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Hodge theory 4: Compact operators
Rules: You may choose to solve only “hard” exercises (marked with !, * and **) or “ordinary” ones
(marked with ! or unmarked), or both, if you want to have extra stuff to work. To have a perfect score,
a student must obtain (in average) a score of 10 points per week.

If you have got credit for 2/3 of ordinary problems or 2/3 of “hard” problems, you receive 6t points,
where t is a number depending on the date when it is done. Passing all “hard” or all “ordinary” problems
brings you 10t points. Solving of “**” (extra hard) problems is not obligatory, but each such problem
gives you a credit for 2 “*” or “!” problems in the “hard” set.

The first 3 weeks after giving a handout, t = 1.5, between 21 and 35 days, t = 1, and afterwards,

t = 0.7. The scores are not cumulative, only the best score for each handout counts.

4.1 Compact operators

Definition 4.1. A set is called precompact if its closure is compact. A
subset B of a topological vector space is called bounded if for any neigh-
bourhood U of 0, there exists a constant λ > 0 such that λU contains B. An
operator on topological vector spaces is called compact if the image of any
bounded set is precompact.

Exercise 4.1. Prove that an open set in a Hilbert space is never precompact.

Exercise 4.2 (*). (Riesz theorem) Prove that an open set in a normed
infinite-dimensional vector space is never precompact.

Exercise 4.3 (**). Construct an infinite-dimensional locally convex topo-
logical vector space H such that any bounded subset of H is precompact.

Definition 4.2. Let H be a Hilbert space, and e1, ..., en, ... an orthonormal
basis. Then any point in H can be expressed as

∑
αiei with αi ∈ R and∑

|αi|2 < ∞. Let {xi} be a sequence of positive numbers with
∑
x2
i < 0

The Hilbert cube is the set of all vectors
∑
αiei ∈ H satisfying |αi| 6 xi.

Exercise 4.4. Prove that the Hilbert cube is compact.

Exercise 4.5. Let K : H −→H1 be a operator on Hilbert spaces.

a. Suppose that K is compact. Prove that for any ε > 0 there exists
a subspace W ⊂ H, closed and of finite codimension, such that the
operator norm of the restriction K

∣∣
W

satisfies
∥∥K∣∣

W

∥∥ < ε.

b. (*) Prove the converse: any operator with this property is compact.
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4.2 Weak topology

Definition 4.3. Let xi ∈ H be a sequence of points in a Hilbert space H.
We say that xi weakly converges to x ∈ H if for any z ∈ H∗ one has
limi〈xi, z〉 = 〈x, z〉. Weak topology on H is topology with subbase of open
sets given by λ−1(]a, b[), where λ is any continuous functional.

Exercise 4.6. Prove that an open ball in a Hilbert space is not open in the
weak topology.

Exercise 4.7. Let y(i) = αj(i)ej be a sequence of points in a unit ball in
the Hilbert space with orthonormal basis ei. Prove that y(i) converges to
y =

∑
αiyi in weak topology if and only if limi αj(i) = αj for all j.

Exercise 4.8. Prove that the closure of the unit ball in a Hilbert space is
compact in weak topology.

Exercise 4.9 (!). Let A : H −→H be a continuous operator on a Hilbert
space. Prove that A is compact if and only if it maps weakly converging
sequences to converging sequences, and their weak limits to limits.

Exercise 4.10. Let K : H −→H be a compact operator on a Hilbert space,
and B a closure of the unit ball. Prove that K(B) is compact.

4.3 Von Neumann spectral theorem

Definition 4.4. Spectrum Spec(A) of a continuous operator A : H −→H
on a Banach space is the set of all λ ∈ C such that A− λ Id is not invertible.

Exercise 4.11 (!). Let A be a continuous operator A : H −→H on a
Banach space. Prove that its spectrum is closed in C.

Exercise 4.12 (*). Prove that the spectrum of any operator is non-empty.

Exercise 4.13. Find an operator on a Hilbert space with spectrum a unit
circle in C.

Exercise 4.14 (**). Let ε be a positive number, and K a compact operator
on a Hilbert space. Prove that the set {λ ∈ SpecK | |λ| > ε} is finite.
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Definition 4.5. Let K : H −→H be an operator on a Banach space, and
Hλ :=

⋃
n ker(K − λ IdH)n. The space Hλ is called the root space of H.

Exercise 4.15. Let K : H −→H be a compact operator on Hilbert spaces,
and Hλ its root spaces. Prove that

a. for any λ 6= 0, the space Hλ is finite-dimensional.

b. (*) Prove that Spec(K) is countable.

c. (**) Prove that H is the closure of
⊕

λ∈Spec(K) Hλ, or find a coun-
terexample.

Exercise 4.16 (**). Construct an injective compact operator K with
Spec(K) = {0}, or find a counterexample.

Definition 4.6. An operator A : H −→H on a Hilbert space is called
self-adjoint if A∗ = A.

Exercise 4.17 (!). Let A : H −→H be a compact self-adjoint operator.

Prove that there exists x ∈ H such that |A(x)|
|x| = suph

|A(h)|
|h| .

Hint. Use the weak compactness of the closed ball.

Exercise 4.18. Let A : H −→H be a self-adjoint operator, and z a unit
vector such that |A(z)|

|z| = suph
|A(h)|
|h| .

a. Prove that ‖A2‖ = ‖A‖2, and |A2(z)|
|z| = suph

|A2(h)|
|h| .

b. (!) Prove that z is an eigenvector for A2.

Hint. Prove that g(A2(z), z) = |z||A2(z)| cosφ, where φ is an angle between
z and A2(z).

Exercise 4.19 (!). Let A : H −→H be a compact self-adjoint operator,

and z a unit vector such that |A(z)|
|z| = suph

|A(h)|
|h| . Prove that z⊥ is A2-

invariant, and use this to show that A2 is diagonalizable.

Hint. Use the previous exercise.
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Exercise 4.20 (!). Let A : H −→H be a compact self-adjoint operator on
a Hilbert space. Prove that A is diagonalizable in an orthonormal basis.

Hint. Use the previous exercise.
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