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Hodge theory 13: Foliations, fiber bundles, and ddc

Rules: You may choose to solve only “hard” exercises (marked with !, * and **) or “ordinary” ones
(marked with ! or unmarked), or both, if you want to have extra stuff to work. To have a perfect score,
a student must obtain (in average) a score of 10 points per week.

If you have got credit for 2/3 of ordinary problems or 2/3 of “hard” problems, you receive 6t points,
where t is a number depending on the date when it is done. Passing all “hard” or all “ordinary” problems
brings you 10t points. Solving of “**” (extra hard) problems is not obligatory, but each such problem
gives you a credit for 2 “*” or “!” problems in the “hard” set.

The first 3 weeks after giving a handout, t = 1.5, between 21 and 35 days, t = 1, and afterwards,

t = 0.7. The scores are not cumulative, only the best score for each handout counts.

13.1 Foliations

Definition 13.1. Sheaf of submanifolds on M is a sheaf F of sets map-
ping each U to a collection of its closed submanifolds, with restriction maps
F(U)−→F(V ) mapping each submanifold Z ∈ F(U) to Z ∩ V . A foliation
is a sheaf of submanifolds F on M such that each x ∈M has a neighbourhood U
which is decomposed onto a product U = A×B, with F(U) being all fibers of the
projection U −→B. A leaf of the foliation F is a connected smooth manifold Z
immersed to M in such a way that any closed connected component of Z ∩ U is
an element of F(U). Closed leaf is a leaf with closed image.

Exercise 13.1. Let F be a foliation on M . Prove that there exists a continuous
map π : M −→ Z with all leaves of F obtained as π−1(z) for some z ∈ Z and
U ⊂ Z open if and only if π−1(U) is open.

Definition 13.2. In this case Z is called the leaf space of F .

Exercise 13.2. a. (!) Let F be a foliation on M with all leaves compact.
Prove that in this case the leaf space of F is Hausdorff.

b. (**) Is this true for all foliations with closed leaves?

Exercise 13.3. Find a foliation with all leaves dense.

Exercise 13.4 (!). Find a foliation with all leaves closed, but not all of them
diffeomorphic.

Exercise 13.5 (!). Let F be a foliation with compact leaves on a compact man-
ifold M . Prove that its leaf space is smooth, or find a counterexample.

Definition 13.3. A foliation on M is called fiber bundle if all its leaves are
closed and the projection M −→ Z to its leaf space is locally trivial.

Exercise 13.6 (!). Let (M,ω) be a compact symplectic manifold and π : M −→ Z
a fiber bundle. Assume that ω restricted to fibers of π vanishes (in this case the
fibers are called Lagrangian submanifolds, and π a Lagrangian fibration).
Prove that all fibers of π have trivial tangent bundle.
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Exercise 13.7. Let F be a foliation on M , and TF the sheaf of all vector fields
tangent to leaves of F .

a. Prove that TF ⊂ TM is a sub-bundle of TM .

b. (!) Prove that the sub-bundle TF ⊂ TM uniquely determines the
foliation F .

c. (!) Prove that [TF , TF ] ⊂ TF .

d. (!) (Frobenius theorem) Prove that any sub-bundle B ⊂ TM such that
[B,B] ⊂ B is tangent to a certain foliation determined by B.

Hint. To prove the Frobenius theorem, use the exercises from Handout 11.

13.2 Basic forms

Definition 13.4. Let F be a foliation and B = TF its tangent bundle. A dif-
ferential form η ∈ Λ∗M is called basic with respect to B if for all vector fields
X ∈ B, one has LieX η = 0 and η yX = 0.

Exercise 13.8. Prove that a closed form is basic if η yX = 0 for all X ∈ B.

Exercise 13.9. Let X1, ...Xn ⊂ B be vector fields generating B over C∞M , and
η a differential form such that LieXi η = 0 and η yXi = 0 for all i. Prove that η
is basic.

Remark 13.1. This exercise is non-trivial, because the Lie derivative LieX η is
not C∞-linear in X.

Exercise 13.10. Let π : M −→ Z be a differentiable map of smooth mani-
folds with differential surjective everywhere (further on, such maps will be called
smooth maps). Prove that π is open, that is, the image π(U) of an open set is
always open.

Definition 13.5. Let π : M −→ Z be a smooth map and E a vector bundle
on Z, considered as a locally free sheaf of C∞Z-modules. Consider the sheaf-
theoretic pullback π•E, with sections of π•E over an open subset U ⊂ Z given by
π•E(U) = E(π(U)). The pullback of the vector bundle E is π•E⊗π•C∞ZC∞M .
It is not hard to see that this is also a vector bundle, of the same rank as E.

