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Fredholm operators (reminder)

DEFINITION: A continuous operator F : H1 −→H2 of Hilbert spaces is

called Fredholm if its image is closed and kernel and cokernel are finite-

dimensional.

REMARK: “Cokernel” of a morphism F : H1 −→H2 of topological

vector spaces is often defined as H2
imF

.

DEFINITION: An operator F : H1 −→H2 has finite rank if its image has

finite rank.

CLAIM: An operator F : H1 −→H2 is Fredholm if and only if there exists

F1 : H2 −→H1 such that the operators Id−FF1 and Id−F1F have finite

rank.

Proof: This is because F defines an isomorphism F : H1/kerF −→ imF as

shown above.
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Fredholm operators and compact operators (reminder)

THEOREM: The set of Fredholm operators is open in the operator
norm topology.
Proof. Step 1: Let F : U −→ V be a Fredholm operator, and U1 := (kerF )⊥.
Since F is invertible on U1, it satisfies infx∈U1

|F (x)|
|x| > 2ε. Then, for any

operator A with ‖A‖ < ε, one has infx∈U1
|F+A(x)|
|x| > ε. This implies that

F
∣∣∣U1

is an invertible map to its image, which is closed. In particular,
ker(F +A) is finite-dimensional.

Step 2: To obtain that coker(F +A) is finite-dimensional for ‖A‖ sufficiently
small, we observe that coker(F + A) = ker(F ∗ + A∗), and F ∗ is also Fred-
holm. Then Step 1 implies that ker(F ∗+ A∗) is finite-dimensional for ‖A‖
sufficiently small.

COROLLARY: Let A be compact and F Fredholm. Then A+ F is Fred-
holm.

Proof: Let Ai be a sequence of operators with finite rank converging to
A. Then F + (A − Ai) is Fredholm for i sufficiently big, because the set
of Fredholm operators is open. However, a sum of Fredholm operator and
operator of finite rank is Fredholm, hence F + A = F + (A− Ai) + Ai is also
Fredholm.
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Equivalent scalar products on vector spaces

THEOREM: Let V be a vector space, and g1, g2 two scalar products. We

say that g1 is equivalent to g2 if these two scalar product induce the same

topology.

THEOREM: The topology induced by g1 is equivalent to topology in-

duced by g2 if and only if C−1g2 6 g1 6 Cg2 for some C > 0.

Proof: Consider the identity operator A : (V, g1)−→ (V, g2). Its operator

norm is supx6=0
g2(x,x)
g1(x,x). Operator norm is bounded if and only if Id is con-

tinuous, and this is equivalent to existence of a constant C > 0 such that

C−1g2 6 g1. Existence of a constant C such that g1 6 Cg2 is equivalent to

continuity of A−1.
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Equivalent scalar products and symmetric operators

LEMMA: Let V be a vector space, and g, g1 scalar products. Consider the

symmetric operator B1 such that g1(x, y) = g(B1(x), y). Then

sup
x

g(B1(x), B1(x))

g(x, x)
=

(
sup
x

g1(x, x)

g(x, x)

)2

.

Proof: By Cauchy-Schwarz, g(x, x)g(B1(x), B1(x)) > g(B1(x), x)2 = g1(x, x)2.

This gives supx
g(B1(x),B1(x))

g(x,x)2 >
(
supx

g1(x,x)
g(x,x)

)2
. On the other hand, supx

g(B1(x),B1(x))
g(x,x)

is norm of B2
1, which gives

sup
x

g(B1(x), B1(x))

g(x, x)
= ‖B2

1‖ 6 ‖B1‖2 = sup
x

(
g1(x, x)

g(x, x)

)2

hence sup g(B1(x),B1(x))
g(x,x)2 6

(
supx

g1(x,x)
g(x,x)

)2
.
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Equivalent scalar products and Fredholm operators

REMARK: A continuous operator F : H1 −→H2 in vector spaces with scalar

product is called Fredholm if it is Fredholm on their completions (which are

Hilbert spaces).

