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REMINDER: de Rham algebra

DEFINITION: Let Λ∗M denote the vector bundle with the fiber Λ∗T ∗xM
at x ∈ M (Λ∗T ∗M is the Grassmann algebra of the cotangent space T ∗xM).
The sections of ΛiM are called differential i-forms. The algebraic operation
“wedge product” defined on differential forms is C∞M-linear; the space Λ∗M
of all differential forms is called the de Rham algebra.

REMARK: Λ0M = C∞M .

THEOREM: There exists a unique operator C∞M d−→ Λ1M
d−→ Λ2M

d−→
Λ3M

d−→ ... satisfying the following properties

1. On functions, d is equal to the differential.
2. d2 = 0
3. d(η ∧ ξ) = d(η)∧ ξ+ (−1)η̃η ∧ d(ξ), where η̃ = 0 where η ∈ λ2iM is an even
form, and η ∈ λ2i+1M is odd.

DEFINITION: The operator d is called de Rham differential.

DEFINITION: A form η is called closed if dη = 0, exact if ηin im d. The
group ker d

im d is called de Rham cohomology of M .
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Supercommutator (reminder)

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a, b} = ab− (−1)ã̃bba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g∗ equipped with a bilinear graded map {·, ·} : g∗ × g∗ −→ g∗ which
is graded anticommutative: {a, b} = −(−1)ã̃b{b, a} and satisfies the super
Jacobi identity {c, {a, b}} = {{c, a}, b}+ (−1)ãc̃{a, {c, b}}

EXAMPLE: Consider the algebra End(A∗) of operators on a graded vector
space, with supercommutator as above. Then End(A∗), {·, ·} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d, d} =
0, and L an even or odd element. Then {{L, d}, d} = 0.

Proof: 0 = {L, {d, d}} = {{L, d}, d}+ (−1)L̃{d, {L, d}} = 2{{L, d}, d}.
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Hodge ∗ operator

Let V be a vector space. A metric g on V induces a natural metric
on each of its tensor spaces: g(x1 ⊗ x2 ⊗ ... ⊗ xk, x

′
1 ⊗ x′2 ⊗ ... ⊗ x′k) =

g(x1, x
′
1)g(x2, x

′
2)...g(xk, x

′
k).

This gives a natural positive definite scalar product on differential forms
over a Riemannian manifold (M, g): g(α, β) :=

∫
M g(α, β) VolM

Another non-degenerate form is provided by the Poincare pairing:
α, β −→

∫
M α ∧ β.

DEFINITION: Let M be a Riemannian n-manifold. Define the Hodge ∗
operator ∗ : ΛkM −→ Λn−kM by the following relation: g(α, β) =

∫
M α ∧ ∗β.

REMARK: The Hodge ∗ operator always exists. It is defined explicitly in
an orthonormal basis ξ1, ..., ξn ∈ Λ1M :

∗(ξi1 ∧ ξi2 ∧ ... ∧ ξik) = (−1)sξj1 ∧ ξj2 ∧ ... ∧ ξjn−k,
where ξj1, ξj2, ..., ξjn−k is a complementary set of vectors to ξi1, ξi2, ..., ξik, and
s the signature of a permutation (i1, ..., ik, j1, ..., jn−k).

REMARK: ∗2
∣∣∣Λk(M) = (−1)k(n−k) IdΛk(M)
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d∗ = (−1)nk ∗ d∗

CLAIM: On a compact Riemannian n-manifold, one has d∗
∣∣∣ΛkM = (−1)nk∗d∗,

where d∗ denotes the adjoint operator, which is defined by the equation

(dα, γ) = (α, d∗γ).

Proof: Since

0 =
∫
M
d(α ∧ β) =

∫
M
d(α) ∧ β + (−1)α̃α ∧ d(β),

one has (dα, ∗β) = (−1)α̃(α, ∗dβ). Setting γ := ∗β, we obtain

(dα, γ) = (−1)α̃(α, ∗d(∗)−1γ) = (−1)α̃(−1)α̃(ñ−α̃)(α, ∗d∗γ) = (−1)α̃ñ(α, ∗d∗γ).

REMARK: Since in all applications which we consider, n is even, I would

from now on ignore the sign (−1)nk.
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Hodge theory

DEFINITION: The anticommutator ∆ := {d, d∗} = dd∗ + d∗d is called the

Laplacian of M . It is self-adjoint and positive definite: (∆x, x) = (dx, dx) +

(d∗x, d∗x). Also, ∆ commutes with d and d∗ (Lemma 1).

