Hodge theory 14: Fubini-Study form

Rules: You may choose to solve only "hard" exercises (marked with !, * and **) or "ordinary" ones (marked with ! or unmarked), or both, if you want to have extra stuff to work. To have a perfect score, a student must obtain (in average) a score of 10 points per week.

If you have got credit for 2/3 of ordinary problems or 2/3 of "hard" problems, you receive 6t points, where t is a number depending on the date when it is done. Passing all "hard" or all "ordinary" problems brings you 10t points. Solving of "**" (extra hard) problems is not obligatory, but each such problem gives you a credit for 2 "*" or "!" problems in the "hard" set.

The first 3 weeks after giving a handout, t = 1.5, between 21 and 35 days, t = 1, and afterwards, t = 0.7. The scores are not cumulative, only the best score for each handout counts.

14.1 Plurisubharmonic functions

Definition 14.1. A real-valued function f on a compact manifold is called strictly plurisubharmonic if $dd^c f$ is a Kähler form.

Exercise 14.1. Consider a function l on \mathbb{C}^n , $l(z_1, ..., z_n) = \sum |z_i|^2$. Prove that $dd^c l$ is the standard Kähler form on \mathbb{C}^n .

Exercise 14.2. Let ω be a Kähler form on a polydisk. Using the Poincaré-Dolbeault-Grothendieck lemma, prove that $\omega = dd^c(f)$ for some strictly plurisubharmonic function f.

Exercise 14.3 (**). Let f a plurisubharmonic function on \mathbb{C} . Prove that f cannot be bounded.

Exercise 14.4 (*). Let f be a plurisubharmonic function on M. Prove that f has does not have a maximum.

Exercise 14.5. Prove that $dd^c f(\phi) = f' dd^c \phi + f'' d\phi \wedge d^c \phi$. for any real-valued function ϕ on a complex manifold and any smooth $f : \mathbb{R} \longrightarrow \mathbb{R}$.

Exercise 14.6 (!). Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a convex smooth function with f' > 0 everywhere. Prove that $f(\phi)$ is strictly plurisubharmonic whenever ϕ is strictly plurisubharmonic.

Exercise 14.7. Let $f : \mathbb{R}^2 \longrightarrow R$ be a convex function with $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ positive everywhere, and ψ, ψ strictly plurisubharmonic functions.

a. (!) Prove that the function $f(\phi, \psi)$ is also strictly plurisubharmonic.

Issued 02.05.2018

b. (*) Prove that for any $\varepsilon > 0$ there exists a strictly plurisubharmonic function ξ such that $\xi = \max(\phi, \psi)$ whenever $|\phi - \psi| > \varepsilon$

Exercise 14.8. Prove that $dd^c \log \phi = \frac{dd^c \phi}{\phi} - \frac{d\phi \wedge d^c \phi}{\phi^2}$. for any real-valued function ϕ on a complex manifold.

Exercise 14.9. For any real function f, the form $dd^c f = -\sqrt{-12}\partial\bar{\partial}f$ is of type (1,1), hence the form $h_f := dd^c f(I(\cdot), \cdot)$ is symmetric and pseudo-Hermitian. For any Hermitian form s on M, prove that in a neighbourhood of each point there exists an orthonormal basis such that h_f is diagonal. Let $\alpha_1, ..., \alpha_n$ be the eigenvalues of $h_f s^{-1}$.

- a. (*) Prove that the map $M \longrightarrow \mathbb{R}^n / \Sigma_n$ mapping $x \in M$ to the unordered collection of all eigenvalues of h_f is continuous.
- b. (!) Prove that the sign of these eigenvalues at $x \in M$ is independent from the choice of s.

Definition 14.2. We say that $dd^c f$ has positive/negative/zero eigenvalues when $h_f s^{-1}$ has positive (negative, zero) eigenvalues for some (hence, any) Hermitian forms s on M.

14.2 Fubini-Study form

Exercise 14.10. Let $l(z_1, ..., z_n) = \sum_{l \neq i} |z_i|^2$ be the function on \mathbb{C}^n defined above. Prove that $dd^c \log l = \frac{dd^{cl}}{l} - \frac{dl \wedge d^{cl}}{l^2}$. Prove that for n > 1, the form $dd^c \log l$ has at least one positive eigenvalue.

