Complex algebraic geometry (Hodge theory), exam

Each student receives a random selection of test problems (the output of the randomizer is printed on a separate sheet). The number of the problems is $\max(5, 15 - r)$, where r = [t/10] and t is the total score for the handouts. Each problem is worth 1, 2 or 3 points. The final score for the term is s = p + r, where p is the total number of points for the exam. The exam is oral.

1 Differential operators

Exercise 1.1 (2 points). Let M be a compact Riemann manifold and $d + d^*$: $\Lambda^{\text{even}}(M) \longrightarrow \Lambda^{\text{odd}}(M)$ sum of de Rham differential and its adjoint. Prove that $d + d^*$ is elliptic, and its index is the Euler characteristic of M.

Exercise 1.2 (2 points). Let M be a compact Riemannian manifold and $D : C^{\infty}M \longrightarrow C^{\infty}M$ a second order elliptic operator. Prove that the index of Δ vanishes.

Exercise 1.3. Let (M, ω, I) be a complex Hermitian manifold, $L(\eta) := \eta \wedge \omega$, $\Lambda := L^*$ the Hodge operators, and $d, d^c := IdI^{-1}$ the corresponding differentials. Consider the operator $\Delta_{\omega} := d\delta + \delta d$, where $\delta := [d^c, \Lambda]$.

- a. Prove that Δ_{ω} commutes with d and d^c .
- b. (2 points) Prove that $\Delta_{\omega} : \Lambda^*(M) \longrightarrow \Lambda^*(M)$ cannot be surjective if M is compact.

Exercise 1.4. Construct an elliptic operator $D : F \longrightarrow G$ of order 3 or show that such operators don't exist.

Exercise 1.5. Consider the standard action of SO(n+1) on S^n , and let D be an SO(n+1)-invariant second order differential operator. Prove that $D(f) = af + b\Delta(f)$, where Δ is the usual Laplacian associated with the standard metric, and $a, b \in \mathbb{R}$.

Exercise 1.6. Let M be a n-dimensional manifold, n > 1. Prove that the set S of order i elliptic operators on $C^{\infty}M$ is empty for any odd i. Prove that for an even i the set S has two connected components which are convex.

Exercise 1.7. Let f be a smooth function on a compact Riemannian manifold, such that $\Delta(f) = \lambda f$, where $\lambda \in C^{\infty}M$ is a negative function. Prove that f = 0.

Exercise 1.8 (3 points). Let $f \in C^{\infty}(S^{n-1})$ be an eigenvector of the Laplacian operator on a sphere $S^{n-1} \subset \mathbb{R}^n$ with the usual Riemannian metric. Prove that f can be expressed as a polynomial of coordinate functions on \mathbb{R}^n .

Exercise 1.9. Let $V = C^0([0, 1])$ be the space of continuous functions on [0, 1] with the uniform topology, and $K \subset V$ the space of smooth functions $f: [0, 1] \longrightarrow \mathbb{R}$ with |f'| < 1. Prove that the closure of K is the set of 1-Lipschitz maps $[0, 1] \longrightarrow \mathbb{R}$.

2 Almost complex manifolds, connections, symplectic structures

Exercise 2.1. Let f be a holomorphic function on an almost complex manifold. Suppose that |f| is constant. Prove that f is constant.

Exercise 2.2 (3 points). Let (M, ω) be a symplectic manifold. Find a torsion-free connection ∇ such that $\nabla(\omega) = 0$.

Exercise 2.3 (2 points). Let ω be a non-degenerate 2-form on a Riemannian manifold, and ∇ its Levi-Civita connection. Assume that $\nabla(\omega) = 0$. Prove that M admits a complex structure I such that $\nabla(I) = 0$.

Exercise 2.4. Let *M* be a complex manifold. Construct a torsion-free connection ∇ such that $\nabla(I) = 0$.

Exercise 2.5 (2 points). Let (M, I) be an almost complex manifold, and $N : \Lambda^2 T^{1,0} M \longrightarrow T^{0,1} M$ its Nijenhuis tensor. Assume that N is surjective. Prove that any holomorphic function on (M, I) is constant.