THEOREM: (The main theorem of Hodge theory)

There is a basis in the Hilbert space L2(Λ∗(M)) consisting of eigenvec-

tors of ∆.

THEOREM: (“Elliptic regularity for ∆”) Let α ∈ L2(Λk(M)) be an eigen-

vector of ∆. Then α is a smooth k-form.

These two theorems will be proven in the next lecture.
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De Rham cohomology (reminder)

DEFINITION: The space Hi(M) :=
ker d

∣∣
ΛiM

d(Λi−1M)
is called the de Rham coho-

mology of M .

DEFINITION: A form α is called harmonic if ∆(α) = 0.

REMARK: Let α be a harmonic form. Then (∆x, x) = (dx, dx) + (d∗x, d∗x),

hence α ∈ ker d ∩ ker d∗

REMARK: The projection Hi(M)−→Hi(M) from harmonic forms to

cohomology is injective. Indeed, a form α lies in the kernel of such projection

if α = dβ, but then (α, α) = (α, dβ) = (d∗α, β) = 0.

THEOREM: The natural map Hi(M)−→Hi(M) is an isomorphism

(see the next page).

REMARK: Poincare duality immediately follows from this theorem.
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Hodge theory and the cohomology (reminder)

THEOREM: The natural map Hi(M)−→Hi(M) is an isomorphism.

Proof. Step 1: Since d2 = 0 and (d∗)2 = 0, one has {d,∆} = 0. This means

that ∆ commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition Λ∗(M)=̃
⊕
αH∗α(M), where α

runs through all eigenvalues of ∆, and H∗α(M) is the corresponding eigenspace.

For each α, de Rham differential defines a complex

H0
α(M)

d−→ H1
α(M)

d−→ H2
α(M)

d−→ ...

Step 3: On H∗α(M), one has dd∗+ d∗d = α. When α 6= 0, and η closed, this

implies dd∗(η) + d∗d(η) = dd∗η = αη, hence η = dξ, with ξ := α−1d∗η. This

implies that the complexes (H∗α(M), d) don’t contribute to cohomology.

Step 4: We have proven that

H∗(Λ∗M,d) =
⊕
α
H∗(H∗α(M), d) = H∗(H∗0(M), d) = H∗(M).
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The ring of symbols

THEOREM: Consider the filtration Diff0(M) ⊂ Diff1(M) ⊂ Diff2(M) ⊂ ...

on the ring of differential operators. Then its associated graded ring is
isomorphic to the ring

⊕
iSymi(TM).

Proof: Lecture 2.

DEFINITION: Let D be a differential operator of order p. Its class in
Diffp(M)/Diffp−1(M) is called symbol of D. Symbol belongs to Symp(TM).
Similarly, for D ∈ Diffp(F,G), symbol is an element of Diffp(F,G)/Diffp−1(F,G) =
Symp(TM)⊗C∞M Hom(F,G).

REMARK: symb(AB) = symb(BA). Indeed, the ring of symbols⊕
iDiffi(M)/Diffi−1(M) is commutative.

DEFINITION: Let g ∈ Sym2(T ∗M) be a Riemannian form. Using g to
identify TM and T ∗M , we can consider g as an element in Sym2(TM). This
“Riemannian bivector” is denoted g−1.

We are going to compute the symbol of the Laplacian operator and the “rough
Laplacian” ∇∗∇. Today we prove the following “Weitzenböck formula”:

THEOREM: symb(∆) = symb(∇∗∇) = g−1 ⊗ IdΛ∗(M).
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Roland Weitzenböck: 26 May 1885 - 24 July 1955

Left to right: Diederik Korteweg, Roland Weitzenböck,

Remmelt Sissingh, 1926 in Amsterdam.

...Weitzenböck was elected member of the Royal Netherlands Academy of Arts and Sciences
(KNAW) in May 1924, but suspended in May 1945 because of his attitude during the war.
Weitzenböck had been a member of the National Socialist Movement in the Netherlands.