Corollary 1: Let g, g1, g2 be metrics on V , and consider the symmetric op-

erators Bi such that gi(x, y) = g(Bi(x), y). Denote by g̃2 the metric g̃2(x, y) :=

g2(B2(x), B2(y). Then g1 is equivalent to g2 if and only if B1 : (V, g̃2)−→ (V, g)

is Fredholm.

Proof: B1 : (V, g̃2)−→ (V, g) is Fredholm if and only if it for some constant

C > 0, one has C−1g(B2(x), B2(x)) 6 g(B1(x), B1(x)) 6 Cg(B2(x), B2(x)).

This is the same as C−1g2(x, x) 6 g1(x, x) 6 Cg2(x, x) by the previous lemma.
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Sobolev’s L2-norm on C∞c (Rn) (reminder)

DEFINITION: Denote by C∞c (Rn) the space of smooth functions with com-

pact support. For each differential monomial

Pα =
∂k1

∂x
k1
1

∂k2

∂x
k2
2

...
∂kn

∂xkn1

consider the corresponding partial derivative

Pα(f) =
∂k1

∂x
k1
1

∂k2

∂x
k2
2

...
∂kn

∂xkn1

f.

Given f ∈ C∞c (Rn), one defines the L2
p Sobolev’s norm |f |p as follows:

|f |2s =
∑

degPα6p

∫
|Pα(f)|2 Vol

where the sum is taken over all differential monomials Pα of degree 6 p, and

Vol = dx1 ∧ dx2 ∧ ...dxn - the standard volume form.

REMARK: Same formula defines Sobolev’s L2-norm L2
p on the space of

smooth functions on a torus Tn.
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Connections (reminder)

DEFINITION: Recall that a connection on a bundle B is an operator ∇ :

B −→B ⊗ Λ1M satisfying ∇(fb) = b⊗ df + f∇(b), where f −→ df is de Rham

differential. When X is a vector field, we denote by ∇X(b) ∈ B the term

〈∇(b), X〉.

REMARK: In local coordinates, connection on B is a sum of differential and

a form A ∈ EndB ⊗ Λ1M . Therefore, ∇X is a derivation along X plus linear

endomorphism. This implies that any first order differential operator on

B is expressed as a linear combination of the compositions of covariant

derivatives ∇X and linear maps.

This follows from the definition of the first order differential operator: by

definition, it is a linear combination of partial derivatives combined

with linear maps.
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Connection and a tensor product (reminder)

REMARK: A connection ∇ on B gives a connection B∗ ∇∗−→ Λ1M ⊗ B∗ on

the dual bundle, by the formula

d(〈b, β〉) = 〈∇b, β〉+ 〈b,∇∗β〉

These connections are usually denoted by the same letter ∇.

REMARK: For any tensor bundle B1 := B∗⊗B∗⊗ ...⊗B∗⊗B ⊗B ⊗ ...⊗B a

connection on B defines a connection on B1 using the Leibniz formula:

∇(b1 ⊗ b2) = ∇(b1)⊗ b2 + b1 ⊗∇(b2).
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L2
p-metrics and connections

DEFINITION: Let F be a vector bundle on a compact manifold. The L2
p-

topology on the space of sections of F is a topology defined by the norm

|f |p with |f |2p =
∑p
i=0

∫
M |∇if |2 VolM , for some connection and scalar product

on F and Λ1M .

REMARK: The metric |f |2p is equivalent to the Sobolev’s L2
p-metric on

C∞(M). Indeed, all partial derivatives of a function f are expressed through

∇if , hence an L2-bound on partial derivatives gives L2-bound on ∇if , and is

given by such a bound.

From now on, we write (x, y) instead of
∫
M(x, y) VolM. This metric is also

denoted L2; the space of sections of B with this metric (B,L2).

DEFINITION: We define the Sobolev’s L2
p-metric on vector bundles by

L2
p(x, y) =

∑p
i=0(∇i(x),∇i(y)).
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L2
p-metrics and Fredholm maps

First, let’s show that we can drop all terms in this sum, except two.

Theorem 1: The Sobolev’s L2
p-metric is equivalent to

g(x, y) := (∇p(x),∇p(y)) + (x, y).

