Hodge theory handout 1: Sheaves

Rules: You may choose to solve only "hard" exercises (marked with !, * and **) or "ordinary" ones (marked with ! or unmarked), or both, if you want to have extra stuff to work. To have a perfect score, a student must obtain (in average) a score of 10 points per week.

If you have got credit for 2/3 of ordinary problems or 2/3 of "hard" problems, you receive 6t points, where t is a number depending on the date when it is done. Passing all "hard" or all "ordinary" problems brings you 10t points. Solving of "**" (extra hard) problems is not obligatory, but each such problem gives you a credit for 2 "*" or "!" problems in the "hard" set.

The first 3 weeks after giving a handout, t = 1.5, between 21 and 35 days, t = 1, and afterwards, t = 0.7. The scores are not cumulative, only the best score for each handout counts.

1.1 Sheaves and manifolds

Definition 1.1. Let M be a topological space. A sheaf \mathcal{F} on M is a collection of vector spaces $\mathcal{F}(U)$ defined for each open subset $U \subset M$, with the restriction maps,

which are linear homomorphisms $\mathcal{F}(U) \xrightarrow{\phi_{U,U'}} \mathcal{F}(U')$, defined for each $U' \subset U$, and satisfying the following conditions.

(A) Composition of restrictions is again a restriction: for any open subsets $U_1 \subset U_2 \subset U_3$, the corresponding restriction maps

$$\mathcal{F}(U_1) \xrightarrow{\phi_{U_1,U_2}} \mathcal{F}(U_2) \xrightarrow{\phi_{U_2,U_3}} \mathcal{F}(U_3)$$

give $\phi_{U_1,U_2} \circ \phi_{U_2,U_3} = \phi_{U_1,U_3}$.¹

- (B) Let $U \subset M$ be an open subset, and $\{U_i\}$ a covering of U. For any $f \in \mathcal{F}(U)$ such that all restrictions of f to U_i vanish, one has f = 0.
- (C) Let $U \subset M$ be an open subset, and $\{U_i\}$ a covering of U. Consider a collection $f_i \in \mathcal{F}(U_i)$ of sections, defined for each U_i , and satisfying

$$f_i\Big|_{U_i\cap U_j} = f_j\Big|_{U_i\cap U_j}$$

for each U_i, U_j . Then there exists $f \in \mathcal{F}(U)$ such that the restriction of f to U_i is f_i .

The space $\mathcal{F}(U)$ is called **the space of sections of the sheaf** \mathcal{F} on U. The restriction maps are often denoted $f \longrightarrow f|_{U}$

Exercise 1.1. Let M be a topological space equipped with a presheaf \mathcal{F} . Let $U \subset M$ be an open subset and $\{U_i\}$ its covering. Define maps $\mathcal{F}(U) \longrightarrow \prod_i \mathcal{F}(U_i) \longrightarrow \prod_{i \neq j} \mathcal{F}(U_i \cap U_j)$ in appropriate way, and prove that the conditions (B) an (C) are equivalent to the exactness of the sequence

$$0 \longrightarrow \mathcal{F}(U) \longrightarrow \prod_{i} \mathcal{F}(U_{i}) \longrightarrow \prod_{i \neq j} \mathcal{F}(U_{i} \cap U_{j})$$

for all open $U \subset M$, and any covering $\{U_i\}$ of U.

Issued 24.01.2018

¹If (A) is satisfied, \mathcal{F} is called **a presheaf**.

Definition 1.2. Let $U \subset V$ be open subsets in M. We write $U \Subset V$ if the closure of U is contained in V.

Exercise 1.2 (!). Let $U \in V$ be open subsets in a smooth metrizable manifold. Prove that there exists a smooth function $\Phi_{U,V} \in C^{\infty}M$ equal to 0 outside of the closure of V and equal to 1 on U.

Exercise 1.3. Show that the following spaces of functions on open subsets of \mathbb{R}^n define presheaves, but not sheaves

- a. Space of constant functions.
- b. Space of bounded functions.
- c. Space of functions vanishing outside of a bounded set.
- d. Space of continuous functions with finite $\int |f|$.

