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Differential operators

Notation: Let M be a smooth manifold, T'M its tangent bundle, A'M the
bundle of differential -forms, C°°M the smooth functions. The space of
sections of a bundle B is denoted by B.

DEFINITION: Let M be a manifold. The ring of differential operators
on the ring of functions on M is a subalgebra of Endr(C°®°M,C°M) is
defined as follows. Operator of order 0 is a C°°M-linear map, that is, a
map Lo . f— of, where a € C°°M is a smooth function. Operator of order
1 is a sum of a differentiation along a vector field and a C°°M-linear map.
Differential operator of order Lk is a linear combination of products of k
first order differential operators.

REMARK: In coordinates x1,...,xzn , differential operators can be expressed
as sums of differential monomials:

d? d3
D = fO_l_Zfz + Z fzgd d + Z fzgk + ..

—  dx; i =1 i k=1 dx;dxjdxy,
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Differential operators with coefficients in a trivial vector bundle

DEFINITION: Let E,F be trivial vector bundles on M, with basis eq,...,en
in £, f1,....,fm in F. A differential operator from E to F' is a function

mapping > 1 aze;, where o; € C°°M, to

m n

D (i aiei) = > > Dij(a)f, (%)
i=1

j=1li=1
where D;; are differential operators on C°°M. One can think of D as a
n X m-matrix with coefficients in differential operators on C°°M.
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Differential operators with coefficients in a vector bundle

DEFINITION: We say that a section b of a vector bundle B on M has
support in a set K C M if b vanishes in an open set which contains M\K.
The smallest of all such K is called support of b.

DEFINITION: Let FE,F be vector bundles on M. Let D be an operator
mapping sections of E to sections of F. Suppose that for any open set
U C M such that E and F' are trivial on U with bases {e;}, {f;}, and for any
section e = Y. 4 aye; with support in U, the section D(e) is expressed as in

(*):
o ($ o) = £ % puteos
=1

j=1i=1
Then D is called a differential operator from E to F.

EXAMPLE: Differential is a map d: C®°M —s ALM mapping a function to
its differential. Prove that it is a first order differential operator.

EXAMPLE: A connection on a bundle B is an operator V: B — b AL M
satisfying V(fb) = bdf+ fV(b), where f — df is de Rham differential. Prove
that connection is a first order differential operator.
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Local operators

DEFINITION: Let E,F be vector bundles on M. An operator D mapping
sections of E to sections of F' is called local if it maps any section with
support in K C M to a section with support in K.

REMARK: Differential operators are clearly local.

EXERCISE: (difficult)
Let M be a compact manifold, F,G — vector bundles. Prove that any local
operator from F to GG is a differential operator. Find a counterexample

when M is non-compact.
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Differential operators: algebraic definition

DEFINITION: (Grothendieck)

Let R be a commutative ring over a field k£, and A, B R-modules. Differential
operator of order 0 from A to B is an R-linear map ¢ € Hompg(A, B).
Differential operator of order i > 0 is defined inductively: « € Diff'(A, B) if
for any r € R, the commutator oL, — Lra belongs to Diffi_l(A,B), where
Ly(x) = rx.

DEFINITION: Given a vector bundle on a smooth manifold M, we may
consider its space of sections as an C°°M-module. Differential operators
Difft!(F, G) on vector bundles F, G are defined as differential operators on the
corresponding spaces of sections in the sense of the Grothendieck’s definition.
Differential operator on M is an element of Diffi(M) := Diff*(C®°M, C>®M).

EXERCISE: Prove that this definition is equivalent to the usual one.
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Discuss

0. Explain the format.

Discuss:

1. Language.

2. Time of the lectures and seminars.

The course’s page:
http://bogomolov-lab.ru/KURSY/Hodge-2018/



Hodge theory, lecture 1 M. Verbitsky

REMINDER: de Rham algebra

DEFINITION: Let A*M denote the vector bundle with the fiber A*T;M
at ¢ € M (A*T'*M is the Grassman algebra of the cotangent space T;M).
The sections of A*M are called differential i-forms. The algebraic operation
“wedge product” defined on differential forms is C°°M-linear; the space AN*M
of all differential forms is called the de Rham algebra.

REMARK: NOM = C>®M.

THEOdREM: There exists a unique operator C°M -4 Alpr -4 A2p -9
A3M -5 ... satisfying the following properties

1. On functions, d is equal to the differential.

2. d2=0

3. dinAE) =dm) ANE+ (=1 Ad(€), where 7 = 0 where n € A% M is an even
form, and n € \2T1\/ is odd.

DEFINITION: The operator d is called de Rham differential.
EXERCISE: Prove it.

DEFINITION: A form n is called closed if dnp = 0, exact if n € imd. The

group &< is called de Rham cohomology of M.

9
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Graded algebras

DEFINITION: An algebra A is called graded if A is represented as A = @Ai,
where i € Z, and the product satisfies A*- A7 C A'tJ. Instead of @ A’ one
often writes A*, where x denotes all indices together. Some of the spaces A’
can be zero, but the ground field is always in A9, so that it is non-empty.

