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Differential operators

Notation: Let M be a smooth manifold, TM its tangent bundle, ΛiM the

bundle of differential i-forms, C∞M the smooth functions. The space of

sections of a bundle B is denoted by B.

DEFINITION: Let M be a manifold. The ring of differential operators

on the ring of functions on M is a subalgebra of EndR(C∞M,C∞M) is

defined as follows. Operator of order 0 is a C∞M-linear map, that is, a

map Lα : f 7→ αf , where α ∈ C∞M is a smooth function. Operator of order

1 is a sum of a differentiation along a vector field and a C∞M-linear map.

Differential operator of order k is a linear combination of products of k

first order differential operators.

REMARK: In coordinates x1, ..., xn , differential operators can be expressed

as sums of differential monomials:

D = f0 +
n∑
i=1

fi
d

dxi
+

n∑
i,j=1

fij
d2

dxidxj
+

n∑
i,j,k=1

fijk
d3

dxidxjdxk
+ ...
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Differential operators with coefficients in a trivial vector bundle

DEFINITION: Let E,F be trivial vector bundles on M , with basis e1, ..., en

in E, f1, ..., fm in F . A differential operator from E to F is a function

mapping
∑n
i=1αiei, where αi ∈ C∞M , to

D

 n∑
i=1

αiei

 =
m∑
j=1

n∑
i=1

Dij(αi)fj, (∗)

where Dij are differential operators on C∞M . One can think of D as a

n×m-matrix with coefficients in differential operators on C∞M.
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Differential operators with coefficients in a vector bundle

DEFINITION: We say that a section b of a vector bundle B on M has
support in a set K ⊂ M if b vanishes in an open set which contains M\K.
The smallest of all such K is called support of b.

DEFINITION: Let E,F be vector bundles on M . Let D be an operator
mapping sections of E to sections of F . Suppose that for any open set
U ⊂ M such that E and F are trivial on U with bases {ei}, {fj}, and for any
section e =

∑n
i=1αiei with support in U , the section D(e) is expressed as in

(*):

D

 n∑
i=1

αiei

 =
m∑
j=1

n∑
i=1

Dij(αi)fj.

Then D is called a differential operator from E to F .

EXAMPLE: Differential is a map d : C∞M −→ Λ1M mapping a function to
its differential. Prove that it is a first order differential operator.

EXAMPLE: A connection on a bundle B is an operator ∇ : B −→ b⊗Λ1M

satisfying ∇(fb) = b⊗df+f∇(b), where f −→ df is de Rham differential. Prove
that connection is a first order differential operator.
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Local operators

DEFINITION: Let E,F be vector bundles on M . An operator D mapping

sections of E to sections of F is called local if it maps any section with

support in K ⊂M to a section with support in K.

REMARK: Differential operators are clearly local.

EXERCISE: (difficult)

Let M be a compact manifold, F,G – vector bundles. Prove that any local

operator from F to G is a differential operator. Find a counterexample

when M is non-compact.
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Differential operators: algebraic definition

DEFINITION: (Grothendieck)

Let R be a commutative ring over a field k, and A,B R-modules. Differential

operator of order 0 from A to B is an R-linear map ϕ ∈ HomR(A,B).

Differential operator of order i > 0 is defined inductively: α ∈ Diffi(A,B) if

for any r ∈ R, the commutator αLr − Lrα belongs to Diffi−1(A,B), where

Lr(x) = rx.

DEFINITION: Given a vector bundle on a smooth manifold M , we may

consider its space of sections as an C∞M-module. Differential operators

Diffi(F,G) on vector bundles F , G are defined as differential operators on the

corresponding spaces of sections in the sense of the Grothendieck’s definition.

Differential operator on M is an element of Diffi(M) := Diffi(C∞M,C∞M).

EXERCISE: Prove that this definition is equivalent to the usual one.
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Discuss

0. Explain the format.

Discuss:

1. Language.

2. Time of the lectures and seminars.

The course’s page:

http://bogomolov-lab.ru/KURSY/Hodge-2018/
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REMINDER: de Rham algebra

DEFINITION: Let Λ∗M denote the vector bundle with the fiber Λ∗T ∗xM
at x ∈ M (Λ∗T ∗M is the Grassman algebra of the cotangent space T ∗xM).
The sections of ΛiM are called differential i-forms. The algebraic operation
“wedge product” defined on differential forms is C∞M-linear; the space Λ∗M
of all differential forms is called the de Rham algebra.