Definition 1.3. Let (M, \mathcal{F}) be a topological manifold equipped with a sheaf of functions. It is said to be a **smooth manifold** of **class** C^{∞} or C^i if every point in (M, \mathcal{F}) has an open neighborhood isomorphic to the ringed space $(\mathbb{R}^n, \mathcal{F}')$, where \mathcal{F}' is a ring of functions on \mathbb{R}^n of this class.

Exercise 1.4. State the usual definition of a manifold (with charts and atlases). Prove that this definition is equivalent to the one with charts and atlases.

Definition 1.4. A ringed space (M, \mathcal{F}) is a topological space equipped with a sheaf of rings, such that all restriction maps are ring homomorphisms. We shall only consider ringed spaces equipped with a sheaf of functions, that is, with a subsheaf \mathcal{F} of the sheaf of all functions on M, closed under multiplication. A morphism $(M, \mathcal{F}) \xrightarrow{\Psi} (N, \mathcal{F}')$ of ringed spaces is a continuous map $M \xrightarrow{\Psi} N$ such that, for every open subset $U \subset N$ and every function $f \in \mathcal{F}'(U)$, the function $f \circ \Psi$ belongs to the ring $\mathcal{F}(\Psi^{-1}(U))$. An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ^{-1} are morphisms of ringed spaces.

Exercise 1.5. Show that any smooth map of manifolds defines a morphism of the corresponding ringed spaces.

Exercise 1.6. Let $f: M \longrightarrow N$ be a map of manifolds which defines a morphism of the corresponding ringed spaces. Prove that it is smooth.

Exercise 1.7 (*). Describe all morphisms of ringed spaces from (\mathbb{R}^n, C^{i+1}) to (\mathbb{R}^n, C^i) .

1.2 Sheaf morphisms

Definition 1.5. A sheaf homomorphism ψ : $\mathcal{F}_1 \longrightarrow \mathcal{F}_2$ is a collection of homomorphisms

$$\psi_U: \mathcal{F}_1(U) \longrightarrow \mathcal{F}_2(U),$$

defined for each $U \subset M$, and commuting with the restriction maps. A sheaf isomorphism is a homomorphism $\Psi : \mathcal{F}_1 \longrightarrow \mathcal{F}_2$, for which there exists an homomorphism $\Phi : \mathcal{F}_2 \longrightarrow \mathcal{F}_1$, such thate $\Phi \circ \Psi = \mathsf{Id}$ and $\Psi \circ \Phi = \mathsf{Id}$.

Exercise 1.8. Let ψ : $\mathcal{F}_1 \longrightarrow \mathcal{F}_2$ be a sheaf homomorphism.

- a. Show that $U \longrightarrow \ker \psi_U$ and $U \longrightarrow \operatorname{coker} \psi_U$ are presheaves.
- b. Prove that $U \longrightarrow \ker \psi_U$ is a sheaf (it is called **the kernel** of a homomorphism ψ).
- c. (*) Prove that $U \longrightarrow \operatorname{coker} \psi_U$ is not always a sheaf (find a counterexample).

Definition 1.6. A subsheaf $\mathcal{F}' \subset \mathcal{F}$ is a sheaf associating to each $U \subset M$ a subspace $\mathcal{F}'(U) \subset \mathcal{F}(U)$.

Exercise 1.9. Find a non-zero sheaf \mathcal{F} on M such that $\mathcal{F}(M) = 0$.

Remark 1.1. Let $\phi : A \longrightarrow B$ be a ring homomorphism, and V a B-module. Then V is equipped with a natural A-module structure: $av := \phi(a)v$.

Definition 1.7. A sheaf of rings on a manifold M is a sheaf \mathcal{F} with all the spaces $\mathcal{F}(U)$ equipped with a ring structure, and all restriction maps ring homomorphisms.

Definition 1.8. Let \mathcal{F} be a sheaf of rings on a topological space M, and \mathcal{B} another sheaf. It is called **a sheaf of \mathcal{F}-modules** if for all $U \subset M$ the space of sections $\mathcal{B}(U)$ is equipped with a structure of $\mathcal{F}(U)$ -module, and for all $U' \subset U$, the restriction map

 $\mathcal{B}(U) \xrightarrow{\phi_{U,U'}} \mathcal{B}(U')$ is a homomorphism of $\mathcal{F}(U)$ -modules (use Remark 1.1 to obtain a structure of $\mathcal{F}(U)$ -module on $\mathcal{B}(U')$).