In 1923 Weitzenböck published a modern monograph on the theory of invariants on manifolds
that included tensor calculus. In the Preface of this monograph one can read an offensive
acrostic. One finds that the first letter of the first word in the first 21 sentences spell out:

NIEDER MIT DEN FRANZOSEN

He also published papers on torsion. In fact, in his paper ”Differential Invariants in Einstein’s

Theory of Tele-parallelism” Weitzenböck had given a supposedly complete bibliography of

papers on torsion without mentioning Élie Cartan.
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Symbol of the connection

CLAIM: Let d : C∞M −→ Λ1M be the differential. Then its symbol

symb(d) ∈ TM ⊗ Hom(C∞M,Λ1M) is identity: symb(d) = IdΛ1M ∈ TM ⊗
Λ1M = End(Λ1M).

Proof: d =
∑
i dxi

d
dxi

, representing identity in Λ1M ⊗ TM .

REMARK: The same is true for the symbol of the connection ∇ : B −→B⊗
Λ1(TM):

symb(∇) = IdΛ1M ⊗ IdB

Indeed, in local coordinates the connection is written as ∇ = d+A, and

A is a differential operator of order 0, hence it does not contribute to symb.

EXERCISE: Let D : B −→B ⊗ Λ1(TM) be a differential operator with

symb(D) = symb(∇). Prove that it is a connection.
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Symbol of d and d∗

Claim 1: Let A : F −→G be a linear operator, and D : G−→H a differential
operator. Then symb(AD) = A(symb(D)).

Claim 2: Let e : Λ1(M)⊗Λ∗(M)−→ Λ∗+1(M) be the multiplication operator,
and d : Λ∗(M)−→ Λ∗+1(M) de Rham differential. Then symb(d)(θ) = e(θ) ∈
End(Λ∗(M)) for any θ ∈ T ∗M. Here we understand symbol as a map from
T ∗(M) to End(Λ∗(M)).

Proof: In local coordinates, one has d =
∑
i e(dxi)

d
dxi

.

DEFINITION: Let i be the “interior multiplication”,

i : Λ1(M)⊗ Λ∗(M)−→ Λ∗−1(M)

with i(θ) := (−1)nk ∗ e(θ)∗. This is an operator which takes a 1-form, uses
Riemannian metric to produce a vector field, and takes the convolution with
this vector field.

CLAIM: Let d∗ = (−1)nk ∗ d∗. Then symb(d∗)(θ) = i(θ) ∈ End(Λ∗(M)).

Proof: Follows from Claim 1, Claim 2.
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Symbol of the Laplacian

CLAIM: Consider a Riemannian manifold (M, g). Let

e : Λ1(M)⊗ Λ∗(M)−→ Λ∗+1(M), i : Λ1(M)⊗ Λ∗(M)−→ Λ∗−1(M)

be the exterior and interior multiplication operators defined above, and x, y ∈
Λ1M . Then the anticommutator {ix, ey} is equal to a multiplication by

a function g̃(x, y), where g̃ = g−1 is the Riemannian form extended to T ∗M
using the natural isomorphism T ∗M = TM .

Proof: Let x1, ..., xn be an orthonormal basis in Λ1(M). Then {ix1, ex1} takes
a monomial α without x1 to ix1ex1α = α and takes a monomial x1 ∧ α to
ex1ix1(x1 ∧ α) = x1 ∧ α. Also, ix1 and ex2 anticommute on all monomials.

COROLLARY: The symbol of ∆ = {d, d∗}, evaluated on x⊗ y, is equal

to {ix, ey} = g̃(x, y).

Proof: Symbol is multiplicative: symb(A) symb(B) = symb(AB). The symbol
of d is e, and the symbol of d∗ is i. This gives

symb(∆)(x⊗ y) = {symb(d), symb(d∗)}(x⊗ y) = {ex, iy} = g̃(x, y).
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Symbol of the rough Laplacian

CLAIM: Consider a Riemannian manifold (M, g), and let ∇ be a connection

on a bundle B. Then symb(∇∗∇), evaluated on x⊗ y ∈ T ∗(M)⊗ T ∗(M), is

equal to g̃(x, y) IdB, where g̃ = g−1 is the Riemannian form extended to T ∗M
using the natural isomorphism T ∗M = TM .

Proof: The symbol of ∇ takes x ∈ T ∗(M) to b−→ b ⊗ x, and the symbol of

∇∗ : B⊗Λ1(M)−→B takes x ∈ T ∗(M) to an operator b⊗y −→ g̃(x, y)b. Using

symb(A) symb(B) = symb(AB), we obtain that symb(∇∗∇) evaluated on x⊗y
is equal to the multiplication by g̃(x, y).
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