EXAMPLE: The tensor algebra T'(V) and the polynomial algebra Sym*(V)
are obviously graded.

DEFINITION: Let A* = @iezAi be a graded algebra over a field. It is
called graded commutative, or supercommutative, if ab = (—1)%Yba for all

ac Al be AT

EXAMPLE: Grassmann algebra A*V is clearly supercommutative.

10
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Graded derivations

DEFINITION: Let A* be a graded commutative algebra, and D : A* — A*T?
be a map which shifts grading by :. It is called a graded derivation, if it
satisfies the Leibniz rule: D(ab) = D(a)b+ (—=1)YaD(b), for each a € AJ.

DEFINITION: Let M be a smooth manifold, and X € T'M a vector field.
Consider an operation of convolution with a vector field

iy 1 N'M — N1

mapping an i-form « to an (i — 1)-form vq,...,v,_1 — a(X,v1,...,v;_1)

EXERCISE: Prove that :x is an odd derivation.

11
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Supercommutator

DEFINITION: Let A* be a graded vector space, and E : A* —s A*t?
F . A* —s A*tJ operators shifting the grading by 1,7. Define the super-
commutator {E,F} := EF — (—1)YFE.

DEFINITION: An endomorphism of a graded vector space which shifts grad-
ing by 7 is called even if 7 is even, and odd otherwise.

EXERCISE: Prove that the supercommutator satisfies graded Jacobi iden-
tity,

{Ev {F7 G}} — {{E7 F}a G} + (_1)EF{F7 {E7 G}}
where £ and £ are 0 if E, F are even, and 1 otherwise.

REMARK: There is a simple mnemonic rule which allows one to remember
a superidentity, if you know the commutative analogue. Each time when in
commutative case two letters £, F are exchanged, In supercommuta-
tive case one needs to multiply by (—1)&%,

EXERCISE: Prove that a supercommutator of superderivations is again
a superderivation.

12
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Lie derivative

DEFINITION: Let B be a smooth manifold, and v € T'M a vector field. An
endomorphism Lie, : A*M — AN*M, preserving the grading is called a Lie
derivative along v if it satisfies the following conditions.
(1) On functions Lie, is equal to a derivative along v. (2) [Liey,d] = 0.
(3) Liey is a derivation of the de Rham algebra (that is, satisfies the
Leibniz rule).

REMARK: The algebra A*(M) is generated by C®M = AO(M) and d(C>®M).
The restriction Liey |y is determined by the first axiom. On d(C°°M) is
also determined because Liey(df) = d(Liey f). Therefore, Lie, is uniquely
defined by these axioms.

EXERCISE: Prove the anticommutator identity: [d,{d, EF}] = 0 for each
E € End(A*M).

THEOREM: (Cartan’s formula) Let i, be a convolution with a vector field,
iv(n) = n(v,-,-,...,-) Then the anticommutator {d,i,} is equal to the Lie
derivative along v.

Proof: {d,{d,iv}} = O by the lemma above. A supercommutator of two
graded derivations is a graded derivation. Finally, {d,i,} acts on functions as

iv(df) = (v, df). =
13
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Connections

DEFINITION: Recall that a connection on a bundle B is an operator V :
B — B® A M satisfying V(fb) = b df + fV(b), where f — df is de Rham
differential. When X is a vector field, we denote by Vx(b) € B the term
(V(b), X).

REMARK: In local coordinates, connection on B is a sum of differential and
a form A € End B® AlM. Therefore, Vy is a derivation along X plus linear
endomorphism. This implies that each first order differential operator on
B is expressed as a linear combination of the compositions of covariant
derivatives Vx and linear maps.

This follows from the definition of the first order differential operator: by
definition, it is a linear combination of partial derivatives combined
with a linear maps.

14
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Connection and a tensor product

REMARK: A connection V on B gives a connection B* 2 ALM @ B* on
the dual bundle, by the formula

d({b, 8)) = (Vb,B) + (b, V"B)

These connections are usually denoted by the same letter V.

REMARK: For any tensor bundle B{ (= B*®B*®..0QB*"® B®B®..®B a
connection on B defines a connection on B4 using the Leibniz formula:

V(b1 ®bp) =V (b1) ®bo+ b1 @ V(b2).

15
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Adjoint connection

DEFINITION: Given a connection V on a vector bundle B equipped with a
scalar product (-,-), define V* by the formula

d(b,0") = (V(0),b) + (b, V*(b)).  (¥%)

Here, b,b’ are sections of B, d(b,b") is a differential of a function, and (V(b), d")
is the 1-form obtained from the bilinear pairing B® (B ® A1M) — A1M.

CLAIM: The map V*: B— B AIM is well defined by (**). Moreover,
It IS also a connection.

Proof: The first statement is clear, because any linear map B —sAlM can
be represented by b — (b, A) for some A € B® ALM. To check the second
statement, we take f € C°°M, and write

(b, b")df + fd(b,b") = d(b, ft') = F(V(b),b') + (b, V*(fV')).(xx)
which gives (b, V*(fv') — fv*(b’)) = (b,b)df, hence V*(fV') — fV*(t') = V' @ df.
[

DEFINITION: The connection V* is called adjoint connection to V. Rela-
tion V = V* happens precisely when V preserves the metric tensor, considered
as a section of B*®B*, and in this case V is called an orthogonal connection.

