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Banach spaces

DEFINITION: Let M be a topological space, and ‖f‖ := supM |f | the sup-

norm on functions. C0-topology, or uniform topology on the space C0(M)

of bounded continuous functions is topology defined by the sup-norm.

DEFINITION: A Banach space is a complete normed vector space.

THEOREM: A space of bounded continuous functions on M with C0-

topology is Banach.

Proof: A uniform limit of continuous functions is continuous (Weierstrass),

and a limit of a Cauchy sequence of functions in C0(M) exists pointwise

because R is complete.
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Stone-Weierstrass approximation theorem

DEFINITION: Let A ⊂ C0M be a subspace in the space of continuous

functions. We say that A separates the points of M if for all distinct points

x, y ∈M , there exists f ∈ A such that f(x) 6= f(y).

THEOREM: (Stone-Weierstrass approximation theorem) Let M be a

compact manifold and A ⊂ C0M be a subring separating points, and A its

closure. Then A = C0M.

Proof: Handouts or the next lecture.
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Hilbert spaces (reminder)

DEFINITION: Hilbert space is a complete, infinite-dimensional Hermitian

space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space H is a set of pairwise

orthogonal vectors {xα} which satisfy |xα| = 1, and such that H is the closure

of the subspace generated by the set {xα}.

THEOREM: Any Hilbert space has a basis, and all such bases are

countable.

THEOREM: All Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis.
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Fourier series

CLAIM: (”Fourier series”) Functions ek(t) = e2π
√
−1 kt, k ∈ Z on S1 =

R/Z form an orthonormal basis in the space L2(S1) of square-integrable

functions on the circle.

Proof: Orthogonality is clear from
∫
S1 e2π

√
−1 ktdt = 0 for all k 6= 0 (prove

it). To show that the space of Fourier polynomials
∑n
i=−n akek(t) is dense

in the space of continuous functions on circle, use the Stone-Weierstrass ap-

proximation theorem, applied to the ring R = 〈sin(mx), cos(nx)〉 of functions

obtained from real and imaginary parts of e2π
√
−1 kt.

DEFINITION: Fourier monomials on a torus are functions Fl1,...,ln :=

exp(2π
√
−1

∑n
i=1 liti), where l1, ..., ln ∈ Z.

CLAIM: Fourier monomials form an orthonormal basis in the space

L2(Tn) of square-integrable functions on the torus Tn.

Proof: The same.
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L2-norms on vector spaces

THEOREM: Let V be a vector space, and g1, g2 two scalar products. We

say that g1 is bounded by g2 if for some C > 0, one has g1 6 Cg2.

EXERCISE: Prove that this is equivalent to the continuity of the map

(V, g2)−→ (V, g1).

REMARK: Let g1 be bounded by g2. Then the identity map extends to a

continuous map on the corresponding completion spaces L2(V, g2)−→ L2(V, g1).

REMARK: The topology induced by g1 is equivalent to topology induced

by g2 if and only if C−1g2 6 g1 6 Cg2.
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Sobolev’s L2-norm on C∞c (Rn)

DEFINITION: Denote by C∞c (Rn) the space of smooth functions with com-

pact support. For each differential monomial

Pα =
∂k1

∂x
k1
1

∂k2

∂x
k2
2

...
∂kn

∂xkn1

consider the corresponding partial derivative

Pα(f) =
∂k1

∂x
k1
1

∂k2

∂x
k2
2

...
∂kn

∂xkn1

f.

Given f ∈ C∞c (Rn), one defines the L2
p Sobolev’s norm |f |p as follows:

|f |2s =
∑

degPα6p

∫
|Pα(f)|2 Vol

where the sum is taken over all differential monomials Pα of degree 6 p, and

Vol = dx1 ∧ dx2 ∧ ...dxn - the standard volume form.

REMARK: Same formula defines Sobolev’s L2-norm L2
p on the space of

smooth functions on a torus Tn.
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Sobolev’s L2-norm on a torus

CLAIM: The Fourier monomials Fl1,...,ln := e2π
√
−1

∑
liti are eigenvectors for

the differential monomials Pα = ∂k1

∂x
k1
1

∂k2

∂x
k2
2

... ∂
kn

∂xkn1

. Moreover, Pα(Fl1,...,ln) =∏n
i=1(2π

√
−1 ki)

li.

COROLLARY: The Fourier monomials are orthogonal in the Sobolev’s L2
p-

metric, and

|Fl1,...,ln|
2
2,p =

p∑
k1+...+kn=1

n∏
i=1

(2πli)
2ki.
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Weak convergence (reminder)

DEFINITION: Let xi ∈ H be a sequence of points in a Hilbert space H. We

say that xi weakly converges to x ∈ H if for any z ∈ H one has limi g(xi, z) =

g(x, z).

REMARK: Let y(i) = αj(i)ej be a sequence of points in a a Hilbert space

with orthonormal basis ei. Then y(i) converges to y =
∑
j αjej if and only

if limiαj(i) = αi.

CLAIM: For any sequence {y(i) =
∑
j αj(i)ej} of points in a unit ball, there

exists a subsequence {ỹ(i) = α̃j(i)ei} weakly converging to y ∈ H.

Proof: Indeed, |αj(i)| 6 1, hence there exist a subsequence ỹ(i) = α̃j(i)xj
with α̃j(i) converging for each j. The limit belongs to the unit ball because

otherwise
∣∣∣∑n

j=1 α̃j(i)ej
∣∣∣ > 1, which is impossible.

REMARK: Note that the function x−→ |x| is not continuous in weak

topology. Indeed, weak limit of {ei} is 0. The proof above shows that | · | is

semicontinuous.
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Compact operators (reminder)

DEFINITION: Precompact set is a set which has compact closure. A

compact operator is an operator which maps bounded sets to precompact.

THEOREM: Let A : H −→H1 be an operator on Hilbert spaces. Then

A is compact if and only if it maps weakly convergent sequences to

convergent ones.
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Rellich lemma for a torus

THEOREM: (Rellich lemma for a torus)
The identity map L2

p(Tn)−→ L2
p−1(Tn). is compact.

Proof. Step 1: Consider, instead of L2
p-metric, the metric qp which is orthog-

onal in the same basis and satisfies |Fl1,...,ln|qp := 1 + (2π)p
∑n
i=1 l

p
i . Clearly,

|Fl1,...,ln|qp 6 |Fl1,...,ln|2,p and |Fl1,...,ln|qp > C−1|Fl1,...,ln|2,p, where C is a number
of differential monomials of degree p. Therefore, qp and L2

p induce the same
topology, and it would suffice to prove the Rellich lemma for the identity map
L2(Tn, qp)−→ L2(Tn, qp−1).

Step 2: Now,

|Fl1,...,ln|
2
qp

|Fl1,...,ln|
2
qp−1

=

∑n
i=1(2π)pl2pi∑n

i=1(2π)p−1l
2p−2
i

>
n

max l2i
.

Step 3: Let xi ∈ L2(Tn, qp) be weakly converging to x, with |xi|qp < 1. Let
xi = yi + zi, with yi being the sum of all Fourier terms with max |li| < N ,

and zi the rest. Then |zi − z|qp−1 <
√
n
N |zi − z|qp <

2
√
n

N , and yi converges to y

because it is a sum of finitely many terms which all converge. We obtain
that limi |xi − x|qp−1 = 0, hence a xi (strongly) converges to x.
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Franz Rellich (1906-1955)

After Weyl’s resignation [from Göttingen], his former assistant, Franz Rellich, became In-

stitute Director ... Rellich had only a low-level appointment and ... was not an established

figure ... There was need for a prominent mathematical figure who was suitable politically to

take over the leadership in Gottingen. Furthermore, in mid-December, Rellich was ordered

to report on January 7 for ten weeks to a field-sports camp near Berlin. This was, in fact,

a mistake, since Rellich, as an Austrian citizen, was not subject to such forced training reg-

imens. When he arrived at the camp, he was not admitted on these grounds. However, on

December 27, the Curator had, after some hesitation, replaced Rellich with Werner Weber

as acting director of the Mathematical Institute. Rellich himself would lose his position at

Gottingen six months later, on June 18. – S. L. Segal, Mathematicians under the Nazis
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Rellich lemma for C∞K (Rn)

COROLLARY: Let C∞K (Rn) be the space of smooth functions on Rn with

support in a compact set K. Then the identity map

L2
p(C∞K (Rn))−→ L2

p−1(C∞K (Rn))

is compact.

Proof: We consider a quotient map Rn −→ Tn which is bijective on K for an

appropriate choice of a lattice. This embeds C∞K (Rn) to C∞(Tn), and this

embedding is compatible with the L2
p-norms.
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Sobolev’s L2-norm on a compact manifold

DEFINITION: Let M be a manifold, {Ui} a finite atlas, and {ψi} the cor-
responding partition of unity. We will identify Ui with bounded subsets in
Rn. Given a function f ∈ C∞(M), define the Sobolev L2

p-metric |f |22,p as∑
|fψi|22,p, where fψi is considered as a function with compact support on

Ui ⊂ Rn, and ·|2,p is the Sobolev L2
p-metric on C∞c (Rn).

PROPOSITION: The topology induced on C∞(M) by L2
p is independent

from the choice of {Ui} and {ψi}.

Proof: Let Ψ : Rn −→ Rn be a map with uniformly bounded partial derivatives
up to p-th. From the definition of the L2

p-norm and the chain rule it follows
that

C−1|f |q2,p 6 |Ψ
∗f |q2,p 6 C|f |q2,p

where the constant C depends on the supremum of partial derivatives of Ψ.
Then, for any refinement {Vj} of {Ui} and the corresponding partition of
unity {ϕj}, the L2

p-norm of fψi associated with {Vj, ϕj} is bounded by the one
associated with {Ui, ψi}. For the same reason the L2

p-norm of fϕj associated
with {Vj, ϕj} is bounded by the one associated with {Ui, ψi}. This gives an
estimate of form C−1g2 6 g1 6 Cg2 for L2

p-metrics associated with a cover
and its refinement. To obtain a similar estimate for two different covers, we
find a common refinement.
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Rellich lemma for C∞(M).

THEOREM: (Rellich lemma) Let M be a compact manifold. Then the

identity map L2
p(M)−→ L2

p−1(M) is compact.

Proof. Step 1: Let {Ui} be a finite atlas on M and {ψi} the corresponding

partition of unity. We will identify Ui with bounded subsets in Rn. Then

|f |22,p =
∑
i |ψif |22,p, where the second | · |22,p-norm is taken on a bounded subset

in Rn.

Step 2: Let fj ∈ L2
p(M) be a sequence weakly converging to f . Then ψifj

weakly converges to a function f̃i with support in Supp(ψi). Using Rellich

lemma for functions on Rn with compact support, we obtain that ψifj con-

verges in L2
p−1 to f̃i. Then fj =

∑
iψifj converges in L2

p−1 to
∑
i f̃i.
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