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Clifford algebras (reminder)

DEFINITION: The Clifford algebra of a vector space V with a scalar
product q is an algebra generated by V with a relation xy + yx = −2q(x, y)1,
that is, a quotient of T⊗V := k⊕ V ⊕ V ⊗ V ⊕ ...⊕ T⊗iV by an ideal generated
by xy + yx = −2g(x, y) for all x, y ∈ V .

THEOREM: (Bott periodicity over C)
Clifford algebra Cl(V, q) of a complex vector space V = Cn with q non-

degenerate is isomorphic to Mat
(
Cn/2

)
(n even) and Mat

(
C
n−1

2

)
⊕Mat

(
C
n−1

2

)
(n odd).
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Spin(n, n): an explicit construction

Let W = U ⊕ V be a vector space with U, V dual and the quadratic form
pairing (u, v) and (u′, v′) as follows q((u, v), (u′, v′)) = 〈u, v′〉+ 〈u′, v〉.

DEFINITION: Consider the exterior multiplication operator
eu : Λ∗(U)−→ Λ∗+1(U) with eu(α) = u ∧ α and the convolution operator
iv : Λ∗(U)−→ Λ∗−1(U), with iv(α)(v1, ..., vk) = α(v, v1, ..., vk).

CLAIM: These operators satisfy the following relations: iv, iv′ anticommute
for all v, v′; eu, eu′ anticommute for all v, v′; finally, {iv, eu} = 〈u, v〉 · Id,
where {·, ·} (as usual) denotes the supercommutator, {a, b} = ab− (−1)ã̃bba.

REMARK: These are the same relation as in Clifford algebra! This defines
a map Cl(W )−→ Mat(Λ∗(U)).

EXERCISE: Fix a basis ui in U , and let vj be the dual basis in V . For any
pair of monomials A,B in Λ∗(U), find a product of a sequence of of ivi,
euj which maps A to B and puts all other monomials to 0.

CLAIM: The natural map Cl(W )−→ Mat(Λ∗(U)) is an isomorphism.

Proof: See the previous exercise.
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Spinorial group Spin(2n) (reminder)

EXERCISE: Let V be a vector space over a field of characteristic 0. Prove
that the automorphism group Aut(Mat(V )) is isomorphic to PGL(V ) (the
quotient of GL(V ) by its center).

DEFINITION: (Elie Cartan, 1913)
Spinor representation of the Lie algebra so(2n) is its representation on
C2n induced by the isomorphism pgl(2n) = sl(2n) = Aut(Cl(2n)). Spinor
representation of the Lie algebra so(2n+ 1) is any of two representations of
so(2n+1) on C2n induced by the isomorphism pgl(2n) = sl(2n) = Aut(Cl±(2n+

1)), where Clpm(V ) = Mat(2n) is one of two components of Cl(2n + 1) =

Mat (Cn)⊕Mat (Cn),

DEFINITION: Spinor group Spin(k) is a double cover of SO(k) obtained
as a Lie group of so(V ) acting on its spinorial representation.
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Principal bundles (reminder)

DEFINITION: Let G be a Lie group. Principal G-bundle over a manifold
M is a smooth fibration P 7→ M with a smooth G-action which acts freely
and transitively on fibers.

EXAMPLE: Frame bundle on a smooth n-manifold M is the bundle of all
frames (basises) in TxM , for all x ∈M .

DEFINITION: Let H −→G be a group homomorphism, and P a principal H-
bundle. Then the quotient PG := P×G/H (with H acting on both components
in a natural way) is called an associated principal bundle, and P is called
reduction of the principal G-bundle PG to the group H.

DEFINITION: Let G be a Lie group, and G−→GL(n,R) a group homomor-
phism. A G-structure on a manifold M is a reduction of the principal frame
bundle to G.

DEFINITION: Let G be a Lie group, V its representation, and P a principal
G-bundle on M . The quotient P × V/G is a vector bundle over M , called the
associated vector bundle.
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Spin-structures and spinor bundles (reminder)

DEFINITION: A spin-structure on an oriented n-manifold M is a reduction
of its structure group to Spin(n). A manifold is called spin if it admits a spin-
structure.

REMARK: This happens precisely when the second Stiefel-Whitney
class w2(M) vanishes.

DEFINITION: A bundle of spinors on a spin-manifold M is a vector bundle
associated to the principal Spin(n)-bundle and a spin representation.

REMARK: The Levi-Civita connection is naturally extended from a con-
nection on the bundle of orthogonal frames to its double cover. This
defines the Levi-Civita connection on the spinor bundle.
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Spin-structures on Calabi-Yau manifolds

REMARK: Let (M, I, g) be a Kähler manifold. The Hermitian form de-
fines a pairing between the spaces T1,0(M) and T0,1(M), which are isotropic.
Therefore, Cl(TM ⊗ C, g) = Mat(Λ∗,0(M)).