Proof. Step 1: Let D1 =
∑p
i=0∇

i mapping B to
(⊕p

i=0(Λ1)⊗p
)
⊗ B and

D2(x) = ∇p + x mapping B to (Λ1M)⊗p ⊗B ⊕B. Then L2
p(x, y) = (D1(x), y)

and g(x, y) = (D2(x), y). Notice that L2
p(x, y) = (D∗1D1x, y) and g(x, y) =

(D∗2D2x, y).

Step 2: To prove that these two metrics are equivalent, we need to show
that D∗2D2 : (B, h)−→ (B,L2) is Fredholm, where h(x, y) = (D∗1D1x,D

∗
1D1y)

(Corollary 1).

Step 3: On a flat torus, the metric h is equivalent to L2
2p. Using the same

argument as proves the Rellich lemma, we obtain that any differential operator
Φ of order < 2p defines a compact operator Φ : (B, h)−→ (B,L2).

Step 4: The map D∗1D1 : (B, h)−→ (B,L2) is by definition an isometry, and
D∗1D1 −D∗2D2 is a differential operator of lower order, which is compact as a
map (B, h)−→ (B,L2) by the Rellich lemma. Then D∗2D2−D∗1D1 is a compact
operator, and D∗2D2 is Fredholm whenever D∗1D1 is Fredholm.
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L2
p-metrics and symbols of elliptic operators

The same argument proves the following result.

THEOREM: Let B be a vector bundle, and D : B −→B a differential oper-

ator which has the same symbol as (∇p)∗∇p. Then D : (B,L2
2p)−→ (B,L2)

is Fredholm.

Proof. Step 1: Denote by U the differential operator (∇2p)∗∇2p. To show

that D : (B,L2
2p)−→ (B,L2) is Fredholm, it would suffice to prove that

the metric (x, y) + (D(x), D(y)) is equivalent to L2
2p(x, y). The L2

2p-metric is

equivalent to (x, y) + (U(x), y), as shown in Theorem 1.

Step 2: For any two differential operators A,B, symbol of AB is equal to

the symbol of BA. Therefore, the symbol of U = (∇2p)∗∇2p is equal to the

symbol of (∇p)∗∇p(∇p)∗∇p and this is equal to the symbol of D∗D. This

implies that U − D∗D is an operator of order less than 2p, hence defines a

compact map (B,L2
2p)−→ (B,L2). Therefore, the metric (x, y) + (D∗Dx, y) is

equivalent to (x, y) + (Ux, y) which is equivalent to L2
2p-metric, as shown in

Theorem 1.
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Laplace operators

DEFINITION: Let M be a Riemannian manifold, and d : Λ∗(M)−→ Λ∗+1(M)
de Rham differential. Then dd∗+ d∗d is called the Laplacian.

DEFINITION: Let M be a Riemannian manifold, and B a bundle with or-
thogonal metric and a connection ∇ : B −→B ⊗ Λ1M . Using the formula
∇(b⊗ η) = ∇(b)∧ η+ b⊗ dη, we extend ∇ to an operator ∇ : B⊗ΛiM −→B⊗
Λi+1M satisfying the Leibnitz equation. This operator is denoted d∇ to dis-
tinguish it from the connection. The Laplacian with coefficients in B is
d∇d

∗
∇+ d∗∇d∇.

THEOREM: The Laplacian has the same symbol σ ∈ Sym2(TM) ⊗
End(Λ∗M ⊗ B) as ∇∗∇, and it is equal to g−1 ⊗ IdB⊗Λ∗M, where g−1 ∈
Sym2 TM is the bivector which corresponds to the Riemannian metric.

We shall prove it next week. The following corollary is immediate.

COROLLARY: The Laplacian is a Fredholm map from (Λ∗(M)⊗B,L2
p)

to (Λ∗(M)⊗B,L2
p−2).

Proof: Indeed, Laplacian is a sum of a Fredholm map (∇∗)∇ and a
compact operator (all lower order differential operators are compact by
Rellich lemma).
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