Hodge theory 11: exponential map and Frobenius theorem

Rules: You may choose to solve only "hard" exercises (marked with !, * and **) or "ordinary" ones (marked with ! or unmarked), or both, if you want to have extra stuff to work. To have a perfect score, a student must obtain (in average) a score of 10 points per week.

If you have got credit for 2/3 of ordinary problems or 2/3 of "hard" problems, you receive 6t points, where t is a number depending on the date when it is done. Passing all "hard" or all "ordinary" problems brings you 10t points. Solving of "**" (extra hard) problems is not obligatory, but each such problem gives you a credit for 2 "*" or "!" problems in the "hard" set.

The first 3 weeks after giving a handout, t = 1.5, between 21 and 35 days, t = 1, and afterwards, t = 0.7. The scores are not cumulative, only the best score for each handout counts.

11.1 Exponential map

Definition 11.1. Let $\nabla : TM \longrightarrow TM \otimes \Lambda^1 M$ be a connection. **Geodesic** with respect to ∇ is a map $\gamma : [a, b] \longrightarrow M$ which satisfies $\nabla_{\dot{\gamma}}(\dot{\gamma}) = 0$, where $\dot{\gamma}(t) = \frac{\gamma(u)}{du}\Big|_{u=t} \in TM\Big|_{\text{im }\gamma}$ is the derivative of γ , and the equation $\nabla_{\dot{\gamma}}(\dot{\gamma})$ is understood as parallelism of $\dot{\gamma}$, considered as a section of the vector bundle $TM\Big|_{\text{im }\gamma}$ with connection ∇ .

Exercise 11.1. Let $v \in T_x M$.

- a. (!) Prove that for ε sufficiently small, there exists a geodesic γ : $[0, \varepsilon] \longrightarrow M$ such that $\gamma(0) = x$ and $\dot{\gamma}(0) = v$.
- b. (!) Prove that geodesic is unique.

Definition 11.2. Let $U \subset T_x M$ be the set of tangent vectors such that for any $v \in U$ there exists a geodesic $\gamma_v : [0, 1] \longrightarrow M$, such that $\gamma_v(0) = x$ and $\dot{\gamma}_v(0) = v$. The map $v \longrightarrow \gamma(1)$ is called **exponential map**.

Exercise 11.2 (!). Prove that exponential map defines a diffeomorphism from a neighbourhood of 0 in U to M.

Definition 11.3. The corresponding coordinates are called **geodesic coordinates**, or **normal coordinates**.

Exercise 11.3. Suppose that M is a Riemannian manifold, and ∇ an orthogonal connection. Prove that the exponential map exp is defined on all T_xM , that is, for any vector $v \in T_xM$ there exists a geodesic map $\gamma : [0, \infty]$ tangent to v

- a. (!) when M is compact
- b. (*) when it is complete as a metric space.

Issued 11.04.2018

c. (**) Suppose that exp is defined on all $T_x M$. Prove that M is complete as a metric space.

Exercise 11.4 (*). Find a compact manifold and a connection such that the exponential map is not defined on the whole $T_x M$ (that is, for some vector $v \in T_x M$ there is no geodesic map γ : [0, 1] tangent to v).

11.2 Jacobi fields

Definition 11.4. Let M be a manifold with connection, and $\exp: T_x M \longrightarrow M$ the exponential map (which can be defined on the whole $T_x M$ or locally in a neighbourhood U of 0). Let $A \in \operatorname{End}(T_x M)$ be a matrix, and $a \in T(T_x M)$ a linear vector field $x \longrightarrow A(x)$ associated with A. Jacobi field is a vector field on $\exp(U)$ obtained as an image of a under the exponential map.

Exercise 11.5 (!). Let γ_0 be a geodesic passing through $x \in M$, and $J \in TM\Big|_{\gamma_0}$ a Jacobi field. Prove that there exists a smooth family γ_t of geodesics passing through x such that $J\Big|_{\gamma_0(r)} = \frac{\gamma_t(r)}{dt}$.

Hint. A flow of diffeomorphisms associated with a Jacobi field maps a geodesic passing through x to another geodesic passing through x.

Remark 11.1. Usually, one defines Jacobi field as a vector field $J \in TM\Big|_{\gamma_0}$ on a geodesic such that $J\Big|_{\gamma_0(r)} = \frac{\gamma_t(r)}{dt}$ for some smooth family γ_t of geodesics. As shown above, this definition is equivalent to ours.

Definition 11.5. Radial vector field on a vector space $V = \mathbb{R}^n$ is the linear vector field associated with the map $x \longrightarrow x$. In standard coordinates it can be written as $\sum x_i \frac{d}{dx_i}$.

Exercise 11.6. Let X be a vector field defined in a star-shaped neighbourhood of 0 in \mathbb{R}^n . Prove that X is a linear vector field, if

- a. X commutes with the radial vector field ${\cal R}$
- b. [[X, R], R] = 0.

Hint. Use the Taylor series for X and the following observation: for any homogeneous vector field R_d of degree d, one has [R, X] = dX.

Exercise 11.7. Let $\exp: T_x M \longrightarrow M$ be the exponential map, defining a diffeomorphism in a star-shaped neighbourhood $U \subset T_x M$, and $\theta \in TM$ the image of the radial vector field under exp. Prove that J is a Jacobi vector field if and only if

Issued 11.04.2018

- a. (!) $[J, \theta] = 0$
- b. (!) $[[J, \theta], \theta] = 0.$

Remark 11.2. Abusing the language, we call the vector field $\theta \in T \exp(U)$ defined above "the radial vector field" as well.

