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Clifford algebras (reminder)

DEFINITION: The Clifford algebra of a vector space V with a scalar
product ¢ is an algebra generated by V with a relation zy + yx = —2¢(xz,y)1,
that is, a quotient of T®V ;= k@ VAV RV & ... T®V by an ideal generated
by zy + yr = —2¢g(x,y) for all z,y € V.

THEOREM: (Bott periodicity over C)
Clifford algebra CI(V,q) of a complex vector space V = C" with ¢ non-

1 n—1
degenerate is isomorphic to Mat ((C”/Q) (n even) and Mat (CCT dMat (CT>
(n odd).
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Spin(n,n): an explicit construction

Let W = U @&V be a vector space with U,V dual and the quadratic form
pairing (u,v) and (u/,v") as follows q((u,v), (v/,v")) = (u,v") + (W, v).

DEFINITION: Consider the exterior multiplication operator
ew . N (U) — A*T1(U) with ey(a) = u A a and the convolution operator
iv . NY(U) — A1), with iy(a)(vy, ..., v.) = a(v, v1, ..., v5).

CLAIM: These operators satisfy the following relations: i,,,, anticommute
for all v,v'; ey,e, anticommute for all v,o'; finally, {iy,eu} = (u,v) -1d,
where {-,-} (as usual) denotes the supercommutator, {a,b} = ab— (—1)%ba. m

REMARK: These are the same relation as in Clifford algebra! This defines
a map CI(W) — Mat(A*(U)).

EXERCISE: Fix a basis u; in U, and let V; be the dual basis in V. For any
pair of monomials A, B in A*(U), find a product of a sequence of of i,,,

eu; which maps A to B and puts all other monomials to O.

CLAIM: The natural map CI(W) — Mat(A*(U)) is an isomorphism.

Proof: See the previous exercise. =
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Spinorial group Spin(2n) (reminder)

EXERCISE: Let V be a vector space over a field of characteristic 0. Prove
that the automorphism group Aut(Mat(V)) is isomorphic to PGL(V) (the
quotient of GL(V) by its center).

DEFINITION: (Elie Cartan, 1913)

Spinor representation of the Lie algebra so(2n) is its representation on
C2" induced by the isomorphism pgl(2") = sl(2") = Aut(Cl(2n)). Spinor
representation of the Lie algebra so(2n+ 1) is any of two representations of
s0(2n+1) on C2" induced by the isomorphism pgl(27) = sl(2") = Aut(CIE(2n+
1)), where CIP(V) = Mat(2") is one of two components of Cl(2n + 1) =
Mat (C™) & Mat (C"),

DEFINITION: Spinor group Spin(k) is a double cover of SO(k) obtained
as a Lie group of so(V) acting on its spinorial representation.
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Principal bundles (reminder)

DEFINITION: Let G be a Lie group. Principal G-bundle over a manifold
M is a smooth fibration P — M with a smooth G-action which acts freely
and transitively on fibers.

EXAMPLE: Frame bundle on a smooth n-manifold M is the bundle of all
frames (basises) in T, M, for all x € M.

DEFINITION: Let H — G be a group homomorphism, and P a principal H-
bundle. Then the quotient Py := PxG/H (with H acting on both components
in @ natural way) is called an associated principal bundle, and P is called
reduction of the principal G-bundle FP; to the group H.

DEFINITION: Let G be a Lie group, and G — GL(n,R) a group homomor-
phism. A G-structure on a manifold M is a reduction of the principal frame
bundle to G.

DEFINITION: Let G be a Lie group, V its representation, and P a principal
G-bundle on M. The quotient P x V/G is a vector bundle over M, called the

associated vector bundle.
5
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Spin-structures and spinor bundles (reminder)

DEFINITION: A spin-structure on an oriented n-manifold M is a reduction
of its structure group to Spin(n). A manifold is called spin if it admits a spin-
structure.

REMARK: This happens precisely when the second Stiefel-Whitney
class w>(M) vanishes.

DEFINITION: A bundle of spinors on a spin-manifold M is a vector bundle
associated to the principal Spin(n)-bundle and a spin representation.

REMARK: The Levi-Civita connection is naturally extended from a con-
nection on the bundle of orthogonal frames to its double cover. This
defines the Levi-Civita connection on the spinor bundle.
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Spin-structures on Calabi-Yau manifolds

REMARK: Let (M,I,g) be a Kdhler manifold. The Hermitian form de-
fines a pairing between the spaces 71:9(M) and 791 (M), which are isotropic.
Therefore, CI(TM ® C, g) = Mat(A*O(M)).

