Hodge theory 3: Stone-Weierstrass theorem and Banach spaces

Rules: You may choose to solve only "hard" exercises (marked with !, * and **) or "ordinary" ones (marked with ! or unmarked), or both, if you want to have extra stuff to work. To have a perfect score, a student must obtain (in average) a score of 10 points per week.

If you have got credit for 2/3 of ordinary problems or 2/3 of "hard" problems, you receive 6t points, where t is a number depending on the date when it is done. Passing all "hard" or all "ordinary" problems brings you 10t points. Solving of "**" (extra hard) problems is not obligatory, but each such problem gives you a credit for 2 "*" or "!" problems in the "hard" set.

The first 3 weeks after giving a handout, t = 1.5, between 21 and 35 days, t = 1, and afterwards, t = 0.7. The scores are not cumulative, only the best score for each handout counts.

3.1 Weierstrass approximation theorem

Definition 3.1. Let M be a topological space, and $||f|| := \sup_M |f|$ the sup-norm on functions. C^0 -topology on the space $C^0(M)$ of bounded continuous functions is topology defined by the sup-norm.

Exercise 3.1. Prove that C^0M with the metric defined by the sup-norm is a complete metric space.

Exercise 3.2. ("Dini's theorem")

Let $\{f_i\}$ be a sequence of continuous functions on a compact space M, and suppose that $f_i(t) \ge f_{i-1}(t)$ for all t and i. Suppose that $\lim_i f_i(t) = f(t)$ for some continuous function f. Prove that the sequence $\{f_i(t)\}$ converges to f(t) uniformly.

Exercise 3.3. Consider the sequence P_i , i = 0, 1, 2, ... of polynomials on [0, 1] determined recursively as follows: $P_0(t) = 0$, and $P_i(t) = P_{i-1}(t) + \frac{1}{2}(t - P_{i-1}(t)^2)$. For all $t \in [0, 1]$ and all i = 1, 2, ..., prove the following.

- a. Prove that $0 \leq P_i(t) \leq \sqrt{t}$.
- b. Prove that $P_i(t) \ge P_{i-1}(t)$.
- c. Prove that $\{P_i(t)\}$ converges pointwisely to \sqrt{t} on [0, 1].
- d. Prove that $\{P_i(t)\}$ converges uniformly to \sqrt{t} on [0,1]
- e. Prove that $Q_i(t) := P_i(t^2)$ converges uniformly to |t| on [-1, 1].

Exercise 3.4. Let F(t) be a piecewise linear, continuous function on $[a, b] \subset \mathbb{R}$. Prove that F(t) can be expressed as a sum $\sum_{i=0}^{n} \alpha_i |x - c_i|$ for some α_i, c_i .

Exercise 3.5. Prove that any piecewise linear, continuous function on $[a, b] \subset \mathbb{R}$ can be obtained as a uniform limit of polynomials.

Exercise 3.6 (!). (Weierstrass approximation theorem)

Prove that any continuous function on $[a, b] \subset \mathbb{R}$ admits a uniform approximation by polynomials.

Remark 3.1. This particular proof of Weierstrass approximation is due to Lebesgue.

3.2 Stone-Weierstrass approximation theorem

From now on we assume that M is compact, Hausdorff topological space.

Definition 3.2. Let $A \subset C^0 M$ be a subspace in the space of continuous functions. We say that A separates the points of M if for every points $x \neq y \in M$, there exists $f \in A$ such that $f(x) \neq f(y)$.

Exercise 3.7. Let $A \subset C^0 M$ be an \mathbb{R} -subalgebra, and \overline{A} its closure in C^0 -topology.

- a. Prove that for any $a \in A$, the function |a| belongs to A.
- b. Prove that for any $a, b \in A$, the function $\min(a, b)$ belongs to \overline{A} .

Hint. Use Exercise 3.3.

Exercise 3.8. Let $A \subset C^0 M$ be a subring separating points, \overline{A} its closure, and $U \ni x$ a neighbourhood of $x \in M$. Prove that for any $\varepsilon > 0$ there exists $a \in \overline{A}$ taking values in [0, 1] such that a(x) = 1 and $a\Big|_{M \setminus U} < \varepsilon$.

Hint. Find a finite covering of the compact $M \setminus U$ by open sets U_i and functions $f_i \in \overline{A}$ taking values in [0, 1] such that $f_i(x) = 1$ and $f_i|_{U_i} < \varepsilon$, and put $a := \min_i(f_i)$.