REMARK: Λ0M = C∞M .

THEOREM: There exists a unique operator C∞M d−→ Λ1M
d−→ Λ2M

d−→
Λ3M

d−→ ... satisfying the following properties

1. On functions, d is equal to the differential.
2. d2 = 0
3. d(η ∧ ξ) = d(η)∧ ξ+ (−1)η̃η ∧ d(ξ), where η̃ = 0 where η ∈ λ2iM is an even
form, and η ∈ λ2i+1M is odd.

DEFINITION: The operator d is called de Rham differential.

EXERCISE: Prove it.

DEFINITION: A form η is called closed if dη = 0, exact if η ∈ im d. The
group ker d

im d is called de Rham cohomology of M .
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Graded algebras

DEFINITION: An algebra A is called graded if A is represented as A =
⊕
Ai,

where i ∈ Z, and the product satisfies Ai · Aj ⊂ Ai+j. Instead of
⊕
Ai one

often writes A∗, where ∗ denotes all indices together. Some of the spaces Ai

can be zero, but the ground field is always in A0, so that it is non-empty.

EXAMPLE: The tensor algebra T (V ) and the polynomial algebra Sym∗(V )

are obviously graded.

DEFINITION: Let A∗ = ⊕i∈ZAi be a graded algebra over a field. It is

called graded commutative, or supercommutative, if ab = (−1)ijba for all

a ∈ Ai, b ∈ Aj.

EXAMPLE: Grassmann algebra Λ∗V is clearly supercommutative.
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Graded derivations

DEFINITION: Let A∗ be a graded commutative algebra, and D : A∗ −→A∗+i

be a map which shifts grading by i. It is called a graded derivation, if it

satisfies the Leibniz rule: D(ab) = D(a)b+ (−1)ijaD(b), for each a ∈ Aj.

DEFINITION: Let M be a smooth manifold, and X ∈ TM a vector field.

Consider an operation of convolution with a vector field

iX : ΛiM −→ Λi−1M,

mapping an i-form α to an (i− 1)-form v1, ..., vi−1 −→ α(X, v1, ..., vi−1)

EXERCISE: Prove that iX is an odd derivation.
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Supercommutator

DEFINITION: Let A∗ be a graded vector space, and E : A∗ −→A∗+i,
F : A∗ −→A∗+j operators shifting the grading by i, j. Define the super-

commutator {E,F} := EF − (−1)ijFE.

DEFINITION: An endomorphism of a graded vector space which shifts grad-
ing by i is called even if i is even, and odd otherwise.

EXERCISE: Prove that the supercommutator satisfies graded Jacobi iden-

tity,

{E, {F,G}} = {{E,F}, G}+ (−1)ẼF̃{F, {E,G}}

where Ẽ and F̃ are 0 if E,F are even, and 1 otherwise.

REMARK: There is a simple mnemonic rule which allows one to remember
a superidentity, if you know the commutative analogue. Each time when in

commutative case two letters E, F are exchanged, in supercommuta-

tive case one needs to multiply by (−1)ẼF̃ .

EXERCISE: Prove that a supercommutator of superderivations is again

a superderivation.
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Lie derivative

DEFINITION: Let B be a smooth manifold, and v ∈ TM a vector field. An
endomorphism Liev : Λ∗M −→ Λ∗M , preserving the grading is called a Lie
derivative along v if it satisfies the following conditions.

(1) On functions Liev is equal to a derivative along v. (2) [Liev, d] = 0.
(3) Liev is a derivation of the de Rham algebra (that is, satisfies the

Leibniz rule).

REMARK: The algebra Λ∗(M) is generated by C∞M = Λ0(M) and d(C∞M).
The restriction Liev |C∞M is determined by the first axiom. On d(C∞M) is
also determined because Liev(df) = d(Liev f). Therefore, Liev is uniquely
defined by these axioms.

EXERCISE: Prove the anticommutator identity: [d, {d,E}] = 0 for each
E ∈ End(Λ∗M).

THEOREM: (Cartan’s formula) Let iv be a convolution with a vector field,
iv(η) = η(v, ·, ·, ..., ·) Then the anticommutator {d, iv} is equal to the Lie
derivative along v.