REMARK: The real structure on CI(TM ® C) exchanges i, and ez, hence it
exchanges APO(M) and A PO(M). Therefore, the bundle A*%(M) can be
identified with spinors only for Calabi-Yau manifolds.

CLAIM: For any Calabi-Yau manifold, there is a spin structure such that
A*O(M) is a spinorial representation.

Proof: To construct such a structure, we need to exhibit a real structure
r on A%9(M) which is compatible with the real structure on CI(®C), that
is, exchanging i, and ez. For any (p,0)-form a, let 7(a) = %, where © ¢
A™O(M) is a parallel section which trivializes the canonical bundle. =
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Spinor bundles and Dirac operator (reminder)

DEFINITION: Consider the map T'"M ® Spin — Spin induced by the Clifford
multiplication. One defines the Dirac operator D : Spin — Spin as a
composition of V: Spin — /\1M®Spin = TM ® Spin and the multiplication.

DEFINITION: A harmonic spinor is a spinor 1 such that D(y) = 0.

THEOREM: (Bochner’s vanishing)
A harmonic spinor 3 on a compact manifold with vanishing scalar curvature
Sc := Tr(Ric) satisfies Vi = 0.

Proof: Later today.
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Bochner’s vanishing on Kdhler manifolds

REMARK: A Kdhler manifold is spin if and only if ¢;(M) is even, or,
equivalently, if there exists a square root of a canonical bundle K1/2

REMARK: On a Kdhler manifold of complex dimension n, one has a natural
isomorphism between the spinor bundle and A*9(M) @ K1/2 (for n even)
and A2%0(M) @ K1/2 (for n odd).

REMARK: On a Kahler manifold, the Dirac operator corresponds to 9+ 0*.

COROLLARY: On a Ricci-flat Kdhler manifold, all o € ker(9+40*)
ara parallel.

/\*,O(M)

REMARK: kerd + 0* = ker{0,0*}, where {.,-} denotes the anticommutator.
However, {9,0*} = {0,0"} as Kahler identities imply. Therefore, on a Calabi-
Yau manifold, harmonic spinors are holomorphic forms.

THEOREM: (Bochner’s vanishing) Let M be a Ricci-flat Kdahler manifold,
and Q € AP.9(M) a holomorphic differential form. Then VQ =0. =
9
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Gaussian curvature

CLAIM: Let V be a Levi-Civita connection on a Riemannian manifold, and
R € T*M®3 @ TM its curvature tensor. Using an isomorphism T M = T*M
given by the metric, we may consider R as an element in T*M®4. Then R is
a section of Sym2(A27T*M), antisymmetric in 1,2 and 3,4 indices.

DEFINITION: Let V be a vectir space with non-degenerate scalar product
g. A trace Trio : V& V@ s defined as a map dual to the mul-
tiplication A—g ® A. The trace in :-th and j-th indices, denoted as
Tri; Ve s v®"? s defined as a map which acts in the i-th and j-th
multiplier as Trq1o on the first two.

DEFINITION: Gaussian curvature of a Riemannian manifold is a scalar
Tr13 Tro4(R), where R is the Riemannian curvature.

10
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Clifford multiplication in Sym2(A2V)

LEMMA 1: Let R € Sym2(/\2V), where V is a space with scalar product g.
Denote the Clifford multiplication as o : vet CI(V). Then

O'(R) = TI’13 TI’24 R+ O'(AH'.(R)),

where Alt : Sym2(A2V) —s A%V is the exterior product map.

Proof: Let z,y,z,t € V, and R(x,y,2,t) := (xy—yx) (2t —tz) + (2t —tz) (zy —yx)
be the corresponding element in Sym2(A2V). Then

1. If x,y,z,t are pairwise orthogonal, we have 7(R(x,y,z,t)) = 7(AIt(R)),
because z,y, z,t anticommute in the Clifford algebra.

2. If x,y,z are pairwise orthogonal, and y = t, then xy — yx anticommutes
with zt — tz, hence 7(R(x,y,z,t)) = 0.

3. If x,y are orthogonal, y =t and =z = z, we have

o(R(z,y,2,t)) = o((zy — yz)?) = g(z,2)9(y, ).

11
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Laplacian and rough Laplacian

REMARK: Let D: S — S be the Dirac operator, and z; € T'M an orthonor-
mal frame. Then D(s) = Y, 0(x;, Vg,(s)), where 0 : TM®S — S is Clifford
multiplication.