Exercise 3.9. Let $A \subset C^0 M$ be a subring separating points, \overline{A} its closure, and $f \in C^0(M)$ any function. Prove that for all $x \in M$ there exists a function $f_x \in \overline{A}$ such that $f_x \leq f$ and $f_x(x) > f(x) - \varepsilon$.

Issued 07.02.2018

Hint. Use the previous exercise.

Exercise 3.10 (!). (Stone-Weierstrass theorem)

Let $A \subset C^0 M$ be a subring separating points, and \overline{A} its closure. Prove that $\overline{A} = C^0 M$.

Hint. Use the previous exercise and find a neighbourhood U_x and a function $f_x \leq f$ such that $(f_x + \varepsilon)\Big|_{U_x} > f\Big|_{U_x}$. Find a finite covering $\{U_{x_i}\}$ by such U_x , such that $f \geq \max_i f_{x_i} > f - \varepsilon$.

3.3 Banach spaces

Definition 3.3. A non-negative real-valued function $v \longrightarrow |v|$ on a vector space is called **norm** if

- |v| = 0 if and only if v = 0
- For each $r \in \mathbb{R}$, |rv| = |r||v|.
- $|v_1 + v_2| \leq |v_1| + |v_2|$.

Clearly, norm defines a metric on V, with d(x, y) := |x - y|. A norm is **complete** if this metric is complete.

Definition 3.4. A complete normed topological vector space is called **Banach space**.

Definition 3.5. Let V_1 , V_2 be vector spaces equipped with a norm. Norm ("operator norm") of a linear operator $E: V_1 \longrightarrow V_2$ is the number $||E|| := \sup_{v \neq 0} \frac{|E(v)|}{|v|}$. An operator with finite norm is called **bounded**.

Exercise 3.11 (!). Show that *E* is continuous if and only if it is bounded.

Exercise 3.12. Prove that ||E|| defines a norm on the space of bounded operators $E: V_1 \longrightarrow V_2$.

Exercise 3.13 (!). Suppose that V_1, V_2 are Banach spaces, and $\text{Hom}(V_1, V_2)$ the space of bounded operators equipped with the operator norm. Prove that $\text{Hom}(V_1, V_2)$ is a Banach space.

Issued 07.02.2018

Remark 3.2. From now on, all linear operators on topological vector spaces are assumed continuous, unless stipulated otherwise.

Definition 3.6. Let H be an infinite-dimensional vector space equipped with a positive-definite scalar product. We say that H is a **Hilbert space** if it is complete and contains a countable dense set.

Exercise 3.14 (!). Let g denote the scalar product on a Hilbert space H. Prove that g defines an isomorphism from H to H^* , where H^* denotes the space of continuous functionals.

Hint. Let x_i be the orthonormal basis in H. Use the dual basis to write any form as $\lambda = \sum_i \lambda_i e_i$. Prove that $\frac{|\lambda(x)|^2}{|x|^2} = \sum |\lambda_i|^2$.

Exercise 3.15 (*). Prove that a sphere in a Hilbert space is contractible.

Exercise 3.16 (*). Consider the group GL(H) of linear automorphisms of a Hilbert space, taken with the norm topology. Prove that it is contractible.

Exercise 3.17 ().** Consider the group O(H) of linear isometries of a Hilbert space, taken with the norm topology. Prove that it is contractible.

- **Exercise 3.18.** a. Let H be a Hilbert space. Prove that the closure of the unit ball is non-compact.
 - b. (*) Let V be an infinite-dimensional Banach space. Prove that the closure of the unit ball is non-compact.

Exercise 3.19 (**). Let E; $V_1 \longrightarrow V_2$ be a bijective, continuous linear operator on Hilbert spaces. Prove that E^{-1} is bounded.

Definition 3.7. Let V be a vector space, and $||_1, ||_2$ - norms on V. We say that these norms are **equivalent** if the identity operator $(H, ||_1) \longrightarrow (V, ||_2)$ is a homeomorphism.

Exercise 3.20 (!). Prove that $||_1, ||_2$ are equivalent if and only if there exists constant C > 1 such that for all $v \in V$ one has $C^{-1}|v|_1 \leq |v|_2 \leq C|v|_1$.

Exercise 3.21. Prove that on a finite-dimensional space all norms are equivalent.

Issued 07.02.2018