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Hodge theory 3: Stone-Weierstrass theorem

and Banach spaces
Rules: You may choose to solve only “hard” exercises (marked with !, * and **) or “ordinary” ones
(marked with ! or unmarked), or both, if you want to have extra stuff to work. To have a perfect score,
a student must obtain (in average) a score of 10 points per week.

If you have got credit for 2/3 of ordinary problems or 2/3 of “hard” problems, you receive 6t points,
where t is a number depending on the date when it is done. Passing all “hard” or all “ordinary” problems
brings you 10t points. Solving of “**” (extra hard) problems is not obligatory, but each such problem
gives you a credit for 2 “*” or “!” problems in the “hard” set.

The first 3 weeks after giving a handout, t = 1.5, between 21 and 35 days, t = 1, and afterwards,

t = 0.7. The scores are not cumulative, only the best score for each handout counts.

3.1 Weierstrass approximation theorem

Definition 3.1. Let M be a topological space, and ‖f‖ := supM |f | the
sup-norm on functions. C0-topology on the space C0(M) of bounded
continuous functions is topology defined by the sup-norm.

Exercise 3.1. Prove that C0M with the metric defined by the sup-norm is
a complete metric space.

Exercise 3.2. (“Dini’s theorem”)
Let {fi} be a sequence of continuous functions on a compact space M , and
suppose that fi(t) > fi−1(t) for all t and i. Suppose that limi fi(t) = f(t)
for some continuous function f . Prove that the sequence {fi(t)} converges
to f(t) uniformly.

Exercise 3.3. Consider the sequence Pi, i = 0, 1, 2, ... of polynomials on
[0, 1] determined recursively as follows: P0(t) = 0, and Pi(t) = Pi−1(t) +
1
2
(t− Pi−1(t)2). For all t ∈ [0, 1] and all i = 1, 2, ...,, prove the following.

a. Prove that 0 6 Pi(t) 6
√
t.

b. Prove that Pi(t) > Pi−1(t).

c. Prove that {Pi(t)} converges pointwisely to
√
t on [0, 1].

d. Prove that {Pi(t)} converges uniformly to
√
t on [0, 1]

e. Prove that Qi(t) := Pi(t
2) converges uniformly to |t| on [−1, 1].
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Exercise 3.4. Let F (t) be a piecewise linear, continuous function on [a, b] ⊂
R. Prove that F (t) can be expressed as a sum

∑n
i=0 αi|x− ci| for some αi, ci.

Exercise 3.5. Prove that any piecewise linear, continuous function on [a, b] ⊂
R can be obtained as a uniform limit of polynomials.

Exercise 3.6 (!). (Weierstrass approximation theorem)
Prove that any continuous function on [a, b] ⊂ R admits a uniform approxi-
mation by polynomials.

Remark 3.1. This particular proof of Weierstrass approximation is due to
Lebesgue.

3.2 Stone-Weierstrass approximation theorem

From now on we assume that M is compact, Hausdorff topological space.

Definition 3.2. Let A ⊂ C0M be a subspace in the space of continuous
functions. We say that A separates the points of M if for every points
x 6= y ∈M , there exists f ∈ A such that f(x) 6= f(y).

Exercise 3.7. Let A ⊂ C0M be an R-subalgebra, and Ā its closure in C0-
topology.

a. Prove that for any a ∈ A, the function |a| belongs to Ā.

b. Prove that for any a, b ∈ A, the function min(a, b) belongs to Ā.

Hint. Use Exercise 3.3.

Exercise 3.8. Let A ⊂ C0M be a subring separating points, Ā its closure,
and U 3 x a neighbourhood of x ∈M . Prove that for any ε > 0 there exists

a ∈ Ā taking values in [0, 1] such that a(x) = 1 and a
∣∣∣
M\U

< ε.

Hint. Find a finite covering of the compact M\U by open sets Ui and func-
tions fi ∈ Ā taking values in [0, 1] such that fi(x) = 1 and fi

∣∣
U i

< ε, and
put a := mini(fi).

Exercise 3.9. Let A ⊂ C0M be a subring separating points, Ā its closure,
and f ∈ C0(M) any function. Prove that for all x ∈M there exists a function
fx ∈ Ā such that fx 6 f and fx(x) > f(x)− ε.
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Hint. Use the previous exercise.

Exercise 3.10 (!). (Stone-Weierstrass theorem)
Let A ⊂ C0M be a subring separating points, and Ā its closure. Prove that
Ā = C0M .

Hint. Use the previous exercise and find a neighbourhood Ux and a function

fx 6 f such that (fx + ε)
∣∣∣
Ux

> f
∣∣∣
Ux

. Find a finite covering {Uxi} by such

Ux, such that f > maxi fxi > f − ε.

3.3 Banach spaces

Definition 3.3. A non-negative real-valued function v −→ |v| on a vector
space is called norm if

• |v| = 0 if and only if v = 0

• For each r ∈ R, |rv| = |r||v|.

• |v1 + v2| 6 |v1|+ |v2|.

Clearly, norm defines a metric on V , with d(x, y) := |x − y|. A norm is
complete if this metric is complete.

Definition 3.4. A complete normed topological vector space is called Ba-
nach space.

Definition 3.5. Let V1, V2 be vector spaces equipped with a norm. Norm
(“operator norm”) of a linear operator E : V1 −→ V2 is the number ‖E‖ :=

supv 6=0
|E(v)|
|v| . An operator with finite norm is called bounded.

Exercise 3.11 (!). Show that E is continuous if and only if it is bounded.

Exercise 3.12. Prove that ‖E‖ defines a norm on the space of bounded
operators E : V1 −→ V2.

Exercise 3.13 (!). Suppose that V1, V2 are Banach spaces, and Hom(V1, V2)
the space of bounded operators equipped with the operator norm. Prove that
Hom(V1, V2) is a Banach space.
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Remark 3.2. From now on, all linear operators on topological vector spaces
are assumed continuous, unless stipulated otherwise.

Definition 3.6. Let H be an infinite-dimensional vector space equipped
with a positive-definite scalar product. We say that H is a Hilbert space
if it is complete and contains a countable dense set.

Exercise 3.14 (!). Let g denote the scalar product on a Hilbert space H.
Prove that g defines an isomorphism from H to H∗, whete H∗ denotes the
space of continuous functionals.

Hint. Let xi be the orthonormal basis in H. Use the dual basis to write any

form as λ =
∑

i λiei. Prove that |λ(x)|2
|x|2 =

∑
|λi|2.

Exercise 3.15 (*). Prove that a sphere in a Hilbert space is contractible.

Exercise 3.16 (*). Consider the group GL(H) of linear automorphisms of
a Hilbert space, taken with the norm topology. Prove that it is contractible.

Exercise 3.17 (**). Consider the group O(H) of linear isometries of a
Hilbert space, taken with the norm topology. Prove that it is contractible.

Exercise 3.18. a. Let H be a Hilbert space. Prove that the closure of
the unit ball is non-compact.

b. (*) Let V be an infinite-dimensional Banach space. Prove that the
closure of the unit ball is non-compact.

Exercise 3.19 (**). Let E; V1 −→ V2 be a bijective, continuous linear op-
erator on Hilbert spaces. Prove that E−1 is bounded.

Definition 3.7. Let V be a vector space, and | |1, | |2 - norms on V . We say
that these norms are equivalent if the identity operator (H, | |1)−→ (V, | |2)
is a homeomorphism.

Exercise 3.20 (!). Prove that | |1, | |2 are equivalent if and only if there
exists constant C > 1 such that for all v ∈ V one has C−1|v|1 6 |v|2 6 C|v|1.

Exercise 3.21. Prove that on a finite-dimensional space all norms are equiv-
alent.
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