Proof: {d, {d, iv}} = 0 by the lemma above. A supercommutator of two
graded derivations is a graded derivation. Finally, {d, iv} acts on functions as
iv(df) = 〈v, df〉.
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Connections

DEFINITION: Recall that a connection on a bundle B is an operator ∇ :

B −→B ⊗ Λ1M satisfying ∇(fb) = b⊗ df + f∇(b), where f −→ df is de Rham

differential. When X is a vector field, we denote by ∇X(b) ∈ B the term

〈∇(b), X〉.

REMARK: In local coordinates, connection on B is a sum of differential and

a form A ∈ EndB ⊗ Λ1M . Therefore, ∇X is a derivation along X plus linear

endomorphism. This implies that each first order differential operator on

B is expressed as a linear combination of the compositions of covariant

derivatives ∇X and linear maps.

This follows from the definition of the first order differential operator: by

definition, it is a linear combination of partial derivatives combined

with a linear maps.
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Connection and a tensor product

REMARK: A connection ∇ on B gives a connection B∗ ∇∗−→ Λ1M ⊗ B∗ on

the dual bundle, by the formula

d(〈b, β〉) = 〈∇b, β〉+ 〈b,∇∗β〉

These connections are usually denoted by the same letter ∇.

REMARK: For any tensor bundle B1 := B∗⊗B∗⊗ ...⊗B∗⊗B ⊗B ⊗ ...⊗B a

connection on B defines a connection on B1 using the Leibniz formula:

∇(b1 ⊗ b2) = ∇(b1)⊗ b2 + b1 ⊗∇(b2).
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Adjoint connection

DEFINITION: Given a connection ∇ on a vector bundle B equipped with a
scalar product (·, ·), define ∇∗ by the formula

d(b, b′) = (∇(b), b′) + (b,∇∗(b′)). (∗∗)
Here, b, b′ are sections of B, d(b, b′) is a differential of a function, and (∇(b), b′)
is the 1-form obtained from the bilinear pairing B ⊗ (B ⊗ Λ1M)−→ Λ1M .

CLAIM: The map ∇∗ : B −→B⊗Λ1M is well defined by (**). Moreover,
it is also a connection.

Proof: The first statement is clear, because any linear map B −→ Λ1M can
be represented by b−→ (b, A) for some A ∈ B ⊗ Λ1M . To check the second
statement, we take f ∈ C∞M , and write

(b, b′)df + fd(b, b′) = d(b, fb′) = f(∇(b), b′) + (b,∇∗(fb′)).(∗∗)
which gives

(
b,∇∗(fb′)− f∇∗(b′)

)
= (b, b′)df , hence ∇∗(fb′)− f∇∗(b′) = b′⊗ df .

DEFINITION: The connection ∇∗ is called adjoint connection to ∇. Rela-
tion ∇ = ∇∗ happens precisely when ∇ preserves the metric tensor, considered
as a section of B∗⊗B∗, and in this case ∇ is called an orthogonal connection.
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Adjoint connection and L2-product

DEFINITION: Fix a volume form Vol on a manifold M Consider a C∞M-
linear scalar product on a vector bundle B. Then the space of sections of

B is also equipped with a scalar product: (b, b′)L2 =
∫
M(b, b′) Vol. It is

called the standard L2-scalar product on the space of sections.

LEMMA: (integration by parts)

Let B be a bundle on M with scalar product and connection ∇, and b, b′ ∈ B
its sections. Then, for any vector fields X ∈ TM, one has∫

M
(∇Xb, b′) +

∫
M

(b,∇∗Xb
′) =

∫
M

(b, b′) LieX Vol (∗ ∗ ∗)

Proof: By definition, one has∫
M

((∇X)∗(b), b′) Vol =
∫
M

(b,∇Xb′) Vol = −
∫
M

(∇∗Xb, b
′) Vol−

∫
M

LieX(b, b′) Vol,

where LieX(b, b′) is differential of the function (b, b′) along X ∈ TM . However,
for any top form η, one has LieX(η) = d(ixη) by Cartan’s formula, giving∫
M LieX(η) = 0, hence

0 =
∫
M

LieX((b, b′) Vol) =
∫
M

LieX(b, b′) Vol +
∫
M

(b, b′) LieX Vol,

giving the last term in (***).
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Adjoint operators

REMARK: Operators A : F −→G and A∗ : G−→ F on spaces with a scalar
product are called orthogonal adjoint, or adjoint, if (A(f), g) = (f,A∗(g))
for each f ∈ F , g ∈ G.

