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Hodge theory 12: Complex and Kähler structures on
symmetric spaces

Rules: You may choose to solve only “hard” exercises (marked with !, * and **) or “ordinary” ones
(marked with ! or unmarked), or both, if you want to have extra stuff to work. To have a perfect score,
a student must obtain (in average) a score of 10 points per week.

If you have got credit for 2/3 of ordinary problems or 2/3 of “hard” problems, you receive 6t points,
where t is a number depending on the date when it is done. Passing all “hard” or all “ordinary” problems
brings you 10t points. Solving of “**” (extra hard) problems is not obligatory, but each such problem
gives you a credit for 2 “*” or “!” problems in the “hard” set.

The first 3 weeks after giving a handout, t = 1.5, between 21 and 35 days, t = 1, and afterwards,

t = 0.7. The scores are not cumulative, only the best score for each handout counts.

12.1 Almost complex, Hermitian and Kähler structures

Definition 12.1. Let M be a manifold. An endomorphism I ∈ End(TM), I2 =
− IdTM is called an almost complex structure, and its

√
−1-eigenbundle is

denoted as T 1,0M ⊂ TM⊗C. An almost complex structure I is called integrable
if [T 1,0M,T 1,0M ] ⊂ T 1,0M . In this case (M, I) is called a complex manifold.
A Riemannian metric on an almost complex manifold is called Hermitian if it is
I-invariant.

Exercise 12.1. Let U = V ⊕W be vector spaces. Prove that their Grassmann
algebras are decomposed as follows: Λn(U) =

⊕
p+q=n ΛpV ⊗ ΛqW .1

Definition 12.2. Consider the eigenvalue decomposition Λ1(M,C) = Λ1,0(M)⊕
Λ0,1(M) associated with the action of I, with I

∣∣∣
Λ1,0(M)

=
√
−1 and I

∣∣∣
Λ0,1(M)

=

−
√
−1. It induces the decomposition on the de Rham algebra

Λk(M,C) =
⊕

p+q=k

Λp(Λ1,0(M))⊗ Λq(Λ0,1(M))

as shown above. The bundles Λp(Λ1,0(M)) and Λq(Λ0,1(M)) are denoted Λp,0(M)
and Λ0,q(M), and the component Λp(Λ1,0(M))⊗Λq(Λ0,1(M)) is denoted Λp,q(M).
The decomposition Λk(M,C) =

⊕
p+q=k Λp,q(M) is called the Hodge decom-

position, the sections of Λp,q(M) are called (p, q)-forms.

Exercise 12.2. Let (M, I) be an almost complex manifold, and h an I-invariant
Riemannian form.

a. Prove that ω(x, y) = h(Ix, y) is a (1,1)-form.

b. (!) Prove that any Hermitian form h is obtained from a (1,1)-form ω
such that ω(x, Ix) > 0 for all non-zero tangent vectors x ∈ TmM .

Exercise 12.3. Prove that any almost complex manifold admits a Hermitian met-
ric.

1This decomposition is not multiplicative.
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Exercise 12.4 (*). Let M be a manifold admitting a non-degenerate 2-form.
Prone that M admits an almost complex structure.

Definition 12.3. Let (M, I, h) be an almost complex Hermitian manifold The
form ω(x, y) = h(Ix, y) is called the fundamental form of M . The triple
(M, I, ω) is called a Kähler triple if I is integrable and ω is closed. In this case
M is called the Kähler manifold, h the Kähler metric and ω the Kähler
form.

Remark 12.1. Recall that symplectic manifold is a manifold equipped with
a non-degenerate, closed 2-form. Clearly, the Kähler form is closed and non-
degenerate.

Exercise 12.5. Find a complex, compact manifold not admitting a Kähler met-
ric.

Exercise 12.6 (**). Find a complex, compact manifold not admitting a Kähler
metric, but admitting a symplectic structure.

12.2 Symmetric spaces

Definition 12.4. Homogeneous space is a manifold with transitive action of
a Lie group (often assumed connected).

Exercise 12.7. Let M be a connected manifold with transitive action of a Lie
group G, and H be a stabilizer of a point x ∈ M (in this case, H is called the
isotropy group of x).

a. Prove that M is identified with the space of orbits G/H.

b. (!) Let x, y ∈ M , and Hx, Hy be the corresponding isotropy groups.
Prove that Hx and Hy are conjugate by some element of G.

