Hodge theory

lecture 6: Laplace operator is Fredholm

NRU HSE, Moscow

Misha Verbitsky, February 10, 2018

Fredholm operators (reminder)

DEFINITION: A continuous operator F: $H_1 \rightarrow H_2$ of Hilbert spaces is called **Fredholm** if its image is closed and kernel and cokernel are finite-dimensional.

REMARK: "Cokernel" of a morphism $F : H_1 \longrightarrow H_2$ of topological vector spaces is often defined as $\frac{H_2}{\operatorname{im} F}$.

DEFINITION: An operator $F : H_1 \longrightarrow H_2$ has finite rank if its image has finite rank.

CLAIM: An operator $F : H_1 \longrightarrow H_2$ is **Fredholm** if and only if there exists $F_1 : H_2 \longrightarrow H_1$ such that **the operators** $Id - FF_1$ **and** $Id - F_1F$ **have finite rank.**

Proof: This is because F defines an isomorphism $F : H_1 / \ker F \longrightarrow \operatorname{im} F$ as shown above.

Fredholm operators and compact operators (reminder)

THEOREM: The set of Fredholm operators is open in the operator norm topology.

Proof. Step 1: Let $F: U \longrightarrow V$ be a Fredholm operator, and $U_1 := (\ker F)^{\perp}$. Since F is invertible on U_1 , it satisfies $\inf_{x \in U_1} \frac{|F(x)|}{|x|} > 2\varepsilon$. Then, for any operator A with $||A|| < \varepsilon$, one has $\inf_{x \in U_1} \frac{|F+A(x)|}{|x|} > \varepsilon$. This implies that $F|_{U_1}$ is an invertible map to its image, which is closed. In particular, $\ker(F+A)$ is finite-dimensional.

Step 2: To obtain that coker(F + A) is finite-dimensional for ||A|| sufficiently small, we observe that $coker(F + A) = ker(F^* + A^*)$, and F^* is also Fredholm. Then Step 1 implies that $ker(F^* + A^*)$ is finite-dimensional for ||A|| sufficiently small.

COROLLARY: Let A be compact and F Fredholm. Then A + F is Fredholm.

Proof: Let A_i be a sequence of operators with finite rank converging to A. Then $F + (A - A_i)$ is Fredholm for i sufficiently big, because the set of Fredholm operators is open. However, a sum of Fredholm operator and operator of finite rank is Fredholm, hence $F + A = F + (A - A_i) + A_i$ is also Fredholm.

Equivalent scalar products on vector spaces

THEOREM: Let V be a vector space, and g_1 , g_2 two scalar products. We say that g_1 is equivalent to g_2 if these two scalar product induce the same topology.

THEOREM: The topology induced by g_1 is equivalent to topology induced by g_2 if and only if $C^{-1}g_2 \leq g_1 \leq Cg_2$ for some C > 0.

Proof: Consider the identity operator $A : (V, g_1) \longrightarrow (V, g_2)$. Its operator norm is $\sup_{x \neq 0} \frac{g_2(x,x)}{g_1(x,x)}$. Operator norm is bounded if and only if Id is continuous, and this is equivalent to existence of a constant C > 0 such that $C^{-1}g_2 \leq g_1$. Existence of a constant C such that $g_1 \leq Cg_2$ is equivalent to continuity of A^{-1} .

Equivalent scalar products and symmetric operators

LEMMA: Let V be a vector space, and g, g_1 scalar products. Consider the symmetric operator B_1 such that $g_1(x,y) = g(B_1(x),y)$. Then

$$\sup_{x} \frac{g(B_{1}(x), B_{1}(x))}{g(x, x)} = \left(\sup_{x} \frac{g_{1}(x, x)}{g(x, x)}\right)^{2}.$$

Proof: By Cauchy-Schwarz, $g(x, x)g(B_1(x), B_1(x)) \ge g(B_1(x), x)^2 = g_1(x, x)^2$. This gives $\sup_x \frac{g(B_1(x), B_1(x))}{g(x, x)^2} \ge \left(\sup_x \frac{g_1(x, x)}{g(x, x)}\right)^2$. On the other hand, $\sup_x \frac{g(B_1(x), B_1(x))}{g(x, x)}$ is norm of B_1^2 , which gives

$$\sup_{x} \frac{g(B_{1}(x), B_{1}(x))}{g(x, x)} = \|B_{1}^{2}\| \leq \|B_{1}\|^{2} = \sup_{x} \left(\frac{g_{1}(x, x)}{g(x, x)}\right)^{2}$$

hence $\sup \frac{g(B_{1}(x), B_{1}(x))}{g(x, x)^{2}} \leq \left(\sup_{x} \frac{g_{1}(x, x)}{g(x, x)}\right)^{2}$.

Equivalent scalar products and Fredholm operators

REMARK: A continuous operator $F : H_1 \longrightarrow H_2$ in vector spaces with scalar product is called **Fredholm** if it is Fredholm on their completions (which are Hilbert spaces).