REMARK: The real structure on Cl(TM ⊗ C) exchanges iv and ev, hence it
exchanges Λp,0(M) and Λn−p,0(M). Therefore, the bundle Λ∗,0(M) can be
identified with spinors only for Calabi-Yau manifolds.

CLAIM: For any Calabi-Yau manifold, there is a spin structure such that
Λ∗,0(M) is a spinorial representation.

Proof: To construct such a structure, we need to exhibit a real structure
τ on Λ∗,0(M) which is compatible with the real structure on Cl(⊗C), that
is, exchanging iv and ev. For any (p,0)-form α, let τ(α) := ∗α

Θ
, where Θ ∈

Λn,0(M) is a parallel section which trivializes the canonical bundle.
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Spinor bundles and Dirac operator (reminder)

DEFINITION: Consider the map TM⊗Spin −→ Spin induced by the Clifford
multiplication. One defines the Dirac operator D : Spin −→ Spin as a
composition of ∇ : Spin −→ Λ1M ⊗Spin = TM ⊗Spin and the multiplication.

DEFINITION: A harmonic spinor is a spinor ψ such that D(ψ) = 0.

THEOREM: (Bochner’s vanishing)
A harmonic spinor ψ on a compact manifold with vanishing scalar curvature
Sc := Tr(Ric) satisfies ∇ψ = 0.

Proof: Later today.
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Bochner’s vanishing on Kähler manifolds

REMARK: A Kähler manifold is spin if and only if c1(M) is even, or,
equivalently, if there exists a square root of a canonical bundle K1/2.

REMARK: On a Kähler manifold of complex dimension n, one has a natural
isomorphism between the spinor bundle and Λ∗,0(M)⊗K1/2 (for n even)
and Λ2∗,0(M)⊗K1/2 (for n odd).

REMARK: On a Kähler manifold, the Dirac operator corresponds to ∂+ ∂∗.

COROLLARY: On a Ricci-flat Kähler manifold, all α ∈ ker(∂+∂∗)
∣∣∣Λ∗,0(M)

ara parallel.

REMARK: ker ∂ + ∂∗ = ker{∂, ∂∗}, where {·, ·} denotes the anticommutator.
However, {∂, ∂∗} = {∂, ∂∗} as Kähler identities imply. Therefore, on a Calabi-
Yau manifold, harmonic spinors are holomorphic forms.

THEOREM: (Bochner’s vanishing) Let M be a Ricci-flat Kähler manifold,
and Ω ∈ Λp,0(M) a holomorphic differential form. Then ∇Ω = 0.

9



Hyperkahler manifolds, lecture 4 M. Verbitsky

Gaussian curvature

CLAIM: Let ∇ be a Levi-Civita connection on a Riemannian manifold, and
R ∈ T ∗M⊗3 ⊗ TM its curvature tensor. Using an isomorphism TM ∼= T ∗M
given by the metric, we may consider R as an element in T ∗M⊗4. Then R is
a section of Sym2(Λ2T ∗M), antisymmetric in 1,2 and 3,4 indices.

DEFINITION: Let V be a vectir space with non-degenerate scalar product
g. A trace Tr12 : V ⊗

n −→ V ⊗
n−2

is defined as a map dual to the mul-
tiplication A−→ g ⊗ A. The trace in i-th and j-th indices, denoted as
Trij : V ⊗

n −→ V ⊗
n−2

, is defined as a map which acts in the i-th and j-th
multiplier as Tr12 on the first two.

DEFINITION: Gaussian curvature of a Riemannian manifold is a scalar
Tr13 Tr24(R), where R is the Riemannian curvature.

10



Hyperkahler manifolds, lecture 4 M. Verbitsky

Clifford multiplication in Sym2(Λ2V )

LEMMA 1: Let R ∈ Sym2(Λ2V ), where V is a space with scalar product g.
Denote the Clifford multiplication as σ : V ⊗

4 −→ Cl(V ). Then

σ(R) = Tr13 Tr24R+ σ(Alt(R)),

where Alt : Sym2(Λ2V )−→ Λ4V is the exterior product map.

Proof: Let x, y, z, t ∈ V , and R(x, y, z, t) := (xy−yx)(zt−tz)+(zt−tz)(xy−yx)

be the corresponding element in Sym2(Λ2V ). Then

1. If x, y, z, t are pairwise orthogonal, we have τ(R(x, y, z, t)) = τ(Alt(R)),
because x, y, z, t anticommute in the Clifford algebra.

2. If x, y, z are pairwise orthogonal, and y = t, then xy − yx anticommutes
with zt− tz, hence τ(R(x, y, z, t)) = 0.

3. If x, y are orthogonal, y = t and x = z, we have

σ(R(x, y, z, t)) = σ((xy − yx)2) = g(x, x)g(y, y).
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Laplacian and rough Laplacian

REMARK: Let D : S −→ S be the Dirac operator, and xi ∈ TM an orthonor-
mal frame. Then D(s) =

∑
i σ(xi,∇xi(s)), where σ : TM⊗S −→ S is Clifford

multiplication.

