatorname{Alt}(R)),$

where Alt : $Sym^2(\Lambda^2 V) \longrightarrow \Lambda^4 V$ is the exterior product map.

Proof: Let $x, y, z, t \in V$, and R(x, y, z, t) := (xy - yx)(zt - tz) + (zt - tz)(xy - yx)be the corresponding element in Sym²($\Lambda^2 V$). Then

1. If x, y, z, t are pairwise orthogonal, we have $\tau(R(x, y, z, t)) = \tau(Alt(R))$, because x, y, z, t anticommute in the Clifford algebra.

2. If x, y, z are pairwise orthogonal, and y = t, then xy - yx anticommutes with zt - tz, hence $\tau(R(x, y, z, t)) = 0$.

3. If x, y are orthogonal, y = t and x = z, we have

$$\sigma(R(x, y, z, t)) = \sigma((xy - yx)^2) = g(x, x)g(y, y).$$

Laplacian and rough Laplacian

REMARK: Let $D: S \longrightarrow S$ be the Dirac operator, and $x_i \in TM$ an orthonormal frame. Then $D(s) = \sum_i \sigma(x_i, \nabla_{x_i}(s))$, where $\sigma: TM \otimes S \longrightarrow S$ is Clifford multiplication.

COROLLARY: Let $\Theta \in \Lambda^2 M \otimes \text{End}(S)$ be the curvature of S. Then

$$D^{2}(s) = \sum_{i,j} \sigma(x_{i}x_{j}, \nabla_{x_{i}}\nabla_{x_{j}}s) = \sum_{i,j} \sigma(x_{i}x_{j}, \Theta_{x_{i},x_{j}}s) + \sum_{i,j} \sigma(x_{i}x_{j} + x_{j}x_{i}, \nabla_{x_{i}}\nabla_{x_{j}}s).$$

Since $\sigma(x_{i}x_{j} + x_{j}x_{i}, v) = g(x_{i}, x_{j})v$, this gives
$$D^{2}(s) = \sigma(\Theta, s) + \sum_{i} \nabla_{x_{i}}\nabla_{x_{i}}s.$$

DEFINITION: Rough Laplacian on a bundle *B* with connection on a Riemannian manifold is defined as $D(s) := \operatorname{Tr}_{12}(\nabla^2 s)$.

REMARK: The previous corollary is therefore rewritten as

$$D^2(s) = \sigma(\Theta, s) + \Theta(s).$$

Weitzenböck formula

THEOREM: (Lichnerowicz-Weitzenböck formula)

Let M be a Riemannian manifold with spin structure, $\mathbf{D} : S \longrightarrow S$ the rough Laplacian, Sc multiplication by the scalar product, and $D : S \longrightarrow S$ the Dirac operator. Then $D^2 = \mathbf{D} + \mathbf{Sc.}$

Proof: $D^2(s) = \sigma(\Theta, s) + \Theta(s)$, as shown above, and $\sigma(\Theta, s) = Sc(s) + \sigma(Alt(R))$ by Lemma 1. The last term vanishes, because Alt(R) (Bianchi identity).

REMARK: $g(\Phi(s), s) = \operatorname{Tr}_{12}(\nabla^2(s), s) = g(\nabla(s), \nabla(s))$. This gives $\int g(\Phi(s), s) = \int_M g(\nabla(s), \nabla(s))$. Therefore **on a compact manifold** $\Phi(s) = 0$ **implies** $\nabla(s) = 0$.

Bochner vanishing for harmonic spinors

COROLLARY: (Bochner vanishing)

Let M be a compact Riemannian manifold with non-negative scalar curvature. Then $\nabla(s) = 0$ for any harmonic spinor s. If, in addition, Sc > 0 somewhere on M, then s = 0.

Proof: Lichnerowicz-Weitzenböck formula gives

$$0 = g(D^2(s), s) = g(\mathfrak{D}(s), s) + \int_M \operatorname{Sc} g(s, s) = \int_M g(\nabla(s), \nabla(s)) + \int_M \operatorname{Sc} g(s, s).$$

The first term vanishes. Moreover, $s = 0$ on the set $U \subset M$ where $\operatorname{Sc} > 0$.
Then $s = 0$ because $\nabla(s) = 0$.

Hyperkahler manifolds, lecture 4

Bochner's vanishing for holomorphic forms

THEOREM: On a compact Ricci-flat Calabi-Yau manifold, any holomorphic *p*-form η is parallel with respect to the Levi-Civita connection: $\nabla(\eta) = 0$.

Proof: Holomorphic forms are the same as harmonic spinors.

REMARK: The form η gives a harmonic spinor, and **on a Riemannian spin** manifold with Sc = 0, any harmonic spinor is parallel (Bochner).

REMARK: Due to Bochner's vanishing, holonomy of Ricci-flat Calabi-Yau manifold lies in SU(n), and holonomy of Ricci-flat holomorphically symplectic manifold lies in Sp(n) (a group of complex unitary matrices preserving a complex-linear symplectic form).

Exercise 1: Let (M, ∇) be a manifold with holonomy Sp(n). Prove that all parallel (p, 0)-forms on M are powers of the holomorphic symplectic form.

Exercise 2: Let (M, ∇) be a manifold with holonomy SU(n). Prove that any holomorphic (p, 0)-form on M is a parallel section of the canonical bundle.

M. Verbitsky

Holomorphic Euler characteristic

DEFINITION: A holomorphic Euler characteristic $\chi(M)$ of a Kähler manifold is a sum $\sum (-1)^p \dim H^{p,0}(M)$.

THEOREM: (Riemann-Roch-Hirzebruch) For an *n*-fold, $\chi(M)$ can be expressed as a polynomial expressions of the Chern classes, $\chi(M) = td_n$ where td_n is an *n*-th component of the Todd polynomial,

$$td(M) = 1 + \frac{1}{2}c_1 + \frac{1}{12}(c_1^2 + c_2) + \frac{1}{24}c_1c_2 + \frac{1}{720}(-c_1^4 + 4c_1^2c_2 + c_1c_3 + 3c_2^22 - c_4) + \dots$$

REMARK: The Chern classes are obtained as polynomial expression of the curvature (Chern-Weil). Therefore $\chi(\tilde{M}) = p\chi(M)$ for any unramified *p*-fold covering $\tilde{M} \longrightarrow M$.

REMARK: Bochner's vanishing and exercises 1-2 imply:

1. When $\mathcal{H}ol(M) = SU(n)$, we have dim $H^{p,0}(M) = 1$ for p = 1, n, and 0 otherwise. In this case, $\chi(M) = 2$ for even n and 0 for odd.

2. When $\mathcal{H}ol(M) = Sp(n)$, we have dim $H^{p,0}(M) = 1$ for even $p \ 0 \le p \le 2n$, and 0 otherwise. In this case, $\chi(M) = n + 1$.

COROLLARY: $\pi_1(M) = 0$ if Hol(M) = Sp(n), or Hol(M) = SU(2n). If Hol(M) = SU(2n+1), $\pi_1(M)$ is finite.

The Hodge diamond:

