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Hodge theory 3: Stone-Weierstrass theorem
and Banach spaces

Rules: You may choose to solve only “hard” exercises (marked with !, * and **) or “ordinary” ones
(marked with ! or unmarked), or both, if you want to have extra stuff to work. To have a perfect score,
a student must obtain (in average) a score of 10 points per week.

If you have got credit for 2/3 of ordinary problems or 2/3 of “hard” problems, you receive 6t points,
where t is a number depending on the date when it is done. Passing all “hard” or all “ordinary” problems
brings you 10¢ points. Solving of “**” (extra hard) problems is not obligatory, but each such problem
gives you a credit for 2 “*” or “I” problems in the “hard” set.

The first 3 weeks after giving a handout, t = 1.5, between 21 and 35 days, t = 1, and afterwards,

t = 0.7. The scores are not cumulative, only the best score for each handout counts.

3.1 Weierstrass approximation theorem

Definition 3.1. Let M be a topological space, and || f|| := sup,, |f| the
sup-norm on functions. C°-topology on the space C°(M) of bounded
continuous functions is topology defined by the sup-norm.

Exercise 3.1. Prove that C°M with the metric defined by the sup-norm is
a complete metric space.

Exercise 3.2. (“Dini’s theorem”)

Let {f;} be a sequence of continuous functions on a compact space M, and
suppose that f;(t) > fi_1(¢) for all ¢ and i. Suppose that lim; f;(t) = f(t)
for some continuous function f. Prove that the sequence {f;(t)} converges
to f(t) uniformly.

Exercise 3.3. Consider the sequence P;, 1 = 0,1,2,... of polynomials on
[0,1] determined recursively as follows: FPy(t) = 0, and Pi(t) = P,_1(t) +
1(t — P_1(t)?). For all t € [0,1] and all i = 1,2, ...,, prove the following.

a. Prove that 0 < P;(t) < V1.

b. Prove that P;(t) > P,_(t).

c. Prove that {P;(t)} converges pointwisely to v/t on [0, 1].
d. Prove that {P;(t)} converges uniformly to v/¢ on [0, 1]

e. Prove that Q;(t) := P;(t?) converges uniformly to || on [—1,1].
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Exercise 3.4. Let F(t) be a piecewise linear, continuous function on [a, b] C
R. Prove that F'(t) can be expressed as a sum ) ., a;|z — ¢;| for some «, ¢;.

Exercise 3.5. Prove that any piecewise linear, continuous function on [a, b] C
R can be obtained as a uniform limit of polynomials.

Exercise 3.6 (!). (Weierstrass approximation theorem)
Prove that any continuous function on [a,b] C R admits a uniform approxi-
mation by polynomials.

Remark 3.1. This particular proof of Weierstrass approximation is due to
Lebesgue.

3.2 Stone-Weierstrass approximation theorem

From now on we assume that M is compact, Hausdorff topological space.

Definition 3.2. Let A € C°M be a subspace in the space of continuous
functions. We say that A separates the points of M if for every points
x #y € M, there exists f € A such that f(x) # f(y).

Exercise 3.7. Let A C C°M be an R-subalgebra, and A its closure in C°-
topology.

a. Prove that for any a € A, the function |a| belongs to A.

b. Prove that for any a,b € A, the function min(a, b) belongs to A.
Hint. Use Exercise 3.3.

Exercise 3.8. Let A C C°M be a subring separating points, A its closure,
and U 3 x a neighbourhood of z € M. Prove that for any € > 0 there exists

a € A taking values in [0, 1] such that a(z) =1 and a <e.

M\U

Hint. Find a finite covering of the compact M \U by open sets U; and func-
tions f; € A taking values in [0, 1] such that f;(z) = 1 and fz‘m < g, and
put a := min;(f;).

Exercise 3.9. Let A C C°M be a subring separating points, A its closure,
and f € C°(M) any function. Prove that for all z € M there exists a function
fz € A such that f, < f and f.(x) > f(z) —e.
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Hint. Use the previous exercise.

Exercise 3.10 (!). (Stone-Weierstrass theorem)
Let A C C°M be a subring separating points, and A its closure. Prove that
A=C'M.

Hint. Use the previous exercise and find a neighbourhood U, and a function
fz < f such that (f, + e)‘U > f‘U . Find a finite covering {U,,} by such
U,, such that f > max; f,, > f — €.

3.3 Banach spaces

Definition 3.3. A non-negative real-valued function v — |v| on a vector
space is called norm if

o [v|=0if and only if v =0
e For each r € R, |rv| = |r]|v].
[ ] ”Ul +U2‘ < |’U1’ + "UQ’.

Clearly, norm defines a metric on V, with d(z,y) = |r — y|. A norm is
complete if this metric is complete.

Definition 3.4. A complete normed topological vector space is called Ba-
nach space.

Definition 3.5. Let Vi, V5 be vector spaces equipped with a norm. Norm
(“operator norm”) of a linear operator £ : V; — V5 is the number ||E|| :=

SUP,,49 % An operator with finite norm is called bounded.

Exercise 3.11 (!). Show that E is continuous if and only if it is bounded.

Exercise 3.12. Prove that ||F|| defines a norm on the space of bounded
operators E : Vi — V5.

Exercise 3.13 (!). Suppose that V7, V5 are Banach spaces, and Hom(V;, V3)
the space of bounded operators equipped with the operator norm. Prove that
Hom(V4, V3) is a Banach space.
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Remark 3.2. From now on, all linear operators on topological vector spaces
are assumed continuous, unless stipulated otherwise.

Definition 3.6. Let H be an infinite-dimensional vector space equipped
with a positive-definite scalar product. We say that H is a Hilbert space
if it is complete and contains a countable dense set.

Exercise 3.14 (!). Let g denote the scalar product on a Hilbert space H.
Prove that g defines an isomorphism from H to H*, whete H* denotes the
space of continuous functionals.

Hint. Let z; be the orthonormal basis in H. Use the dual basis to write any
2
form as A = >, \je;. Prove that ‘)“gjll = > |N)?

Exercise 3.15 (*). Prove that a sphere in a Hilbert space is contractible.

Exercise 3.16 (*). Consider the group GL(H) of linear automorphisms of
a Hilbert space, taken with the norm topology. Prove that it is contractible.

Exercise 3.17 (**). Consider the group O(H) of linear isometries of a
Hilbert space, taken with the norm topology. Prove that it is contractible.

Exercise 3.18. a. Let H be a Hilbert space. Prove that the closure of
the unit ball is non-compact.

b. (*) Let V be an infinite-dimensional Banach space. Prove that the
closure of the unit ball is non-compact.

Exercise 3.19 (**). Let E; V; — V5 be a bijective, continuous linear op-
erator on Hilbert spaces. Prove that E~! is bounded.

Definition 3.7. Let V be a vector space, and | |1, | |2 - norms on V. We say
that these norms are equivalent if the identity operator (H,| |1) — (V] |2)
is a homeomorphism.

Exercise 3.20 (!). Prove that | |1, | |2 are equivalent if and only if there
exists constant C' > 1 such that for all v € V one has C~|v|; < |v|y < Cv;.

Exercise 3.21. Prove that on a finite-dimensional space all norms are equiv-
alent.
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