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Fredholm operators (reminder)

DEFINITION: A continuous operator F' : Hi — Ho of Hilbert spaces is
called Fredholm if its image is closed and kernel and cokernel are finite-
dimensional.

REMARK: “Cokernel” of a morphism F : H; — H, of topological

vector spaces is often defined as ﬁ:QF

DEFINITION: An operator F': H1 — H»> has finite rank if its image has
finite rank.

CLAIM: An operator F': Hy — Ho Is Fredholm if and only if there exists
Fy . Ho — Hy such that the operators Id —F'F7; and Id —F71F have finite
rank.

Proof: This is because F defines an isomorphism F : Hi/ker F — im F' as
shown above. m
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Connections (reminder)

DEFINITION: Recall that a connection on a bundle B is an operator V :
B — B® A M satisfying V(fb) = b df + fV(b), where f — df is de Rham
differential. When X is a vector field, we denote by Vx(b) € B the term
(V(b), X).

REMARK: In local coordinates, connection on B is a sum of differential and
a form A € End B® AlM. Therefore, Vy is a derivation along X plus linear
endomorphism. This implies that any first order differential operator on
B is expressed as a linear combination of the compositions of covariant
derivatives Vx and linear maps.

This follows from the definition of the first order differential operator: by
definition, it is a linear combination of partial derivatives combined
with linear maps.
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L]%—metrics and connections (reminder)

DEFINITION: Let F' be a vector bundle on a compact manifold. The Lg—
topology on the space of sections of F' is a topology defined by the norm
|flp with [f]5 = Zf:o Iar IVEfI2 Vol s, for some connection and scalar product
on F and AlM.

REMARK: The metric |f|7 is equivalent to the Sobolev’s L2-metric on
C*>°(M). Indeed, all partial derivatives of a function f are expressed through
Vif, hence an L2-bound on partial derivatives gives L2-bound on Vf, and is
given by such a bound.

From now on, we write (z,y) instead of [,;(z,y) Vol;;. This metric is also
denoted LZ?; the space of sections of B with this metric (B, L?).

DEFINITION: We define the Sobolev’s L7-metric on vector bundles by
Ly (z,y) = Si_o(V'(@), V().
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Properties of Lg-metric
T hese results were proven earlier.

CLAIM: The Sobolev’s Lg—metric IS equivalent to
g(z,y) .= (VP(x), VP(y)) + (x,y).

THEOREM: (Rellich lemma) Let M be a compact manifold. Then the
identity map L;(M) — L:_,(M) is compact.

THEOREM: Let B be a vector bundle, and D : B — B a differential oper-
ator which has the same symbol as (VP)*VF. Then D : (B,L3)) — (B, L?)
IS Fredholm.
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Laplace operators (reminder)

DEFINITION: Let M be a Riemannian manifold, and d : A*(M) — A*1T1(M)
de Rham differential. Then A := dd* + d*d is called the Laplacian.

DEFINITION: Let M be a Riemannian manifold, and B a bundle with or-
thogonal metric and a connection V: B—B® ALM Using the formula
Vbon) = V() An+bxdn, we extend V to an operator V: BN'M — B®
a3 satisfying the Leibnitz equation. This operator is denoted dy to dis-
tinguish it from the connection. The Laplacian with coefficients in B is
dvd*v —+ d*vdv-

THEOREM: The Laplacian has the same symbol ¢ € Sym?(TM) &
End(A*M ® B) as V*V, and it is equal to g~ ! ® Idggp+y, Where g=1 ¢
Sym2TM is the bivector which corresponds to the Riemannian metric.

The following corollary is immediate.

COROLLARY: The Laplacian is a Fredholm map from (A*(M) ® B, L3)
to (A*(M) ® B, L2_,).

Proof: Indeed, Laplacian is a sum of a Fredholm map (V*)V and a
compact operator (all lower order differential operators are compact by
Rellich lemma). =
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Green operator

CLAIM: Let A : (A*(M),L3) — (A*(M),L?) be the Laplacian operator
Then im A = ker A+, taken W|th respect to the L2-metric.

Proof: Since A is self-adjoint with respect to L2-metric, for each z Y €
(AN (M), L2 5) one has (z,Ay) = 0 & (Az,y) = 0. Therefore, z € kerA &
zliMmMmA. m

COROLLARY: The restriction A : (imA,L3) — (im A, L?) is an isomor-
phism of Hilbert spaces. =

DEFINITION: The Green operator G isa map (A*(M), L2) S8 (A*(M), L2)
defined as A~ on im A and as 0 on ker A = im A+

CLAIM: The Green operator Ga : (A (M), L?) — (A*(M), L?) is self-
adjoint and compact in the usual L2-metric on A*(M).

