Hodge theory 8: Cartan's formula and Poincaré lemma

Rules: You may choose to solve only "hard" exercises (marked with !, * and **) or "ordinary" ones (marked with ! or unmarked), or both, if you want to have extra stuff to work. To have a perfect score, a student must obtain (in average) a score of 10 points per week.

If you have got credit for 2/3 of ordinary problems or 2/3 of "hard" problems, you receive 6t points, where t is a number depending on the date when it is done. Passing all "hard" or all "ordinary" problems brings you 10t points. Solving of "**" (extra hard) problems is not obligatory, but each such problem gives you a credit for 2 "*" or "!" problems in the "hard" set.

The first 3 weeks after giving a handout, t = 1.5, between 21 and 35 days, t = 1, and afterwards, t = 0.7. The scores are not cumulative, only the best score for each handout counts.

8.1 Lie derivative

Definition 8.1. An associative algebra $A^* = \bigoplus_{i \in \mathbb{Z}} A^i$ is called **a graded algebra** if for all $a \in A^i$, $b \in A^j$, the product ab lies in A^{i+j} .

Definition 8.2. Let $A^* = \bigoplus_{i \in \mathbb{Z}} A^i$ be a graded algebra over a field. It is called **graded commutative**, or **supercommutative**, if $ab = (-1)^{ij}ba$ for all $a \in A^i, b \in A^j$.

Remark 8.1. Grassmann algebra $\Lambda^* V$ is clearly supercommutative.

Definition 8.3. Let A^* be a graded commutative algebra, and $D: A^* \longrightarrow A^{*+i}$ a map which shifts grading by *i*. It is called a **graded derivation** if $D(ab) = D(a)b + (-1)^{ij}aD(b)$, for each $a \in A^j$.

Remark 8.2. If *i* is even, graded derivation is just a derivation. If it is odd, it is called **odd derivation**.

Remark 8.3. De Rham differential is an odd derivation, by definition.

Definition 8.4. Let M be a smooth manifold, and $X \in TM$ a vector field. Consider an operation of **convolution with a vector field** $i_X : \Lambda^i M \longrightarrow \Lambda^{i-1} M$, mapping an *i*-form α to an (i-1)-form $v_1, ..., v_{i-1} \longrightarrow \alpha(X, v_1, ..., v_{i-1})$

Exercise 8.1. Prove that i_X is an odd derivation.

Exercise 8.2 (*). Let $D: A^* \longrightarrow A^{*+i}$ be a linear map such that for all $x \in A$ there exists N such that $D^N(x) = 0$. Prove that $e^D := 1 + D + \frac{D^2}{2} + \ldots + \frac{D^i}{i!} + \ldots$ is an automorphism of A^* if and only if D is a derivation.

Definition 8.5. Let A^* be a graded vector space, and $E : A^* \longrightarrow A^{*+i}$, $F : A^* \longrightarrow A^{*+j}$ operators shifting the grading by i, j. Define the supercommutator by the formula

$$\{E, F\} := EF - (-1)^{ij}FE.$$

Remark 8.4. An endomorphism which shifts a grading by i is called **even** if i is even, and **odd** otherwise.

Remark 8.5. Supercommutator satisfies graded Jacobi identity,

$$\{E, \{F, G\}\} = \{\{E, F\}, G\} + (-1)^{EF} \{F, \{E, G\}\}$$

where \tilde{E} and \tilde{F} are 0 if E, F are even, and 1 otherwise.

Remark 8.6. There is a simple mnemonic rule which allows one to remember a superidentity, if you know the commutative analogue. Each time when in commutative case two letters E, F are exchanged, in supercommutative case one needs to multiply by $(-1)^{\tilde{E}\tilde{F}}$.

Exercise 8.3. Let A^* be a graded commutative algebra and $a \in A$. Denote by $L_a: A \longrightarrow A$ the operation of multiplication by $a: L_a(b) = ab$. Prove that a map $D: A^* \longrightarrow A^*$ is a superderivation if and only if D(1) = 0 and for each $a \in A^i$, the supercommutator $\{D, L_a\}$ is equal to L_b for some $b \in A^*$.

Exercise 8.4 (!). Prove that a supercommutator of superderivations is again a superderivation.

Hint. Use the Jacobi identity and apply the previous exercise.

Definition 8.6. Let *B* be a smooth manifold, and $v \in TM$ a vector field. An endomorphism $\operatorname{Lie}_v : \Lambda^*M \longrightarrow \Lambda^*M$, preserving the grading is called **a Lie derivative along** *v* if it satisfies the following conditions.

(i) On functions Lie_v is equal to a derivative along v.

(ii) $[\text{Lie}_v, d] = 0$

(iii) Lie_v is a derivation on the de Rham algebra.

Exercise 8.5. Let $\nu_1, \nu_2 : \Lambda^*(M) \longrightarrow \Lambda^*(M)$ be derivations of the de Rham algebra. Suppose that ν_1 is equal to ν_2 on $C^{\infty}M = \Lambda^0(M)$ and on $d(C^{\infty}M)$. Prove that $\nu_1 = \nu_2$.

Hint. $\Lambda^*(M)$ is generated (multiplicatively) by $C^{\infty}M = \Lambda^0(M)$ and $d(C^{\infty}M)$.

Exercise 8.6. Prove that the Lie derivative is uniquely determined by the properties (i)-(iii).

Hint. Use the previous exercise.

