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Fredholm operators (reminder)

DEFINITION: A continuous operator F' : Hi — Ho of Hilbert spaces is
called Fredholm if its image is closed and kernel and cokernel are finite-
dimensional.

REMARK: “Cokernel” of a morphism F : H; — H, of topological

vector spaces is often defined as ﬁ:QF

DEFINITION: An operator F': H1 — H»> has finite rank if its image has
finite rank.

CLAIM: An operator F': Hy — Ho Is Fredholm if and only if there exists
Fy . Ho — Hy such that the operators Id —F'F7; and Id —F71F have finite
rank.

Proof: This is because F defines an isomorphism F : Hi/ker F — im F' as
shown above. m
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Fredholm operators and compact operators (reminder)

THEOREM: The set of Fredholm operators is open in the operator
norm topology.
Proof. Step 1: Let F: U — V be a Fredholm OB?erator, and Uy := (ker F)+.

Since F' is invertible on Uy, it satisfies infer1 é}f)' > 2e. Then, for any
operator A with [[A]| < e, one has inf ¢y, |F+‘f|(w)| > . This implies that

F‘U1 IS an invertible map to its image, which is closed. In particular,
ker(F'+ A) is finite-dimensional.

Step 2: To obtain that coker(F + A) is finite-dimensional for ||A|| sufficiently
small, we observe that coker(F + A) = ker(F* + A*), and F* is also Fred-
holm. Then Step 1 implies that ker(F* + A*) is finite-dimensional for | A||
sufficiently small. m

COROLLARY: Let A be compact and F Fredholm. Then A+ F is Fred-
holm.

Proof: Let A; be a sequence of operators with finite rank converging to
A. Then F 4+ (A — A;) is Fredholm for i sufficiently big, because the set
of Fredholm operators is open. However, a sum of Fredholm operator and
operator of finite rank is Fredholm, hence F4+ A=F + (A — A;) + A, is also
Fredholm. =
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Equivalent scalar products on vector spaces

THEOREM: Let V be a vector space, and g1, go two scalar products. We
say that g7 is equivalent to g, if these two scalar product induce the same
topology.

THEOREM: The topology induced by g7 is equivalent to topology in-
duced by ¢, if and only if C~1g, < g1 < Cgo for some C > 0.

Proof: Consider the identity operator A : (V,g1) — (V,g>). Its operator
norm is SUP =0 %. Operator norm is bounded if and only if Id is con-
tinuous, and this is equivalent to existence of a constant C' > 0 such that
C—1lg5 < g1. Existence of a constant C such that g; < Cgo is equivalent to

continuity of A=l m
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Equivalent scalar products and symmetric operators

LEMMA: Let V be a vector space, and g, g1 scalar products. Consider the
symmetric operator By such that g1(z,y) = g(B1(xz),y). Then

g(B1(z), B1(x)) _ g1(z,z)\°
20 gwa) (S‘ip 9(z, x>>
Proof: By Cauchy-Schwarz, g(x,x)g(B1(x), Bl(:c)) g(B1(z),2)2 = g1(z, z)2.

This gives sup, 2B > (sup, gl(ggg) On the other hand, sup, {F1().51(x))

is norm of B2, which gives

9(B1 (), B1())
sup = ||B2]| < [|B1]|? = sup
2 g(,a) z

(B1(2),B1(z)) ~ (z,x)
hence sup ¢ 1(x x)l (supx ggl(m x)> . u

gl<w,x>>2
g(z,z)




Hodge theory, lecture 6 M. Verbitsky

Equivalent scalar products and Fredholm operators

REMARK: A continuous operator F': Hqy — Ho in vector spaces with scalar
product is called Fredholm if it is Fredholm on their completions (which are
Hilbert spaces).

Corollary 1: Let g,91,9> be metrics on V, and consider the symmetric op-
erators B; such that g;(x,y) = g(B;(x),y). Denote by g> the metric g>(x,y) :=
g>(B>(x), B>(y). Then g7 is equivalent to g ifandonly if B; : (V,g>) — (V, g)
Is Fredholm.

Proof: By : (V,go) — (V,g) is Fredholm if and only if it for some constant
C > 0, one has C~1g(Ba(z), B2(x)) < g(Bi(z), Bi(x)) < Cg(Bz(x), B2(2)).
This is the same as C 1go(z,2) < g1(z, ) < Cgo(x,z) by the previous lemma.
u
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Sobolev’s L2-norm on C°(R™) (reminder)

DEFINITION: Denote by CZ°(R™) the space of smooth functions with com-
pact support. For each differential monomial

oF1 gk ghn

O o2 Oxir

consider the corresponding partial derivative

Pa:

oF1 gk2  ghn
Po(f) = i
Oxy' Oxy> Oxy

Given f € C°(R™), one defines the Lg Sobolev’s norm |f|, as follows:

2= [1PapPPVo

deg Pa<p
where the sum is taken over all differential monomials P, of degree < p, and
Vol = dxq ANdxo A ...dxy, - the standard volume form.

REMARK: Same formula defines Sobolev’s L2-norm Lz% on the space of
smooth functions on a torus 7.
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Connections (reminder)

DEFINITION: Recall that a connection on a bundle B is an operator V :
B — B® A M satisfying V(fb) = b df + fV(b), where f — df is de Rham
differential. When X is a vector field, we denote by Vx(b) € B the term
(V(b), X).