- **Exercise 14.11.** a. Consider the function $|z|^2 = z\overline{z}$ on \mathbb{C}^* , and let $\rho = z\frac{d}{dz}$, where z is the complex coordinate on \mathbb{C} . Prove that $\operatorname{Lie}_{\rho}|z|^2 = |z|^2$.
 - b. Prove that $\operatorname{Lie}_{\rho}(\log |z|) = \operatorname{const.}$

Exercise 14.12. Let $z_1, ..., z_{n+1}$ be the complex coordinates on \mathbb{C}^{n+1} .

- a. Prove that the vector fields $r := \sum_{i=1}^{n+1} z_i \frac{d}{dz_i}$ and $\bar{r} := \sum_{i=1}^{n+1} \bar{z}_i \frac{d}{d\bar{z}_i}$ are \mathbb{C}^* -invariant.
- b. (!) Let $l(z_1, ..., z_n) = \sum |z_i|^2$. Prove that $\text{Lie}_r(\log l) = 0$.
- c. (!) Prove that $(d \log l) \,\lrcorner \, r = (d \log l) \,\lrcorner \, \bar{r} = 0.$

Issued 02.05.2018

Hint. Use the previous exercise.

Exercise 14.13. Consider the tautological fibration $\mathbb{C}^{n+1}\setminus 0 \xrightarrow{\pi} \mathbb{C}P^n$. We consider π as a quotient map, $\mathbb{C}P^n = (\mathbb{C}^{n+1}\setminus 0)/G$, where $G = \mathbb{C}^*$, and take $r = \sum_{i=1}^{n+1} z_i \frac{d}{dz_i}$ as above.

- a. Prove that any \mathbb{C}^* -invariant form η such that $\eta \,\lrcorner\, r = \eta \,\lrcorner\, \bar{r} = 0$ is basic.
- b. (!) Prove that $dd^c \log l$ is basic.

Exercise 14.14. Consider the tautological fibration $\mathbb{C}^{n+1}\setminus 0 \xrightarrow{\pi} \mathbb{C}P^n$.

- a. Prove that there exists a form $\omega \in \Lambda^{1,1}(\mathbb{C}P^1)$ such that $dd^c \log l = \pi^*(\omega)$.
- b. Prove that this form is U(n)-invariant and has at least one positive eigenvalue.
- c. (!) Prove that ω is a Kähler form.

Remark 14.1. This gives another definition of Fubini-Study form, clearly equivalent to the one we have seen in Handout 12.

Exercise 14.15 (!). Let $\mathbb{C}^n \subset \mathbb{C}P^n$ be an affine chart with affine coordinates $z_1, ..., z_n$. Prove that the Fubini-Study form on this chart is given by

$$\omega = \frac{\sum_{i=1}^{n} dz_i \wedge d\bar{z}_i}{1 + \sum_{i=1}^{n} |z_i|^2} - \frac{\sum_{i=1}^{n} \bar{z}_i dz_i}{1 + \sum_{i=1}^{n} |z_i|^2} \wedge \frac{\sum_{i=1}^{n} z_i d\bar{z}_i}{1 + \sum_{i=1}^{n} |z_i|^2}$$

Exercise 14.16 (!). Let $f_1, ..., f_n$ be holomorphic functions without common zeroes on a complex manifold. Prove that $\log(\sum_i |f_i|)$ is a plurisubharmonic function.

Exercise 14.17. Let L be a Hermitian holomorphic bundle on a complex manifold M, and Tot L its total space. Denote by $V \subset$ Tot L the set of non-zero vectors in Tot L. Clearly, V is equipped with a free action of \mathbb{C}^* , and $V/\mathbb{C}^* = M$. Denote by Σ the corresponding foliation. Consider the function $l: V \longrightarrow \mathbb{R}^{>0}$ mapping a vector $v \in L|_{\tau}$ to $|v|^2$.

- a. (!) Prove that $dd^c \log l$ is a Σ -basic form on V.
- b. $(^{**})$ Prove that the corresponding (1,1)-form on M coincides with the curvature of the Chern connection on L.

Issued 02.05.2018