Hodge theory 2: Differential operators

Rules: You may choose to solve only "hard" exercises (marked with !, * and **) or "ordinary" ones (marked with ! or unmarked), or both, if you want to have extra stuff to work. To have a perfect score, a student must obtain (in average) a score of 10 points per week.

If you have got credit for 2/3 of ordinary problems or 2/3 of "hard" problems, you receive 6t points, where t is a number depending on the date when it is done. Passing all "hard" or all "ordinary" problems brings you 10t points. Solving of "**" (extra hard) problems is not obligatory, but each such problem gives you a credit for 2 "*" or "!" problems in the "hard" set.

The first 3 weeks after giving a handout, t = 1.5, between 21 and 35 days, t = 1, and afterwards, t = 0.7. The scores are not cumulative, only the best score for each handout counts.

2.1 Differential operators (after Grothendieck)

Definition 2.1. Let R be a commutative ring over a field k. Given $a \in R$, consider the map $L_a : R \longrightarrow R$ mapping x to ax. Define $\text{Diff}^k(R) \subset \text{Hom}_k(R, R)$ inductively as follows. The $\text{Diff}^0(R)$ is the space of all R-linear maps from R to R, that is, the space of all L_a , $a \in R$. The space $\text{Diff}^k(R)$, k > 0 is

 $\operatorname{Diff}^{k}(R) := \{ D \in \operatorname{Hom}_{k}(R, R) \mid [L_{a}, D] \in \operatorname{Diff}^{k-1}(R) \quad \forall a \in R. \}$

The union of all $\text{Diff}^i(R)$ is called **the space of differential operators on** R. Differential operators on the ring $C^{\infty}M$ is called **differential operators on** M, denoted $\text{Diff}^*(M)$.

Exercise 2.1. Let $D^i \in \text{Diff}^i(R)$, $D^j \in \text{Diff}^j(R)$ be differential operators. Prove that the composition $D^i D^j$ lies in $\text{Diff}^{i+j}(R)$.

Hint. Use induction and identity $[v, D^i D^j] = [v, D^i] D^j + D^i [v, D^j]$

Exercise 2.2. Let $D^i \in \text{Diff}^i(R)$, $D^j \in \text{Diff}^j(R)$ be differential operators. Prove that the commutator $[D^i, D^j]$ lies in $\text{Diff}^{i+j-1}(R)$.

Hint. Use induction and Jacobi identity

$$[v, [D^i, D^j]] = [[v, D^i], D^j] + [D^i, [v, D^j]].$$

Definition 2.2. Let *R* be a *k*-algebra, and $D : R \longrightarrow A$ a *k*-linear map from *R* to an *R*-module. It is called a *k*-derivation, or just derivation if it satisfies the Leibniz rule: D(xy) = yD(x) + xD(y).

- **Exercise 2.3.** a. Prove that D(k) = 0 for any k-derivation on a k-algebra (we assume char k = 0).
 - b. (!) Let R be a finite extension of a field k of characteristic 0. Prove that the space $\text{Der}_k(R, R)$ of derivations vanishes.

Exercise 2.4 (**). Let R be the ring of continuous functions on a manifold M. Prove that $\text{Der}_{\mathbb{R}}(R, R) = 0$, or find a counterexample.

Issued 31.01.2018

Exercise 2.5 (*). Let $x_1, ..., x_n$ be coordinates on \mathbb{R}^n . Prove that any derivation on $C^{\infty}\mathbb{R}^n$ is written as coordinates as $D(f) = \sum_{i=1}^n f_i \frac{d}{dx_i}$, where $f_i \in C^{\infty}M$.

Hint. Use the Hadamard lemma and an inclusion $D(I^k) \subset I^{k-1}$ (Exercise 2.8).

Exercise 2.6 (!). Let $D \in \text{Diff}^1(R)$ be a differential operator of first order. Prove that D - D(1) is a derivation of R. Prove that $\text{Diff}^1(R) / \text{Diff}^0(R)$ is isomorphic to the space of derivations of R.

