Hodge theory 10: Green operators

Rules: You may choose to solve only "hard" exercises (marked with !, * and **) or "ordinary" ones (marked with ! or unmarked), or both, if you want to have extra stuff to work. To have a perfect score, a student must obtain (in average) a score of 10 points per week.

If you have got credit for 2/3 of ordinary problems or 2/3 of "hard" problems, you receive 6t points, where t is a number depending on the date when it is done. Passing all "hard" or all "ordinary" problems brings you 10t points. Solving of "**" (extra hard) problems is not obligatory, but each such problem gives you a credit for 2 "*" or "!" problems in the "hard" set.

The first 3 weeks after giving a handout, t = 1.5, between 21 and 35 days, t = 1, and afterwards, t = 0.7. The scores are not cumulative, only the best score for each handout counts.

10.1 L_p^2 -metrics and differential operators

In this handout, the base manifold M is tacitly assumed compact.

Exercise 10.1. Let $|\cdot|_p^2$ be the usual L_p^2 -metric on a torus T^n .

- a. (*) Let $D := \sum_{P_{\alpha}} P_{\alpha}^2$ is the sum of all differential monomials of degree $\leq p$. Prove that the metric $|f|_p^2$ is equivalent to the metric $|f|_{\bullet}^2 := \int_{T^n} (D(f), f)^2 \operatorname{Vol}$.
- b. (!) Prove that this metric is equivalent to the metric

$$|f|_{\circ}^{2} := \int_{T^{n}} \left(1 + \sum_{i=1}^{n} \left| \frac{d^{p} f}{d t_{i}^{p}} \right|^{2} \right) \operatorname{Vol}$$

where $t_1, ..., t_n$ are coordinates on T^n .

- c. (!) Prove that the map $f \longrightarrow \sum_i \frac{d^p f}{dt_i^p}$ from $L_p^2(T^n)$ to $L^2(T^n)$ is Fredholm, if p is even.
- d. (!) Let $D_1 : C^{\infty}T^n \longrightarrow C^{\infty}T^n$ be a differential operator which has the same symbol as $\sum_i \frac{d^p}{dt_i^p}$. Prove that D_1 defines a Fredholm map from $L_p^2(T^n)$ to $L^2(T^n)$, if p is even.
- e. Let $\Delta : C^{\infty}T^n \longrightarrow C^{\infty}T^n$ be the Laplace operator, $\Delta = \sum_i \frac{d^2}{dt_i^2}$. Prove that Δ defines a Fredholm map from $L_2^2(T^n)$ to $L^2(T^n)$.

Exercise 10.2 (!). Let $D : B \longrightarrow B$ be a differential operator of order p such that the map $D : L^2_{p+i}(B) \longrightarrow L^2_i(B)$ is Fredholm, and D_1 an operator of order < p. Prove that $D + D_1$ is also Fredholm.

Issued 04.04.2018

Hint. Use the Rellich lemma.

Exercise 10.3. Let M be a compact Riemannian manifold, equipped with a connection ∇ , and B a vector bundle with metric and connection. Consider the iterated connection $B \xrightarrow{\nabla^p} B \otimes \Lambda^1(M)^{\otimes p}$. Prove that $\bigoplus_{i=0}^p \nabla^i$ defines an isometric embedding of vector spaces $L^2_p(B) \longrightarrow \bigoplus_{i=0}^p L^2(B \otimes \Lambda^1(M)^{\otimes i})$.

- **Exercise 10.4.** a. Consider the differential operator $b \longrightarrow (\nabla)^* \nabla b$. Prove that it has the same symbol as the Laplace operator Δ .
 - b. (!) In assumptions of the previous exercise, let $D : L^2_{2p}(B) \longrightarrow L^2(B)$ denote the differential operator $b \longrightarrow (\nabla^p)^* \nabla^p b$. Prove that the symbol of D is the same as the symbol of Δ^p .

Exercise 10.5. Let $D: B \longrightarrow B$ be a differential operator of order 2p such that its symbol is the same as of p-th power of the Laplace operator on a Riemannian manifold M. Prove that $D: L^2_{2p}(B) \longrightarrow L^2(B)$ is Fredholm

- a. when (B, ∇) is trivial and M is a torus with flat metric
- b. (!) when (B, ∇) is trivial and M is a torus with arbitrary metric
- c. (!) on arbitrary Riemannian manifold, for any (B, ∇)

Hint. Use Exercise 10.3 and 10.4.

Exercise 10.6 (!). Let $D: B \longrightarrow B$ be a differential operator of order 2p with the same symbol as $(\nabla^p)^* \nabla^p$. Prove that $D: L^2_{2p+i}(B) \longrightarrow L^2_i(B)$ is Fredholm for all i.

Exercise 10.7 (*). Let $D : B \longrightarrow B$ be an elliptic operator of order p. Prove that $D : L^2_{p+i}(B) \longrightarrow L^2_i(B)$ is Fredholm for all i.