Corollary 1: Let g, g_1, g_2 be metrics on V, and consider the symmetric operators B_i such that $g_i(x, y) = g(B_i(x), y)$. Denote by \tilde{g}_2 the metric $\tilde{g}_2(x, y) := g_2(B_2(x), B_2(y))$. Then g_1 is equivalent to g_2 if and only if $B_1 : (V, \tilde{g}_2) \longrightarrow (V, g)$ is Fredholm.

Proof: B_1 : $(V, \tilde{g}_2) \longrightarrow (V, g)$ is Fredholm if and only if it for some constant C > 0, one has $C^{-1}g(B_2(x), B_2(x)) \leq g(B_1(x), B_1(x)) \leq Cg(B_2(x), B_2(x))$. This is the same as $C^{-1}g_2(x, x) \leq g_1(x, x) \leq Cg_2(x, x)$ by the previous lemma.

Sobolev's L^2 -norm on $C_c^{\infty}(\mathbb{R}^n)$ (reminder)

DEFINITION: Denote by $C_c^{\infty}(\mathbb{R}^n)$ the space of smooth functions with compact support. For each differential monomial

$$P_{\alpha} = \frac{\partial^{k_1}}{\partial x_1^{k_1}} \frac{\partial^{k_2}}{\partial x_2^{k_2}} \dots \frac{\partial^{k_n}}{\partial x_1^{k_n}}$$

consider the corresponding partial derivative

$$P_{\alpha}(f) = \frac{\partial^{k_1}}{\partial x_1^{k_1}} \frac{\partial^{k_2}}{\partial x_2^{k_2}} \dots \frac{\partial^{k_n}}{\partial x_1^{k_n}} f.$$

Given $f \in C_c^{\infty}(\mathbb{R}^n)$, one defines the L_p^2 Sobolev's norm $|f|_p$ as follows:

$$|f|_s^2 = \sum_{\deg P_\alpha \leqslant p} \int |P_\alpha(f)|^2 \operatorname{Vol}$$

where the sum is taken over all differential monomials P_{α} of degree $\leq p$, and $Vol = dx_1 \wedge dx_2 \wedge ... dx_n$ - the standard volume form.

REMARK: Same formula defines Sobolev's L^2 -norm L_p^2 on the space of smooth functions on a torus T^n .

Connections (reminder)

DEFINITION: Recall that a connection on a bundle *B* is an operator ∇ : $B \longrightarrow B \otimes \Lambda^1 M$ satisfying $\nabla(fb) = b \otimes df + f\nabla(b)$, where $f \longrightarrow df$ is de Rham differential. When *X* is a vector field, we denote by $\nabla_X(b) \in B$ the term $\langle \nabla(b), X \rangle$.

REMARK: In local coordinates, connection on *B* is a sum of differential and a form $A \in \text{End } B \otimes \Lambda^1 M$. Therefore, ∇_X is a derivation along *X* plus linear endomorphism. This implies that **any first order differential operator on** *B* is expressed as a linear combination of the compositions of covariant derivatives ∇_X and linear maps.

This follows from the definition of the first order differential operator: by definition, it is a linear combination of partial derivatives combined with linear maps.

Connection and a tensor product (reminder)

REMARK: A connection ∇ on B gives a connection $B^* \xrightarrow{\nabla^*} \Lambda^1 M \otimes B^*$ on the dual bundle, by the formula

$$d(\langle b,\beta\rangle) = \langle \nabla b,\beta\rangle + \langle b,\nabla^*\beta\rangle$$

These connections are usually denoted by the same letter ∇ .

REMARK: For any tensor bundle $\mathcal{B}_1 := B^* \otimes B^* \otimes ... \otimes B^* \otimes B \otimes B \otimes ... \otimes B$ a connection on *B* defines a connection on \mathcal{B}_1 using the Leibniz formula:

$$\nabla(b_1 \otimes b_2) = \nabla(b_1) \otimes b_2 + b_1 \otimes \nabla(b_2).$$

L_p^2 -metrics and connections

DEFINITION: Let *F* be a vector bundle on a compact manifold. The L_p^2 topology on the space of sections of *F* is a topology defined by the norm $|f|_p$ with $|f|_p^2 = \sum_{i=0}^p \int_M |\nabla^i f|^2 \operatorname{Vol}_M$, for some connection and scalar product on *F* and $\Lambda^1 M$.

REMARK: The metric $|f|_p^2$ is equivalent to the Sobolev's L_p^2 -metric on $C^{\infty}(M)$. Indeed, all partial derivatives of a function f are expressed through $\nabla^i f$, hence an L^2 -bound on partial derivatives gives L^2 -bound on $\nabla^i f$, and is given by such a bound.

From now on, we write (x, y) instead of $\int_M (x, y) \operatorname{Vol}_M$. This metric is also denoted L^2 ; the space of sections of B with this metric (B, L^2) .

DEFINITION: We define the **Sobolev's** L_p^2 -metric on vector bundles by $L_p^2(x,y) = \sum_{i=0}^p (\nabla^i(x), \nabla^i(y)).$

L_p^2 -metrics and Fredholm maps

First, let's show that we can drop all terms in this sum, except two.