1.3 Germs

Definition 1.9. The space of germs, or **stalk** of a sheaf \mathcal{F} at $x \in M$ is the limit $\lim_{\to} \mathcal{F}(U)$, where U is the set of all neighbourhoods of x, and the maps are restriction maps. Its elements are called **germs**.

Exercise 1.10. Let \mathcal{F} be a ring sheaf on M. Prove that the space of germs of a sheaf of \mathcal{F} -modules is a module over the ring of germs of \mathcal{F} in x.

Exercise 1.11. Let \mathcal{B} be a sheaf with all stalks equal 0. Prove that $\mathcal{B} = 0$.

Exercise 1.12 (!). Find a sheaf \mathcal{F} on M with all germs non-zero, and $\mathcal{F}(M)$ zero.

Issued 24.01.2018

Definition 1.10. A sheaf is called **soft** if for any finite subset $x_1, ..., x_n \in M$, the natural restriction map $\mathcal{F}(M) \longrightarrow \bigoplus_i \mathcal{F}_{x_i}$ from the space of global sections to the space of germs is surjective.

Exercise 1.13 (*). Let \mathcal{F} be a soft sheaf on M, and $U \subset M$ an open subset. Prove that the map $\mathcal{F}(M) \longrightarrow \mathcal{F}(U)$ is always surjective, or find a counterexample.

Exercise 1.14 (!). Let M be a smooth, metrizable manifold, and \mathcal{F} be a sheaf of modules over $C^{\infty}(M)$. Prove that \mathcal{F} is soft.

Hint. Use a partition of unity.

Definition 1.11. A free sheaf of modules \mathcal{F}^n over a ring sheaf \mathcal{F} is a sheaf such that the space of sections over an open set U is $\mathcal{F}(U)^n$. A sheaf of \mathcal{F} -modules is **non-free** if it is not isomorphic to a free sheaf.

Exercise 1.15 (!). Find a subsheaf of modules in $C^{\infty}M$ which is non-free in the sense of this definition.

Definition 1.12. Locally free sheaf of modules over a sheaf of rings \mathcal{F} is a sheaf of modules \mathcal{B} satisfying the following condition. For each $x \in M$ there exists a neighbourhood $U \ni x$ such that the restriction $\mathcal{B}|_{U}$ is free.

Definition 1.13. A vector bundle on a ringed space (M, \mathcal{F}) is a locally free sheaf of \mathcal{F} -modules.

Exercise 1.16 (!). Given a smooth manifold M, define the tangent bundle TM, and prove that it is a locally free sheaf of $C^{\infty}M$ -modules.

Exercise 1.17. Prove that the tangent bundle is a free sheaf for the following manifolds.

- a. $M=\mathbb{R}$
- b. $M = S^1$ (a circle)
- c. $M = \mathbb{R}^2 / \mathbb{Z}^2$ (a torus)
- d. (*) $M = S^3$ (a three-dimensional sphere)

Exercise 1.18 (!). Let B be a vector bundle on a manifold $(M, C^{\infty}M)$. Prove that B is soft (as a sheaf).

Exercise 1.19 (**). Let B_1 , B_2 be vector bundles on (M, C^{∞}) such that the spaces of sections $B_1(M)$ and $B_2(M)$ are isomorphic as $C^{\infty}(M)$ -modules. Prove that the bundles B_1 and B_2 are isomorphic.

Definition 1.14. Let \mathcal{F} be a sheaf of $C^{\infty}M$ -modules, and \mathcal{F}_x its germ in x. Denote the quotient $\mathcal{F}_x/\mathfrak{m}_x\mathcal{F}_x$ by $\mathcal{F}|_x$. This space is called **the fiber** of \mathcal{F} in x. A morphism of sheaves induces a linear map on each of its fibers.

Exercise 1.20 (**). Let \mathcal{F} be a sheaf of $C^{\infty}M$ -modules such that all its fibers $\mathcal{F}|_x$ vanish. Prove that \mathcal{F} is zero, or find a counterexample.