Exercise 2.7. Let R = k[t] be an algebra of polynomials over a field k of characteristic 0, and $D \in \text{Diff}^k(R)$.

- a. Prove that D is uniquely determined by its restriction on polynomials of degree $\leq k$.
- b. (*) Prove that Diff^k(R) is a free k[t]-module, generated by $\tau_0, \tau_1, ... \tau_k$, where τ_i maps all $1, t, t^2, t^3, ... t^k$ except t^i to 0, and t^i to 1.
- c. (**) Prove that Diff*($\mathbb{R}[t_1, ..., t_n]$) is an algebra freely generated by generators $t_1, ..., t_n$ and $\frac{d}{dt_1}, ..., \frac{d}{dt_n}$ and relations $[t_i, \frac{d}{dt_i}] = \delta_{ij}$.

Exercise 2.8. Let $I \subset R$ be an ideal, and $D \in \text{Diff}^k(R)$. Prove that $D(I^{k+1}) \subset I$.

Hint. Use induction in k and identity $[D, L_a L_b] = [D, L_a]L_b + L_a[D, L_b].$

2.2 Differential operators are local

Definition 2.3. Let $f \in \mathcal{F}(M)$ be a section of a sheaf \mathcal{F} , and $U \subset M$ the union of all open subsets $V \subset M$ such that $f\Big|_{V} = 0$. The complement $M \setminus U$ is called **support** of M, denoted Supp(f).

Exercise 2.9. Prove that Supp(f) is the set of all $m \in M$ such that the germ of f in m is non-zero.

Definition 2.4. Let $f, g \in C^{\infty}M$. We say that f is divisible by g if f = f'g for some $f' \in C^{\infty}M$.

Exercise 2.10. Let $K \subset U \subset M$ be subsets of a manifold M, where U is open and K compact.

- a. Prove that any function with support in K is divisible by any function which is non-zero in U.
- b. Let f be a function on M which is non-zero somewhere in $U \setminus K$. Prove that there exists a function g with $\text{Supp}(g) \supset K$ such that f is not divisible by g.

Hint. If f vanishes in $x \in U$, but support of f contains x, construct g which is equal to f^2 in a neighbourhood of x and supported in $K \subset U$, and show that f is not divisible by g.

Exercise 2.11. Let $D \in \text{Diff}^*(M)$ be a differential operator, and f a function divisible by any power of g. Prove that D(f) is divisible by any power of g.

Definition 2.5. An operator $D: C^{\infty}M \longrightarrow C^{\infty}M$ is called **local** if it $\text{Supp}(D(f)) \subset \text{Supp}(f)$ for any function $f \in C^{\infty}M$.

- **Exercise 2.12.** a. Let K be a closed subset of M. Prove that $\text{Supp}(f) \subset K$ if and only if f is infinitely divisible by any function g which is non-zero everywhere in K.
 - b. (!) Prove that any differential operator (in the sense of Grothendieck) is local.

Hint. Use Exercise 2.10 and Exercise 2.11.

2.3 Jet spaces

Definition 2.6. Let M be a smooth manifold, $f \in C^{\infty}M$ a function, and $x \in M$ a point. Denote by \mathfrak{m}_x the maximal ideal of x, that is, the ideal of all functions vanishing in x. The k-jet of f in x is an image of f in $C^{\infty}M/\mathfrak{m}_x^{k+1}$. The space of k-jets of functions in x is $C^{\infty}M/\mathfrak{m}_x^{k+1}$, and the corresponding vector bundle $\operatorname{Jet}^k(M)$ with the fiber in x equal to $C^{\infty}M/\mathfrak{m}_x^{k+1}$ is called the bundle of k-jets.