Theorem 1: The Sobolev's L_p^2 -metric is equivalent to $g(x,y) := (\nabla^p(x), \nabla^p(y)) + (x,y).$

Proof. Step 1: Let $D_1 = \sum_{i=0}^p \nabla^i$ mapping B to $\left(\bigoplus_{i=0}^p (\Lambda^1)^{\otimes p}\right) \otimes B$ and $D_2(x) = \nabla^p + x$ mapping B to $(\Lambda^1 M)^{\otimes p} \otimes B \oplus B$. Then $L_p^2(x, y) = (D_1(x), y)$ and $g(x, y) = (D_2(x), y)$. Notice that $L_p^2(x, y) = (D_1^*D_1x, y)$ and $g(x, y) = (D_2^*D_2x, y)$.

Step 2: To prove that these two metrics are equivalent, we need to show that $D_2^*D_2$: $(B,h) \longrightarrow (B,L^2)$ is Fredholm, where $h(x,y) = (D_1^*D_1x, D_1^*D_1y)$ (Corollary 1).

Step 3: On a flat torus, the metric h is equivalent to L^2_{2p} . Using the same argument as proves the Rellich lemma, we obtain that any differential operator Φ of order $\langle 2p$ defines a compact operator $\Phi : (B, h) \longrightarrow (B, L^2)$.

Step 4: The map $D_1^*D_1 : (B,h) \longrightarrow (B,L^2)$ is by definition an isometry, and $D_1^*D_1 - D_2^*D_2$ is a differential operator of lower order, which is compact as a map $(B,h) \longrightarrow (B,L^2)$ by the Rellich lemma. Then $D_2^*D_2 - D_1^*D_1$ is a compact operator, and $D_2^*D_2$ is Fredholm whenever $D_1^*D_1$ is Fredholm.

Hodge theory, lecture 6

L_p^2 -metrics and symbols of elliptic operators

The same argument proves the following result.

THEOREM: Let *B* be a vector bundle, and $D: B \to B$ a differential operator which has the same symbol as $(\nabla^p)^* \nabla^p$. Then $D: (B, L^2_{2p}) \to (B, L^2)$ is Fredholm.

Proof. Step 1: Denote by U the differential operator $(\nabla^{2p})^*\nabla^{2p}$. To show that D: $(B, L_{2p}^2) \longrightarrow (B, L^2)$ is Fredholm, it would suffice to prove that the metric (x, y) + (D(x), D(y)) is equivalent to $L_{2p}^2(x, y)$. The L_{2p}^2 -metric is equivalent to (x, y) + (U(x), y), as shown in Theorem 1.

Step 2: For any two differential operators A, B, symbol of AB is equal to the symbol of BA. Therefore, the symbol of $U = (\nabla^{2p})^* \nabla^{2p}$ is equal to the symbol of $(\nabla^p)^* \nabla^p (\nabla^p)^* \nabla^p$ and this is equal to the symbol of D^*D . This implies that $U - D^*D$ is an operator of order less than 2p, hence defines a compact map $(B, L_{2p}^2) \longrightarrow (B, L^2)$. Therefore, the metric $(x, y) + (D^*Dx, y)$ is equivalent to (x, y) + (Ux, y) which is equivalent to L_{2p}^2 -metric, as shown in Theorem 1.

Laplace operators

DEFINITION: Let *M* be a Riemannian manifold, and $d : \Lambda^*(M) \longrightarrow \Lambda^{*+1}(M)$ de Rham differential. Then $dd^* + d^*d$ is called **the Laplacian**.

DEFINITION: Let M be a Riemannian manifold, and B a bundle with orthogonal metric and a connection $\nabla : B \longrightarrow B \otimes \Lambda^1 M$. Using the formula $\nabla(b \otimes \eta) = \nabla(b) \wedge \eta + b \otimes d\eta$, we extend ∇ to an operator $\nabla : B \otimes \Lambda^i M \longrightarrow B \otimes \Lambda^{i+1}M$ satisfying the Leibnitz equation. This operator is denoted d_{∇} to distinguish it from the connection. The Laplacian with coefficients in B is $d_{\nabla}d_{\nabla}^* + d_{\nabla}^*d_{\nabla}$.

THEOREM: The Laplacian has the same symbol $\sigma \in \text{Sym}^2(TM) \otimes \text{End}(\Lambda^*M \otimes B)$ as $\nabla^*\nabla$, and it is equal to $g^{-1} \otimes \text{Id}_{B \otimes \Lambda^*M}$, where $g^{-1} \in \text{Sym}^2TM$ is the bivector which corresponds to the Riemannian metric.

We shall prove it next week. The following corollary is immediate.

COROLLARY: The Laplacian is a Fredholm map from $(\Lambda^*(M) \otimes B, L_p^2)$ to $(\Lambda^*(M) \otimes B, L_{p-2}^2)$.

Proof: Indeed, Laplacian is a sum of a Fredholm map $(\nabla^*)\nabla$ and a compact operator (all lower order differential operators are compact by Rellich lemma).