REMARK: In local coordinates, connection on B is a sum of differential and
a form A € End B® AlM. Therefore, Vy is a derivation along X plus linear
endomorphism. This implies that any first order differential operator on
B is expressed as a linear combination of the compositions of covariant
derivatives Vx and linear maps.

This follows from the definition of the first order differential operator: by
definition, it is a linear combination of partial derivatives combined
with linear maps.
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Connection and a tensor product (reminder)

REMARK: A connection V on B gives a connection B* l*> ALM @ B* on

the dual bundle, by the formula
d({b, B)) = (Vb,B) + (b, V*[)

These connections are usually denoted by the same letter V.

REMARK: For any tensor bundle B .= B*®B*"®..QB* R BQB®..®B a
connection on B defines a connection on B; using the Leibniz formula:

V(b1 ®bp) =V (b1) ®bo+ b1 @ V(b2).
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L]%—metrics and connections

DEFINITION: Let F' be a vector bundle on a compact manifold. The Lg—
topology on the space of sections of F' is a topology defined by the norm
|flp with [f]5 = Zf:o Iar IVEfI2 Vol s, for some connection and scalar product
on F and AlM.

REMARK: The metric |f|7 is equivalent to the Sobolev’s L2-metric on
C*>°(M). Indeed, all partial derivatives of a function f are expressed through
Vif, hence an L2-bound on partial derivatives gives L2-bound on Vf, and is
given by such a bound.

From now on, we write (z,y) instead of [,;(z,y) Vol;;. This metric is also
denoted LZ?; the space of sections of B with this metric (B, L?).

DEFINITION: We define the Sobolev’s L7-metric on vector bundles by
Ly (z,y) = Si_o(V'(@), V().
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Lg—metrics and Fredholm maps
First, let’'s show that we can drop all terms in this sum, except two.

Theorem 1: The Sobolev’s Lg—metric IS equivalent to
g(z,y) = (VP(z), VP(y)) + (z,y).

Proof. Step 1: Let D; = Zf:o V! mapping B to (@fzo(/\l)@P) ® B and
Dy(z) = VP 4+ z mapping B to (A'M)®P @ B@® B. Then L2(z,y) = (D1(z),y)
and g(z,y) = (D>(x),y). Notice that L%(x,y) = (DiDix,y) and g(z,y) =
(D5Dox,y).

Step 2: To prove that these two metrics are equivalent, we need to show
that DD, : (B,h) — (B, L?) is Fredholm, where h(z,y) = (D%D1iz, DiD1y)
(Corollary 1).

Step 3: On a flat torus, the metric h is equivalent to Lgp. Using the same
argument as proves the Rellich lemma, we obtain that any differential operator
& of order < 2p defines a compact operator @ : (B,h) — (B, L?).

Step 4: The map DiD; : (B,h) — (B, L?) is by definition an isometry, and
DDy — D3D5 is a differential operator of lower order, which is compact as a
map (B, h) — (B, L?) by the Rellich lemma. Then D3D,— D3}D; is a compact
operator, and D3D5 is Fredholm whenever DD is Fredholm. =
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Lg—metrics and symbols of elliptic operators
The same argument proves the following result.

THEOREM: Let B be a vector bundle, and D : B — B a differential oper-
ator which has the same symbol as (VP)*VP. Then D : (B,Lgp) — (B, L?)
IS Fredholm.

Proof. Step 1: Denote by U the differential operator (V2P)*V2P. To show
that D : (B,Lgp)—>(B,L2) is Fredholm, it would suffice to prove that
the metric (z,y) + (D(x), D(y)) is equivalent to L%p(:c,y). The L%p-metric is
equivalent to (z,y) + (U(x),y), as shown in Theorem 1.

Step 2: For any two differential operators A, B, symbol of AB is equal to
the symbol of BA. Therefore, the symbol of U = (V2P)*V2P is equal to the
symbol of (VP)*VP(VP)*VP and this is equal to the symbol of D*D. This
implies that U — D*D is an operator of order less than 2p, hence defines a
compact map (B,L%p) —» (B, L?). Therefore, the metric (z,y) + (D*Dz,y) is
equivalent to (z,vy) + (Uz,y) which is equivalent to Lgp—metric, as shown in
Theorem 1. m

12



Hodge theory, lecture 6 M. Verbitsky
Laplace operators

DEFINITION: Let M be a Riemannian manifold, and d : A*(M) — A*1T1(M)
de Rham differential. Then dd* + d*d is called the Laplacian.

DEFINITION: Let M be a Riemannian manifold, and B a bundle with or-
thogonal metric and a connection V: B—B® ALM Using the formula
Vbon) = V() An+bxdn, we extend V to an operator V: BN'M — B®
a3 satisfying the Leibnitz equation. This operator is denoted dy to dis-
tinguish it from the connection. The Laplacian with coefficients in B is
dvd*v —+ d*vdv-

THEOREM: The Laplacian has the same symbol ¢ € Sym?(TM) &
End(A*M ® B) as V*V, and it is equal to g~ ! ® Idggp+y, Where g=1 ¢
Sym2TM is the bivector which corresponds to the Riemannian metric.

We shall prove it next week. The following corollary is immediate.

COROLLARY: The Laplacian is a Fredholm map from (A*(M) ® B, L3)
to (A*(M) ® B, L2_,).

Proof: Indeed, Laplacian is a sum of a Fredholm map (V*)V and a
compact operator (all lower order differential operators are compact by
Rellich lemma). =
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