Exercise 2.13. Let Δ be the diagonal in $M \times M$, and $J_{\Delta} \subset C^{\infty}(M \times M)$ the ideal of all functions vanishing in M. Denote by $\pi : M \times M \longrightarrow M$ the projection to the first component

- a. (!) Prove that the cotangent bundle T^*M is isomorphic as a sheaf of $C^{\infty}M$ modules to J_{Δ}/J_{Δ}^2 , considered as a sheaf on $\Delta = M$, with $C^{\infty}M$ -action induced by $\pi^*C^{\infty}M\Big|_{\Delta} \cong C^{\infty}M$ (that is, we take the functions which are constant along the
 second component, and consider J_{Δ}/J_{Δ}^2 as a sheaf of modules over such functions).
- b. (*) Prove that the bundle of k-jets is identified, in a similar way, with the sheaf $C^{\infty}(M \times M)/J^k_{\Delta}$, considered as a sheaf on $\Delta = M$, with $C^{\infty}M$ -action induced by $\pi^*C^{\infty}M\Big|_{\Delta} \cong C^{\infty}M$.

Definition 2.7. For any $f \in C^{\infty}M$, define the k-jet of f as a section of $\text{Jet}^{k}(M)$ which is equal to the k-jet of f at each $x \in M$.

Exercise 2.14. Let $D \in \text{Diff}^k(M)$ be a differential operator (in the sense of Grothendieck), $f \in C^{\infty}M$, and $J^k(f)$ its k-jet. Prove that for each $x \in M$, the number D(f)(x) depends linearly on the k-jet of f in x.

Hint. Use Exercise 2.8.

Issued 31.01.2018

Hint. Use the previous exercise.

Exercise 2.16 (*). Prove that $\text{Diff}^k(M)$ is a vector bundle. Prove that this vector bundle is dual to $\text{Jet}^k(M)$.

Hint. Use locality, dimension count and the previous exercise.

Exercise 2.17 (*). Prove that all differential operators $D \in \text{Diff}^k(M)$ (in the sense of Grothendieck) can be expressed in local coordinates as

$$D = f_0 + \sum_{i=1}^n f_i \frac{\partial}{\partial x_i} + \sum_{i,j=1}^n f_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i,j,k=1}^n f_{ijk} \frac{\partial^3}{\partial x_i \partial x_j \partial x_k} + \dots$$

Hint. Use the previous exercise.

Exercise 2.18 (**). Prove that any local operator on a compact manifold is a differential operator.

2.4 The ring of symbols of differential operators

Definition 2.8. Let R be an associative algebra. (Increasing) filtration on R is a collection of subspaces $R_0 \subset R_1 \subset R_2 \subset ...$ such that $R_iR_j \subset R_{i+j}$. The natural product map $(R_k/R_{k-1}) \otimes (R_l/R_{l-1}) \longrightarrow R_{k+l}/R_{k+l-1}$ defines an associative product structure on the space $\bigoplus_{i=0}^{\infty} R_i/R_{i-1}$. The algebra $\bigoplus_{i=0}^{\infty} R_i/R_{i-1}$ is called **the associated graded algebra** of this filtration.

Exercise 2.19. Consider the algebra $\text{Diff}^*(R)$ with its filtration by $\text{Diff}^i(M)$. Prove that its associated graded algebra is commutative.

Hint. Use Exercise 2.2.

Definition 2.9. This ring is called the ring of symbols of differential operators. For any $D \in \text{Diff}^k(R)$, its representative in $\text{Diff}^k(R)$ is called the symbol of D.

Exercise 2.20. Consider sections of TM as differential operators of the first order.

- a. Prove that $TM = \text{Diff}^1 M / \text{Diff}^0 M$.
- b. Prove that the multiplication in the ring of symbols defines a surjective, $C^{\infty}M$ -linear map $\operatorname{Sym}^k TM \longrightarrow \operatorname{Diff}^k M/\operatorname{Diff}^{k-1} M$.
- c. (!) Prove that this map is an isomorphism.