10.2 Green operator

Exercise 10.8. Let (B, ∇) be a bundle with connection over a Riemannian manifold M, and $\Delta : B \longrightarrow B$ an operator with the same symbol as $\nabla^* \nabla$, self-adjoint with respect to the L^2 -metric.

a. Prove that $\ker \Delta$ is finite-dimensional, and $\operatorname{im} \Delta = \ker \Delta^{\perp}$ (orthogonal is taken with respect to the L^2 -metric)

Issued 04.04.2018

- b. Prove that $\Delta|_{m, \Delta}$ is invertible in L^2_p -topology, for all p.
- c. Prove that $L^2(B) = \operatorname{im} \Delta \oplus \ker \Delta$.
- d. (!) Prove that there exists the Green operator

$$G_{\Delta}: L^2_p(B) \longrightarrow L^2_p(B)$$

which is inverse to Δ on im Δ and zero on ker Δ .

- e. (!) Prove that $G_{\Delta} : L^2(B) \longrightarrow L^2(B)$ is compact and self-adjoint.
- f. (!) Prove that $G_{\Delta} : L^2(B) \longrightarrow L^2(B)$ can be diagonalized in an orthonormal Hilbert basis on $L^2_p(B)$.

Exercise 10.9. Identify $L_p^2(B)$ with a subspace in $L_{p-i}^2(B)$, for any $i \ge 0$, using the continuous injective map $\mathsf{Id} : L_p^2(B) \longrightarrow L_{p-i}^2(B)$.

- a. (!) Prove that $\bigcap_{p=0}^{\infty} L_p^2(B)$ is identified with the space $C^{\infty}B$ of smooth sections of B.
- b. (*) Consider the topology on $\bigcap_p L_p^2(B)$ induced from all L_p^2 (that is, a sequence $b_i \in \bigcap_p L_p^2(B)$ converges if it converges in L_p^2 for all p). Denote this topology by L_{∞}^2 . Prove that $b_i \in \bigcap_p L_p^2(B) = C^{\infty}B$ converges in L_{∞}^2 if and only if the sequence $\nabla^p b_i$ uniformly converges for any given p.

Exercise 10.10 (!). Let (B, ∇) be a bundle with connection over a Riemannian manifold M, and $\Delta : B \longrightarrow B$ an operator with the same symbol as $\nabla^* \nabla$, self-adjoint with respect to the L^2 -metric. Prove that there exists an orthonormal basis in $L^2_0(B)$ diagonalizing B. Prove that all eigenvectors of Δ are smooth functions.

Hint. Use the previous exercise.

10.3 Harmonic forms

Exercise 10.11 (!). Let M be a Riemannian manifold, and $\Delta := dd^* + d^*d$ the Laplacian operators on the differential forms. Prove that Δ has the same symbol as $\nabla^*\nabla$, where $\nabla : \Lambda^*M \longrightarrow \Lambda^*M \otimes \Lambda^1M$ is the connection on the bundle of all differential forms.

Issued 04.04.2018

Definition 10.1. A differential form is called **harmonic** if it lies in ker Δ .

Exercise 10.12. Prove that $\ker \Delta = \ker d \cap \ker d^*$.

Hint.

$$(\Delta\eta,\eta) = (dd^*\eta,\eta) + (d^*d\eta,\eta) = (d\eta,d\eta) + (d^*\eta,d^*\eta)$$

Exercise 10.13. Prove that im $\Delta = \operatorname{im} d + \operatorname{im} d^*$.

Exercise 10.14 (!). Prove that the image of d and d^* is closed in L^2 -topology on $\Lambda^*(M)$. Prove that ker $d^* = (\operatorname{im} d)^{\perp}$ and ker $d = (\operatorname{im} d^*)^{\perp}$

Exercise 10.15. Prove that $\Lambda^*(M) = \operatorname{im} d \oplus \operatorname{im} d^* \oplus \ker \Delta$.

Exercise 10.16 (!). Prove that $\ker d = \operatorname{im} d \oplus \ker \Delta$.

Remark 10.1. From the previous exercise it follows that de Rham cohomology of a (compact) manifold are identified with the space of hermonic forms.

Exercise 10.17 (*). Let M be a Riemannian manifold (not necessarily compact), and $\Lambda_0^i(M)$ be the sheaf of harmonic *i*-form. Let \mathbb{R}_M denote the constant sheaf. Prove that the complex of sheaves

$$0 \longrightarrow \mathbb{R}_M \hookrightarrow \Lambda^0_0(M) \xrightarrow{d} \Lambda^1_0(M) \xrightarrow{d} \Lambda^2_0(M) \xrightarrow{d}$$

is exact.

Exercise 10.18. Let M be a compact Riemannian manifold with boundary.

- a. (*) Prove that $\Delta : C^{\infty}M \longrightarrow C^{\infty}M$ is surjective.
- b. (**) Prove that $\Delta : \Lambda^i M \longrightarrow \Lambda^i M$ is surjective for all *i*, or find a counterexample.