Exercise 8.7. Prove that $\{d, \{d, E\}\} = 0$, for each $E \in \text{End}(\Lambda^* M)$.

Issued 14.03.2018

Hint. Use the graded Jacobi identity.

Exercise 8.8. Prove that $\{d, i_v\}$ commutes with d, where $i_v : \Lambda^* M \longrightarrow \Lambda^{*-1} M$ is a convolution with v.

Hint. Use the previous exercise.

Exercise 8.9 (!). (Cartan formula) Prove that $\{d, i_v\}$ is a Lie derivative along v.

Exercise 8.10 (*). Let $\tau : \Lambda^*(M) \longrightarrow \Lambda^{*-1}(M)$ be a derivation shifting grading by -1. Prove that there exists a vector field $v \in TM$ such that $\tau = i_v$, or find a counterexample.

8.2 Poincaré lemma

Exercise 8.11. Let t be the coordinate function on a real line, $f(t) \in C^{\infty}\mathbb{R}$ a smooth function, and $v := t \frac{d}{dt}$ a vector field. Define

$$R(f)(t) := \int_0^1 \frac{f(\lambda t)}{\lambda} d\lambda$$

Prove that this integral converges whenever f(0) = 0, and satisfies $\operatorname{Lie}_{v} R(f) = f$ in this case.

Exercise 8.12. Let $t_1, ..., t_n$ be coordinate functions in \mathbb{R}^n , and $\vec{r} := \sum_i t_i \frac{d}{dt_i}$ a radial vector field. Consider a function $f \in C^{\infty} \mathbb{R}^n$ satisfying f(0) = 0, and let $x = (x_1, ..., x_n)$ be any point in \mathbb{R}^n . Prove that an integral

$$R(f)(x) := \int_0^1 \frac{f(\lambda x)}{\lambda} d\lambda$$

converges, and satisfies $\operatorname{Lie}_{\vec{r}} R(f) = f$.

Hint. Use the previous exercise.

Definition 8.7. An open subset $U \subset \mathbb{R}^n$ is called **starlike** if for any $x \in U$ the interval [0, x] belongs to U.

Exercise 8.13 (!). Let U be a starlike subset in \mathbb{R}^n , and i > 0. Construct an operator

$$R: \Lambda^{i}U \longrightarrow \Lambda^{i}U$$

which satisfies $\operatorname{Lie}_{\vec{r}} R\alpha = R \operatorname{Lie}_{\vec{r}} \alpha = \alpha$ for each $\alpha \in \Lambda^i U$.

Hint. Define the integral $R(\alpha)$ as in the previous exercise, and check that it converges. Prove that $\operatorname{Lie}_{\vec{r}} R(\alpha) = \alpha$.

Exercise 8.14. Prove that any form $\alpha \in \Lambda^{i}U$ on a starlike set U satisfying $\operatorname{Lie}_{\vec{r}} \alpha = 0$ vanishes if i > 0.

Hint. Use the previous exercise.

Exercise 8.15 (!). Prove that $\{R, d\} = 0$

Hint. Check that

$$\{R, d\} \operatorname{Lie}_{\vec{r}} \alpha = Rd \operatorname{Lie}_{\vec{r}} \alpha + dR \operatorname{Lie}_{\vec{r}} \alpha = -R \operatorname{Lie}_{\vec{r}} d\alpha + d\alpha = 0.$$

For any $\beta \in \ker\{R, d\} \cap \Lambda^i M$, satisfying i > 0 or $\beta(0) = 0$ for i = 0, solve an equation $\operatorname{Lie}_{\vec{r}} \alpha = \beta$.

Exercise 8.16. Prove that $\{d, i_{\vec{r}}\}R(\alpha) = \alpha$, for any *i*-form α on a starlike set, i > 0.

Definition 8.8. Let d be de Rham differential. A form in ker d is called **closed**, a form in im d is called **exact**. Since $d^2 = 0$, any exact form is closed. The group of *i*-th de Rham cohomology of M, denoted $H^i(M)$, is a quotient of a space of closed *i*-forms by exact: $H^*(M) = \frac{\ker d}{\operatorname{im} d}$.

Exercise 8.17 (!). Let $\alpha \in \Lambda^i U$ be a closed *i*-form on a starlike set U, with i > 0. Prove that $\alpha = d_{i\vec{r}}R(\alpha)$.

Hint. Use the previous exercise.

Exercise 8.18 (!). (Poincaré lemma) Let U be a starlike set. Prove that $H^i(U) = 0$ for each i > 0, and $H^0(M) = \mathbb{R}$.

Exercise 8.19. Let θ be a closed odd form, and $d_{\theta}(x) = dx + \theta \wedge x$ the corresponding operator on $\Lambda^* M$. Its **cohomology** are defined as $H^*(\Lambda^*(M), d_{\theta}) := \frac{\ker d_{\theta}}{\operatorname{im} d_{\theta}}$

- a. Show that $d_{\theta}^2 = 0$.
- b. (*) Let θ be an exact 1-form. Prove that $H^i(\Lambda^*(M), d_\theta)$ are isomorphic to $H^i(M)$.
- c. (*) Let θ be a closed 1-form. Prove that $H^i(\Lambda^*(M), d_\theta)$ are isomorphic to $H^i(M)$, or find a counterexample.
- d. (*) Let θ be a closed 3-form. Prove that $H^*(\Lambda^*(M), d_{\theta})$ are isomorphic to $H^*(M)$, or find a counterexample.