16
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Adjoint connection and L2—product

DEFINITION: Fix a volume form Vol on a manifold M Consider a C°°M-
linear scalar product on a vector bundle B. Then the space of sections of
B is also equipped with a scalar product: (b,b');2 = [3,(b,b")Vol. It is
called the standard L2-scalar product on the space of sections.

LEMMA: (integration by parts)
Let B be a bundle on M with scalar product and connection V, and b,b' € B
its sections. Then, for any vector fields X € T'M, one has

Vi b, b / b, Vi :/ b.b') Lie y VoI
[ (Vxb)+ [ 0.9k = [ (b¥)Liex Vol (xxx)
Proof: By definition, one has
Vx)*(b),t vm:/ b,V x b VO|=—/ Vib, b VOI—/ Liex (b, b)) Vol,
| (V0 (®),8) (6, Vxt) | (Vxb¥) Vol [ Liex(s,b)

where Liey (b, b") is differential of the function (b,%') along X € TM. However,
for any top form n, one has Liex(n) = d(izn) by Cartan’s formula, giving
[y Liex(n) = 0, hence

— ; / _ . / / .
o_/M Liex ((b, ') Vo) _/M LleX(b,b)VoI—l—/M(b,b)LleXVoI,

giving the last term in (***). m
17
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Adjoint operators

REMARK: Operators A: F— G and A*: G — F on spaces with a scalar
product are called orthogonal adjoint, or adjoint, if (A(f),q9) = (f,A*(9))
for each f e F, g € G.

CLAIM: An orthogonal adjoint D* to a differential operator D is a differen-
tial operator again.

Proof. Step 1: This is clear for C*°M-linear operators (just take the point-
wise adjoint map). If we prove it for first order operators, we are done,
because (XY)* =Y*X*.

Step 2: First order operators are expressed as linear combination of linear
maps and derivatives Vyx : F'— F combined with linear maps. Therefore, it
would suffice to show that (Vy)* is a differential operator.

Step 3: The map (Vx)* is a differential operator: (Vx)*(b) = —V% —
L'e)\f/gYO')b, because
/M((VX)*(b),b’) Vol = —/M(v}b, b) VOI—/(b, ¥ Lie x (Vol)

by “integration by parts’, as shown above. m
18
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Laplacian on differential forms

DEFINITION: Let V be a vector space. A metric g on V induces a natural
metric on each of its tensor spaces: g(r1Qz2®...Qx, ] ® 25 Q...Qx)) =

g(xz1,24)g9(x2,25)...9(xg, ).).

This gives a natural positive definite scalar product on differential forms
over a Riemannian manifold (M, g): g(a,B) := [y 9(a, B) VOl

DEFINITION: Let M be a Riemannian manifold. Laplacian on differential
forms is A = dd* + d*d.

REMARK: Laplacian is self-adjoint and positive definite: (Az,z) =
(dx,dx) 4+ (d*x,d*x). Also, A commutes with d and d*.

THEOREM: (The main theorem of Hodge theory)
There is an orthonormal basis in the Hilbert space L2(A*(M)) consisting
of eigenvectors of A.

THEOREM: (“Elliptic regularity for A”) Let a € L2(A¥(M)) be an eigen-
vector of A. Then « is a smooth k-form.

These two theorems will be proven later.
19
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Fritz Alexander Ernst Noether
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Emmy Noether und Fritz Noether, 1933
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De Rham cohomology

is called the de Rham coho-

DEFINITION: The space H:(M) :=
mology of M.

DEFINITION: A form « is called harmonic if A(a) = 0.

REMARK: Let o be a harmonic form. Then (Axz,z) = (dz,dz) + (d*x,d*z),
hence a € kerd N ker d*.

REMARK: The projection #'(M) — H*(M) from harmonic forms to
cohomology is injective. Indeed, a form « lies in the kernel of such projection
if « = dgB, but then (a,a) = (a,dB) = (d*a, 3) = 0.

THEOREM: The natural map H'(M) — H*(M) is an isomorphism
(see the next page).

REMARK: Poincare duality immediately follows from this theorem.

21
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Hodge theory and the cohomology
THEOREM: The natural map #'(M) — H*(M) is an isomorphism.

Proof. Step 1: Since d2 =0 and (d*)2 = 0, one has {d, A} = 0. This means
that A commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition A*(M)=&, Hi (M), where «
runs through all eigenvalues of A, and H},(M) is the corresponding eigenspace.
For each «, de Rham differential defines a complex

Ho) % Hicm) % 12 4

Step 3: On H} (M), one has dd* + d*d = . When a # 0, and 7 closed, this
implies dd*(n) 4+ d*d(n) = dd*n = an, hence n = d¢, with &€ := a~1d*n. This
implies that the complexes (#},(M),d) don’t contribute to cohomology.

Step 4: We have proven that

H*(N*M,d) = EBH*(”H* (M),d) = H*(HH(M),d) = H*(M).
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