COROLLARY: Let Θ ∈ Λ2M ⊗ End(S) be the curvature of S. Then

D2(s) =
∑
i,j

σ(xixj,∇xi∇xjs) =
∑
i,j

σ(xixj,Θxi,xjs) +
∑
i,j

σ(xixj + xjxi,∇xi∇xjs).

Since σ(xixj + xjxi, v) = g(xi, xj)v, this gives

D2(s) = σ(Θ, s) +
∑
i

∇xi∇xis.

DEFINITION: Rough Laplacian on a bundle B with connection on a Rie-
mannian manifold is defined as Ð(s) := Tr12(∇2s).

REMARK: The previous corollary is therefore rewritten as

D2(s) = σ(Θ, s) + Ð(s).
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Weitzenböck formula

THEOREM: (Lichnerowicz-Weitzenböck formula)
Let M be a Riemannian manifold with spin structure, Ð : S −→ S the rough
Laplacian, Sc multiplication by the scalar product, and D : S −→ S the Dirac
operator. Then D2 = Ð + Sc.

Proof: D2(s) = σ(Θ, s) + Ð(s), as shown above, and σ(Θ, s) = Sc(s) +

σ(Alt(R)) by Lemma 1. The last term vanishes, because Alt(R) (Bianchi
identity).

REMARK: g(Ð(s), s) = Tr12(∇2(s), s) = g(∇(s),∇(s)). This gives
∫
g(Ð(s), s) =∫

M g(∇(s),∇(s)). Therefore on a compact manifold Ð(s) = 0 implies
∇(s) = 0.
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Bochner vanishing for harmonic spinors

COROLLARY: (Bochner vanishing)
Let M be a compact Riemannian manifold with non-negative scalar curvature.
Then ∇(s) = 0 for any harmonic spinor s. If, in addition, Sc > 0 somewhere
on M , then s = 0.

Proof: Lichnerowicz-Weitzenböck formula gives

0 = g(D2(s), s) = g(Ð(s), s) +
∫
M

Sc ·g(s, s) =
∫
M
g(∇(s),∇(s)) +

∫
M

Sc ·g(s, s).

The first term vanishes. Moreover, s = 0 on the set U ⊂ M where Sc > 0.
Then s = 0 because ∇(s) = 0.
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Bochner’s vanishing for holomorphic forms

THEOREM: On a compact Ricci-flat Calabi-Yau manifold, any holomor-
phic p-form η is parallel with respect to the Levi-Civita connection: ∇(η) =
0.

Proof: Holomorphic forms are the same as harmonic spinors.

REMARK: The form η gives a harmonic spinor, and on a Riemannian spin
manifold with Sc = 0, any harmonic spinor is parallel (Bochner).

REMARK: Due to Bochner’s vanishing, holonomy of Ricci-flat Calabi-
Yau manifold lies in SU(n), and holonomy of Ricci-flat holomorphically
symplectic manifold lies in Sp(n) (a group of complex unitary matrices
preserving a complex-linear symplectic form).

Exercise 1: Let (M,∇) be a manifold with holonomy Sp(n). Prove that
all parallel (p,0)-forms on M are powers of the holomorphic symplectic
form.

Exercise 2: Let (M,∇) be a manifold with holonomy SU(n). Prove that
any holomorphic (p,0)-form on M is a parallel section of the canonical
bundle.
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Holomorphic Euler characteristic

DEFINITION: A holomorphic Euler characteristic χ(M) of a Kähler man-
ifold is a sum

∑
(−1)p dimHp,0(M).

THEOREM: (Riemann-Roch-Hirzebruch) For an n-fold, χ(M) can be ex-
pressed as a polynomial expressions of the Chern classes, χ(M) = tdn
where tdn is an n-th component of the Todd polynomial,

td(M) = 1 +
1

2
c1 +

1

12
(c2

1 + c2) +
1

24
c1c2 +

1

720
(−c4

1 + 4c2
1c2 + c1c3 + 3c2

22− c4) + ...

REMARK: The Chern classes are obtained as polynomial expression of the
curvature (Chern-Weil). Therefore χ(M̃) = pχ(M) for any unramified p-fold
covering M̃ −→M.

REMARK: Bochner’s vanishing and exercises 1-2 imply:

1. When Hol(M) = SU(n), we have dimHp,0(M) = 1 for p = 1, n, and 0
otherwise. In this case, χ(M) = 2 for even n and 0 for odd.

2. When Hol(M) = Sp(n),we have dimHp,0(M) = 1 for even p 0 6 p 6 2n,
and 0 otherwise. In this case, χ(M) = n+ 1.

COROLLARY: π1(M) = 0 if Hol(M) = Sp(n), or Hol(M) = SU(2n). If
Hol(M) = SU(2n+ 1), π1(M) is finite.
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The Hodge diamond:
Hn,n

Hn,n−1 Hn−1,n

Hn,n−2 Hn−1,n−1 Hn−2,n

... ... ... ... ...

H2,0 H1,1 H0,2

H1,0 H0,1

H0,0
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