Exercise 13.11. Let Z be the leaf space of the foliation F ; we assume that the
projection π : M −→ Z is smooth.

a. Let Λ∗π(M) be the bundle of all forms η ∈ Λ∗M such that η yX = 0. Prove
that Λ∗π(M) = π∗Λ∗(M).
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b. For any bundle E on Z, represent the sections of π∗E by linear combinations
of f ⊗ π•e, where f ∈ C∞M , e is a section of E, and π•e the corresponding
section of π•E. For any X ∈ B, define LieX(f ⊗ π•e) := LieX(f) ⊗ π•e.
Prove that this map satisfies the Leibitz rule. Prove that for all sections
e ∈ E, one has

e ∈ π•E ⇔ LieX e = 0 ∀X ∈ B.

c. (!) Prove that a form η is basic if and only if η lies in π•Λ∗(Z) ⊂
Λ∗π(M) ⊂ Λ∗(M).

d. (!) Prove that the space of basic forms on M is naturally isomorphic to
Λ∗Z.

Exercise 13.12 (**). For any given 0 < i < n find a foliation F of codimension
n on a compact manifold M such that all basic i-forms vanish.

Exercise 13.13 (*). Denote basic forms by Λ∗B(M). Prove that the de Rham
differential of a basic form is again basic. Basic cohomology is the quotient

ker d

∣∣∣∣Λ∗
B

(M)

d(Λ∗B(M)) . Prove that the space of basic cohomology of a compact manifold is

finite-dimensional, for any foliation.

13.3 The twisted differential dc

Definition 13.6. Let (M, I) be an almost complex manifold and T 1,0(M) ⊕
T 0,1(M) the Hodge decomposition. Consider the corresponding Frobenius form
N ∈ Hom(Λ2(T 1,0(M)), T 0,1(M)). This map is called the Nijenhuis tensor. An
almost complex structure is called (formally) integrable if its Nijenhuis tensor
vanishes.

Remark 13.2. Please solve the exercises in this subsection without the use of
Newlander-Nirenberg theorem.

Exercise 13.14. Let M be an almost complex manifold, and

di,j : Λp,q(M)−→ Λp+i,q+j(M), i+ j = 1

be the Hodge component of de Rham differential.

a. (!) Prove that di,j = 0 unless (i, j) = (0, 1), (1, 0), (2,−1) or (−1, 2).

b. (!) Prove that the operators d2,−1 and d−1,2 are C∞(M)-linear.

c. (!) Prove that d2,−1 = d−1,2 = 0 when the almost complex structure on
M is integrable.

d. (*) Prove that the map d2,−1 : Λ0,1(M)−→ Λ2,0(M) is dual to the
Nijenhuis tensor.
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Definition 13.7. We extend I to differential forms multiplicatively, I
∣∣∣
Λp,q(M)

=

(
√
−1)p−q. Let dc := IdI−1. This operator is called the twisted differential.

Exercise 13.15 (!). Prove that I is integrable if and only if ddc = −dcd.

Exercise 13.16 (!). Prove that I is integrable if and only if d1,0 = d−
√
−1dc

2 .

Prove that in this case d0,1 = d+
√
−1dc

2 .

Definition 13.8. The operators d1,0, d0,1 on a complex manifold are denoted
∂ : Λp,q(M)−→ Λp+1,q(M) and ∂̄ : Λp,q(M)−→ Λp,q+1(M).

Exercise 13.17. Prove that −2
√
−1∂∂̄ = ddc.

Definition 13.9. The operator ddc is called the pluri-Laplacian, and function
f with ddc(f) = 0 is called pluri-harmonic.

Exercise 13.18. Let B be an open subset in C and ω = dx ∧ dy the standard
volume form. Prove that ddc(f) = ∆(f)ω, where ∆ is the Laplacian.

Definition 13.10. Recall that a C-valued function f on a complex manifold is
called anti-holomorphic if f̄ is holomorpic.

Exercise 13.19. Let f be a sum of a holomorphic and an anti-holomorphic func-
tion is pluri-harmonic.

Exercise 13.20 (!). Let f be a smooth real function on Cn. Suppose that f is
pluri-harmonic. Prove that restriction of f to any complex curve Z ⊂ Cn is a real
part of a holomorphic function.

Exercise 13.21. Let f be a real pluri-harmonic function on a poly-disc U in Cn.

a. (*) Using the Poincaré-Dolbeault-Grothendieck lemma, prove that f is a
real part of a holomorphic function.

b. (*) Deduce from the Poincaré-Dolbeault-Grothendieck lemma that a func-
tion is pluri-harmonic if and only if it is represented locally as a sum of a
holomorphic and antiholomorphic function.

Exercise 13.22 (!). Find a complex manifold M and a real pluriharmonic func-
tion f which is not a real part of a holomorphic function on M .
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