Exercise 2.6 (2 points). Let V be a 4-dimensional vector space equipped with a scalar product. Construct a natural homeomorphism between $S^2 \coprod S^2$ and the space of all orthogonal complex structures on V.

Exercise 2.7. Construct a *G*-invariant Hermitian structure on G/H and prove that it is Kähler.

- a. (3 points) G = SO(2n), H = U(n).
- b. (2 points) $G = U(p,q), H = U(p) \times U(q).$
- c. (2 points) $G = U(p+q), H = U(p) \times U(q).$

Exercise 2.8 (2 points). Let G be a compact, connected Lie group with a left invariant complex structure and a left invariant Kähler metric. Prove that G is commutative.

Exercise 2.9 (2 points). Let ω be a non-degenerate 2-form on a real manifold M. Prove that there exists an almost complex Hermitian structure such that ω is its Hermitian form.

3 Hodge theory and its applications

Exercise 3.1. Let ω be a non-degenerate 2-form on a 2*n*-dimensional smooth manifold, and $d(\omega^k) = 0$ for some k satisfying 0 < k < n - 1. Prove that $d\omega = 0$.

Exercise 3.2. Bi-invariant forms on Lie groups are forms which are invariant under the left and right group action. Let G be a compact Lie group equipped with a bi-invariant metric.

- a. (2 points) Prove that all bi-invariant differential forms on G are harmonic.
- b. Prove that all harmonic forms are bi-invariant.

Exercise 3.3. Let M be a closed ball in \mathbb{R}^n with a Riemannian metric g which smoothly extends to its boundary, and $\alpha \in \Lambda^k(M)$ a differential form, also smoothly extending to its boundary. Prove that $\alpha \in \operatorname{im} \Delta$, where Δ is the Laplace operator associated with g.

Exercise 3.4 (2 points). Let M be a compact Kähler manifold, $d, d^c := IdI^{-1}$ the usual differential, and $\alpha \in \ker dd^c$. Prove that for any closed (p, q)-form β one has $\int_M \alpha \wedge d\alpha \wedge \beta = 0$.

Exercise 3.5. Let (M, ω) be a compact Kähler manifold, and $\phi \in C^{\infty}M$ a solution of the Monge-Ampere equation $(\omega + dd^c\phi)^n = e^f\omega^n$, where $f \in C^{\infty}(M)$. Prove that $\omega + dd^c\phi$ is also a Kähler form.

Exercise 3.6. Let F be an exact holomorphic n-form on an n-dimensional compact complex manifold. Prove that F = 0.

Exercise 3.7. Let M be a compact complex manifold, $\dim_{\mathbb{C}} M = 2$. Prove that all holomorphic forms on M are closed.

Exercise 3.8. Let θ be a closed holomorphic 1-form on a simply connected compact complex manifold (not necessarily Kähler). Prove that $\theta = 0$.

Exercise 3.9 (2 points). Let η be a closed (1,1)-form with compact support on \mathbb{C}^n , where n > 1. Prove that $\eta = dd^c f$, where f is a smooth function on \mathbb{C}^n with compact support.

4 Geometry and topology of Kähler manifolds

Exercise 4.1 (2 points). Let $M = CP^4 \times \mathbb{C}P^4 \times \mathbb{C}P^4$. Prove that M does not admit a Kähler structure with non-standard orientation.

Exercise 4.2. Let M be a compact Kähler manifold, $\dim_{\mathbb{C}} M = 4$. Prove that M does not admit a Kähler structure with opposite orientation or find a counterexample.

Exercise 4.3 (2 points). Let M be a compact complex manifold, and $\pi_1(M) \cong \Gamma$ where Γ is a group of upper triangular integer matrices 4x4 with 1 on diagonal. Prove that M does not admit a Kähler structure.

Exercise 4.4 (3 points). Let $M = \mathbb{C}P^2 \sharp \mathbb{C}P^2$ be a connected sum of $\mathbb{C}P^2$ with itself. Prove that M does not admit a Kähler structure.