Exercise 12.8. Let M = G/H be a homogeneous space with compact H. As-
sume that M is connected and all non-unit g ∈ G act non-trivially.

a. (!) Prove that M admits a G-invariant Riemannian structure.

b. (*) Prove that the natural map from the isotropy group of x to GL(TxM)
is injective.

c. (**) Is it always injective if H is not necessarily compact?

Definition 12.5. A tensor on a manifold M is a section of the tensor bundle
TM⊗p⊗T ∗M⊗q. Whenever G acts on M by diffeomorphisms, it acts on the space
of tensors, because tensors are functorial.
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Exercise 12.9 (!). Let M = G/H be a homogeneous space, and Hx the isotropy
group of x ∈M . Construct a bijective correspondence between G-invariant tensors
on M and Hx-invariant vectors in TxM

⊗p ⊗ T ∗
xM

⊗q.

Definition 12.6. A homogeneous space M = G/H is called symmetric space
if M admits a G-invariant Riemannian metric and Hx contains an involution ι
which acts as − Id on TxM .

Definition 12.7. SO(n) denotes the special orthogonal group (the group of
all orthogonal matrices preserving the orientation). U(n) is unitary group (the
group of all complex-linear matrices preserving a Hermitian form). SU(n) is in-
tersection of U(n) and SL(n,C).

Exercise 12.10. Consider the spaces S2n, CPn, HPn equipped with the natural
action of SO(2n+1), U(n+1) and Sp(n+1) := GL(n+1,H)∩SO(4n+4). Prove
that they are symmetric spaces.

Exercise 12.11. Consider the Grassmannian GrR(p, q) := SO(p+q)
SO(p)×SO(q) ,

a. (!) Prove that it is a symmetric space when p or q is even.

b. (*) Prove it for all p, q.

Definition 12.8. An odd tensor on a symmetric space is a tensor Ψ ∈ TM⊗p⊗
T ∗M⊗q for p+ q odd.

Exercise 12.12. Let M = G/H be a symmetric space, and Ψ a G-invariant odd
tensor. Prove that Ψ = 0.

Exercise 12.13. Let M = G/H be a symmetric space, and ω a G-invariant
differential form.

a. Prove that dω = 0 and ω is even.

b. (!) Suppose that M is equipped with a G-invariant Riemannian form.
Prove that ω is harmonic.

c. (!) Assume in addition that M is compact and G is connected. Prove
that any harmonic form is G-invariant.

12.3 Kähler structures on symmetric spaces

Exercise 12.14 (!). Let M = G/H be a symmetric space, and I a G-invariant
almost complex structure. Prove that I is integrable.

Exercise 12.15 (!). M = G/H be a symmetric space, I a G-invariant almost
complex structure, and h a G-invariant Hermitian form. Prove that (M, I, h) is
Kähler.
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Exercise 12.16. Construct a structure of symmetric space and a G-invariant
complex structure on the following spaces.

a. CPn (also prove that it is Kähler).

b. (!) GrR(2, n) := SO(n+2)
SO(n)×SO(2)

Exercise 12.17 (!). Let M = G/H be a homogeneous space such that the
isotropy group Hx acts on the (real) projectivization PTxM transitively. Prove
that the G-invariant Riemannian metric on M is unique up to a constant multi-
plier.

Exercise 12.18 (*). Consider the Grassmannian space GrR(p, q) := SO(p+q)
SO(p)×SO(q) .

Prove that GrR(p, q) admits a SO(p+ q)-invariant metric. Prove that this metric
is unique up to a constant multiplier, when p > 2 or q > 2.

Exercise 12.19. Construct a U(n+ 1)-invariant Hermitian metric on CPn (it is
called Fubini-Study metric).

a. Prove that this metric is unique up to a constant.

b. Prove that it is Kähler.

Definition 12.9. U(p, q) is the group of all complex-linear matrices preserving a
pseudo-Hermitian metric h of signature (p, q), with h(x1, ..., xp+q) =

∑p
i=1 |xi|2 −∑p+q

i=q+1 |xj |2.

Exercise 12.20. a. (!) Construct a U(1, n)-invariant metric and complex

structure on M := U(1,n)
U(1)×U(n) .

b. (!) Prove that it is Kähler.

c. (*) Prove that M is biholomorphic to an open ball in Cn.

d. (**) Prove that all complex automorphisms of an open ball are isometries
with respect to this metric.

Remark 12.2. This metric on an open ball is called Bergman metric, or com-
plex hyperbolic metric.

Exercise 12.21 (*). Construct an SO(n + 2)-invariant Kähler structure on the

Grassmannian GrR(2, n) := SO(n+2)
SO(n)×SO(2) .
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