CLAIM: An orthogonal adjoint D∗ to a differential operator D is a differen-
tial operator again.

Proof. Step 1: This is clear for C∞M-linear operators (just take the point-
wise adjoint map). If we prove it for first order operators, we are done,
because (XY )∗ = Y ∗X∗.

Step 2: First order operators are expressed as linear combination of linear
maps and derivatives ∇X : F −→ F combined with linear maps. Therefore, it
would suffice to show that (∇X)∗ is a differential operator.

Step 3: The map (∇X)∗ is a differential operator: (∇X)∗(b) = −∇∗X −
LieX(Vol)

Vol b, because∫
M

((∇X)∗(b), b′) Vol = −
∫
M

(∇∗Xb, b
′) Vol−

∫
(b, b′) LieX(Vol)

by “integration by parts”, as shown above.
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Laplacian on differential forms

DEFINITION: Let V be a vector space. A metric g on V induces a natural
metric on each of its tensor spaces: g(x1⊗x2⊗ ...⊗xk, x′1⊗x

′
2⊗ ...⊗x

′
k) =

g(x1, x
′
1)g(x2, x

′
2)...g(xk, x

′
k).

This gives a natural positive definite scalar product on differential forms
over a Riemannian manifold (M, g): g(α, β) :=

∫
M g(α, β) VolM

DEFINITION: Let M be a Riemannian manifold. Laplacian on differential
forms is ∆ := dd∗+ d∗d.

REMARK: Laplacian is self-adjoint and positive definite: (∆x, x) =
(dx, dx) + (d∗x, d∗x). Also, ∆ commutes with d and d∗.

THEOREM: (The main theorem of Hodge theory)
There is an orthonormal basis in the Hilbert space L2(Λ∗(M)) consisting
of eigenvectors of ∆.

THEOREM: (“Elliptic regularity for ∆”) Let α ∈ L2(Λk(M)) be an eigen-
vector of ∆. Then α is a smooth k-form.

These two theorems will be proven later.
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Fritz Alexander Ernst Noether

(October 7, 1884 - September 10, 1941)

Emmy Noether und Fritz Noether, 1933
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De Rham cohomology

DEFINITION: The space Hi(M) :=
ker d

∣∣
ΛiM

d(Λi−1M)
is called the de Rham coho-

mology of M .

DEFINITION: A form α is called harmonic if ∆(α) = 0.

REMARK: Let α be a harmonic form. Then (∆x, x) = (dx, dx) + (d∗x, d∗x),

hence α ∈ ker d ∩ ker d∗.

REMARK: The projection Hi(M)−→Hi(M) from harmonic forms to

cohomology is injective. Indeed, a form α lies in the kernel of such projection

if α = dβ, but then (α, α) = (α, dβ) = (d∗α, β) = 0.

THEOREM: The natural map Hi(M)−→Hi(M) is an isomorphism

(see the next page).

REMARK: Poincare duality immediately follows from this theorem.
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Hodge theory and the cohomology

THEOREM: The natural map Hi(M)−→Hi(M) is an isomorphism.

Proof. Step 1: Since d2 = 0 and (d∗)2 = 0, one has {d,∆} = 0. This means

that ∆ commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition Λ∗(M)=̃
⊕
αH∗α(M), where α

runs through all eigenvalues of ∆, and H∗α(M) is the corresponding eigenspace.

For each α, de Rham differential defines a complex

H0
α(M)

d−→ H1
α(M)

d−→ H2
α(M)

d−→ ...

Step 3: On H∗α(M), one has dd∗+ d∗d = α. When α 6= 0, and η closed, this

implies dd∗(η) + d∗d(η) = dd∗η = αη, hence η = dξ, with ξ := α−1d∗η. This

implies that the complexes (H∗α(M), d) don’t contribute to cohomology.

Step 4: We have proven that

H∗(Λ∗M,d) =
⊕
α
H∗(H∗α(M), d) = H∗(H∗0(M), d) = H∗(M).
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