Definition 11.6. Let $\nabla : TM \longrightarrow TM \otimes \Lambda^1 M$ be a connection. **Torsion** of ∇ is a map $T_{\nabla} : \Lambda^2 TM \longrightarrow TM$ mapping vector fields $X, Y \in TM$ to $\nabla_X Y - \nabla_Y X - [X, Y]$. A connection is called **torsion-free** if its torsion vanishes. **Curvature** of ∇ is a map $\Theta_{\nabla} : \Lambda^2 TM \longrightarrow \text{End}(TM)$ mapping vector fields $X, Y \in TM$ to $[\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$ considered as a map from TM to TM.

Exercise 11.8. Prove that torsion and curvature are $C^{\infty}(M)$ -linear.

Exercise 11.9. Let U be an image of a star-shaped domain $W \subset T_x M$ under the exponential map exp : $T_x M \longrightarrow M$ which is a diffeomorphism on W. Denote by $\theta \in TU$ the radial vector field, and let $J \in TU$ be another vector field. Assume that the connection ∇ is torsion-free.

a. Prove that J is Jacobi if and only if $\nabla_J \theta = \nabla_{\theta} J$. Prove that J is Jacobi if and only if

$$\nabla_{[\theta,J]}\theta = \nabla_{\theta}(\nabla_{\theta}J - \nabla_{J}\theta). \tag{11.1}$$

- b. Prove that θ is a radial vector field if and only if $\nabla_{\theta} \theta = \theta$.
- c. Prove that

$$-\nabla_{[\theta,J]} = \Theta_{\nabla}(\theta,J) - \nabla_{\theta}\nabla_{J} + \nabla_{J}\nabla_{\theta}$$

and

$$-\nabla_{[\theta,J]}\theta = \Theta_{\nabla}(\theta,J)(\theta) - \nabla_{\theta}\nabla_{J}\theta + \nabla_{J}\theta.$$

Use this to rewrite (11.1) as

$$\Theta_{\nabla}(\theta, J)(\theta) = \nabla_{\theta} \nabla_{\theta}(J) - \nabla_{J} \theta.$$
(11.2)

Exercise 11.10 (!). Let $J \in TM|_{\gamma}$ be a vector field tangent to the geodesic. Denote by \ddot{J} the second derivative of J along γ , with $\ddot{J} = \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}}(J)$. Prove that J is a Jacobi field if and only if $\ddot{J} = \Theta_{\nabla}(\dot{\gamma}, J, \dot{\gamma})$

Hint. Let t be a parametrization of a geodesic $\gamma(t)$. Prove that θ is tangent to γ and $t\dot{\gamma} = \theta$ on γ , and deduce that

$$\nabla_{\theta} \nabla_{\theta} = t^2 \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} + t \nabla_{\dot{\gamma}}.$$

using (11.2).

Remark 11.3. $\ddot{J} = \Theta_{\nabla}(\dot{\gamma}, J, \dot{\gamma})$ is a second order ODE.

Issued 11.04.2018

VERSION 2.0, 14.04.2018

11.3 Torsion and Frobenius theorem

Definition 11.7. Let $B \subset TM$ be a sub-bundle of tangent bundle, and Φ : $\Lambda^2 B \longrightarrow TM/B$ maps vector fields $b_1, b_2 \in B \subset TM$ to their commutator $[b_1, b_2]$ mod B. Then Φ is called **Frobenius form**.

Exercise 11.11. Prove that the Frobenius form is $C^{\infty}M$ -linear.

Exercise 11.12. Let $B \subset TM$ be a sub-bundle. Prove that there exists a connection $\nabla : TM \longrightarrow TM \otimes \Lambda^1 M$ such that $\nabla(B) \subset B \otimes \Lambda^1 M$.

Remark 11.4. In this case we say that connection ∇ preserves *B*.

Exercise 11.13. Suppose that a connection ∇ : $TM \longrightarrow TM \otimes \Lambda^1 M$ preserves a sub-bundle $B \subset TM$.

- a. Prove that T_{∇} maps $\Lambda^2 B$ to B if and only if its Frobenius form vanishes.
- b. (!) Suppose that the Frobenius form of B vanishes. Prove that there exists a torsion-free connection preserving $B \subset TM$

Hint. Use the same argument as used in the proof of existence of Levi-Civita connection.

Exercise 11.14. Let $B \subset TM$ be a sub-bundle, preserved by a connection ∇ , and Θ_{∇} its curvature. Prove that $\Theta_{\nabla}(X, Y, Z) \in B$ whenever $Z \in B$.

Exercise 11.15. Let $B \subset TM$ be a sub-bundle, preserved by a torsion-free connection ∇ .

- a. Denote by θ the radial vector field, defined in a neighbourhood of $x \in M$. Prove that for any Jacobi field J such that $J\Big|_x \in B$ and $\nabla_{\theta} J\Big|_x \in B$, one has $J \in B$.
- b. (!) Use his to show that the exponential map maps the subspace $B\Big|_{x} \subset T_{x}M$ to a submanifold of M tangent to B.

Exercise 11.16 (!). Prove Frobenius theorem: given $B \subset TM$ such that $[B, B] \subset B$, for any $x \in M$ there exists a neighbourhood $U \subset M$ and a family of submanifolds $V_t \subset U$ parametrized by $t \in Z$ such that U is obtained as a disjoint union of V_t , and $TV_t = B$ at each point of V_t for each $t \in Z$.

Remark 11.5. In these assumptions, submanifolds V_t are called **leaves of the foliation** defined by B, and B is called **an involutive** or **holonomic** sub-bundle of TM.