Exercise 4.5. For any given n > 2 find a 2*n*-dimensional simply connected manifold with $b_{2i} \neq 0, i = 0, 1, ..., n$ not admitting a symplectic structure.

Exercise 4.6 (2 points). Let M be a compact, non-projective Kähler manifold, $\dim H^{2,0}(M) = 1$, and $\phi : M \longrightarrow M$ a holomorphic involution without fixed points. Prove that ϕ acts trivially on $H^{2,0}(M)$.

Exercise 4.7 (3 points). Let M be a compact, non-projective Kähler manifold, dim $H^{2,0}(M) = 1$, and Ω a generator of $H^{2,0}(M)$. Consider a submanifold $Z \subset M$ such that $\Omega|_{Z} = 0$. Prove that Z is projective.

Issued 19.05.2018

Exercise 4.8. Let M be a compact Kähler manifold, $H^{1,1}(M)$ one-dimensional, and $\phi: M \longrightarrow M$ a holomorphic automorphism. Prove that ϕ acts trivially on $H^{1,1}(M)$.

Exercise 4.9 (2 points). Let M be a projective manifold, and $\phi : M \longrightarrow M$ an automorphism. Prove that there exists a ϕ -invariant Kähler metric or find a counterexample.

5 Line bundles and plurisubharmonic functions

Exercise 5.1 (2 points). Let M be a compact complex surface (manifold of complex dimension 2), $\pi : M \longrightarrow S$ a holomorphic map to a curve, and C a smooth fiber of π . Prove that deg $K_M|_C = 2g - 2$, where K_M is the canonical bundle of M and g the genus of C.

Exercise 5.2 (2 points). Let f_1, f_2 be holomorphic functions on a Kähler manifold without common zeros. Prove that the function $\Delta(\log(|f_1|^2 + |f_2|^2))$ is non-negative.

Exercise 5.3 (2 points). Let B be a non-trivial line bundle on a compact complex manifold, and h a metric on B with negative curvature of the Chern connection. Prove that B has no non-zero holomorphic sections.

Exercise 5.4 (2 points). Let *B* be a Hermitian line bundle with positive curvature, f a holomorphic section of *B*, and *Z* the set of its zeros. Prove that $dd^c(|f|^{-1})$ is a Kähler form.

Exercise 5.5 (2 points). Let f be a holomorphic function on a Kähler manifold. Prove that the function $\Delta |f|^2$ is non-negative.

Exercise 5.6. Let f be a smooth function with compact support on an *n*-dimensional Kähler manifold (M, ω) . Prove that the integral $\int_M f \wedge dd^c f \wedge \omega^{n-1}$ is non-negative, and vanishes only when f = const.

Exercise 5.7. (local dd^c -lemma) Let η be a closed (1,1)-form on \mathbb{C}^n . Prove that $\eta = dd^c \alpha$.

Definition 5.1. A connection is called compatible with the holomorphic structure if $\nabla^{0,1} = \bar{\partial}$.

Exercise 5.8. Let *B* be a line bundle, and ∇ a connection such that $\nabla(b)$ is holomorphic for any holomorphic section $b \in \Gamma(U, B)$ of *B*. Prove that the curvature of ∇ is a (2, 0)-form.

Exercise 5.9. Let M be a complex manifold, ∇ a torsion-free connection preserving I, and ϕ a real function Prove that the 2-form $\text{Hess}(\phi) := \nabla^2(\phi)$ is symmetric. Assume that $\text{Hess}(\phi)$ is positive definite. Prove that $dd^c \phi$ is a Kähler form on M.

Exercise 5.10. Let Pic be the group of holomorphic line bundles on a compact Kähler manifold, with the group structure defined by tensor multiplication. Prove that the conected component of Pic is a compact torus.

Exercise 5.11 (2 points). Prove that a line bundle of degree 0 on a complex curve. admits a Hermitian metric with flat Chern connection.

Issued 19.05.2018