COROLLARY: Let © € A2M ® End(S) be the curvature of S. Then

DQ(S) — Z O'(xz'xja invxjg) = Z o'(;ciajj, @xi7xjs) —|— Z O‘(xz'ilij —|— L gLy, VaciijS).
1,7 1,J 1,J
Since o(x;x; + zjz;,v) = g(x;, x;)v, this gives

D?(s) = 0(©,5) + Y Va,Vays.

DEFINITION: Rough Laplacian on a bundle B with connection on a Rie-
mannian manifold is defined as D(s) ;= Tr15(V2s).

REMARK: The previous corollary is therefore rewritten as
D?(s) = 0(©,s) +D(s).

12
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Weitzenb8ck formula

THEOREM: (Lichnerowicz-Weitzenb8ck formula)

Let M be a Riemannian manifold with spin structure, B : S — S the rough
Laplacian, Sc multiplication by the scalar product, and D : S — S the Dirac
operator. Then D2 =P + Sc.

Proof: D2(s) = o(O,s) + D(s), as shown above, and o¢(©,s) = Sc(s) +
oc(Alt(R)) by Lemma 1. The last term vanishes, because AlIt(R) (Bianchi
identity). m

REMARK: g(B(s),s) = Tr12(V3(s), s) = g(V(s),V(s)). This gives [¢(D(s),s) =

[ g(V(s),V(s)). Therefore on a compact manifold B(s) = 0 implies
V(s) = 0.

13
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Bochner vanishing for harmonic spinors

COROLLARY: (Bochner vanishing)

Let M be a compact Riemannian manifold with non-negative scalar curvature.
Then V(s) = 0 for any harmonic spinor s. If, in addition, Sc > 0 somewhere
on M, then s = 0.

Proof: Lichnerowicz-Weitzenbdck formula gives

0 = g(D?(s),s) = g(®(s),5) + [ Sc-g(s,s) = [ g(V(s),V(s))+ | Sc-g(s,s).
M M M

The first term vanishes. Moreover, s = 0 on the set U C M where Sc > 0.
Then s =0 because V(s) =0. =

14
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Bochner’s vanishing for holomorphic forms

THEOREM: On a compact Ricci-flat Calabi-Yau manifold, any holomor-
phic p-form 7 is parallel with respect to the Levi-Civita connection: V(n) =
0.

Proof: Holomorphic forms are the same as harmonic spinors. m

REMARK: The form n gives a harmonic spinor, and on a Riemannian spin
manifold with Sc = 0, any harmonic spinor is parallel (Bochner).

REMARK: Due to Bochner’s vanishing, holonomy of Ricci-flat Calabi-
Yau manifold lies in SU(n), and holonomy of Ricci-flat holomorphically
symplectic manifold lies in Sp(n) (a group of complex unitary matrices
preserving a complex-linear symplectic form).

Exercise 1: Let (M,V) be a manifold with holonomy Sp(n). Prove that
all parallel (p,0)-forms on M are powers of the holomorphic symplectic
form.

Exercise 2: Let (M,V) be a manifold with holonomy SU(n). Prove that
any holomorphic (p,0)-form on M is a parallel section of the canonical
bundle.
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Holomorphic Euler characteristic

DEFINITION: A holomorphic Euler characteristic xy(M) of a Kdhler man-
ifold is a sum Y (—=1)Pdim HP.O(M).

THEOREM: (Riemann-Roch-Hirzebruch) For an n-fold, x(M) can be ex-

pressed as a polynomial expressions of the Chern classes, xy(M) = td,
where td,, is an n-th component of the Todd polynomial,

1 1 1 1
td(M) =1+ 501 + E(C% + ) + 2—40102 + ﬁo(—czlL + 40502 + cic3 + 3032 —ca) + ...

REMARK: The Chern classes are obtained as polynomial expression of the
curvature (Chern-Weil). Therefore x (M) = px(M) for any unramified p-fold
covering M —s M.

REMARK: Bochner's vanishing and exercises 1-2 imply:

1. When Hol(M) = SU(n), we have dim HPO(M) =1 for p = 1,n, and O
otherwise. In this case, x(M) = 2 for even n and 0 for odd.

2. When Hol(M) = Sp(n),we have dim HP.O(M) = 1 for even p 0 < p < 2n,
and 0 otherwise. In this case, x(M) =n+ 1.

COROLLARY: m (M) = 0 if Hol(M) = Sp(n), or Hol(M) = SU(2n). If
Hol(M) = SU(2n+ 1), m1(M) is finite.
16
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The Hodge diamond:

Hmn
Hn,n—l Hn—l,n
n,n—2 n—1n—1 n—2,n
H H H
H2,0 Hl,l HO,Q
Hlao Ho,l
HO’O
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