Proof: Since A is self-adjoint on im A, the same is true for AL However,
when z € im A+, one has 0 = (Gaz,y) = (z, Gay) as shown above. Compact-
ness follows immediately from Rellich Iemma because G is a composition

of a contlnuous operator (A*(M), L2) (/\*(M) L2 5) and a compact map
(N"(M), L3) — (A*(M),L?). =
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Green operator diagonalizes

THEOREM: The Green operator Ga : (A*(M), L?) — (A*(M), L?) can be
diagonalized in an orthonormal basis. Its eigenvalues are non-negative and
converge to 0, and each eigenspace is finite-dimensional.

Proof: Follows from the von Neumann spectral theorem. m
Today I will prove the following theorem.

THEOREM: Let a € L?2(A*(M)) be an eigenvector of Ga, Ga(a) = Aa.
Then o iIs smooth.

Proof: Notice that the identiry map L2(A*(M)) —>L2 A(A\*(M)) is contin-
uous for all « > 0. This gives a natural chain of embeddlngs LQ(/\*(M)) C
L2_1(A*(M)) C C L2(A*(M)). Since Mo = G% (a) belongs to I 2. (N¥(M)),
we have a € ﬂpLQ(/\*(M)). Then the theorem is implied by the following
result of Sobolev, proven later today.

THEOREM: (Sobolev) Any vector in the intersection of all LQ(/\*(M))
is represented by a smooth form: N, L (/\*(M)) = N*(M).

REMARK: The same arguments work for Laplacian with coefficients
In a vector bundle.
8
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Sobolev lemma

DEFINITION: Let B be a bundle over M. Recall that Cl—topology on
the space of sections C!(B) of B of class C! is defined by the norm |b|cp =

EXERCISE: Prove that C!(B) is a Banach space with respect to this
norm.

Sobolev's theorem 1, L%(/\*(M)) = A*(M) is immediately implied by the fol-
lowing lemma.

THEOREM: (Sobolev lemma)

Let {b;} be a sequence of sections of a vector bundle B over a manifold M
with dim M = n, converging to b in L2, where s > 1+ 2. Then it converges
to a section in C!/(B) in C'-topology.

It is proven later today.
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Sergei Lvovich Sobolev
6 October 1908 - 3 January 1989
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Fourier series (reminder)

CLAIM: (”Fourier series”) Functions ep(t) = e2™V-1kl L c 7 on S =
R/Z form an orthonormal basis in the space LQ(Sl) of square-integrable
functions on the circle.

Proof: Orthogonality is clear from [q1e2™V~1ktdt = 0 for all k # 0 (prove
it). To show that the space of Fourier polynomials > aper(t) is dense
in the space of continuous functions on circle, use the Stone-Weierstrass ap-

proximation theorem, applied to the ring R = (sin(mxz), cos(nz)) of functions
obtained from real and imaginary parts of 27V -1kt g

DEFINITION: Fourier monomials on a torus are functions Fj, ;=
exp(2myv—1 X1 lit;), where Iy, ..., 1y € Z.

CLAIM: Fourier monomials form an orthonormal basis in the space
L2(T™) of square-integrable functions on the torus 7.

Proof: The same. =
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Sobolev’s L2-norm on C°(R™) (reminder)

DEFINITION: Denote by CZ°(R™) the space of smooth functions with com-
pact support. For each differential monomial

oF1 gk ghn

O o2 Oxir

consider the corresponding partial derivative

Pa:

oF1 gk2  ghn
Po(f) = i
Oxy' Oxy> Oxy

Given f € C°(R™), one defines the Lg Sobolev’s norm |f|, as follows:

2= [1PapPPVo

deg Pa<p
where the sum is taken over all differential monomials P, of degree < p, and
Vol = dxq ANdxo A ...dxy, - the standard volume form.

REMARK: Same formula defines Sobolev’s L2-norm Lz% on the space of
smooth functions on a torus 7.
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Sobolev’s L2-norm on a torus (reminder)

: =e iti
i 2my/—1 ) Uit
: : : __ 9k gk2  kn
the differential monomials Py, = ———7-... ¢
Ox. L ox~2 Ox"
1™ 05 1

[T, (2my/—1k)li. m

Moreover, Po(Fy,. . 1,) =

COROLLARY: The Fourier monomials are orthogonal in the Sobolev’s LZ%—
metric, and

Byl = Z H (2x1;) ke,

kEi+..+kn=1:1=1

THEOREM: (Rellich lemma for a torus)
The identity map L5 (1") — Lg_l(T"). is compact.
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Sobolev Lemma on a circle

LEMMA: Consider Fourier series on S1: f(t) := Yy me?™V 1. Suppose
that Y ez k27! 1|2 converges. Then Y., 7.e?™V 1 ¥ converges to a func-
tion of class C! in C!-topology.

Proof. Step 1:Ifl = 0, convergence of Y.z k2|72 implies that Y.y eV 1
converges absolutely, because the Cauchy-Schwarz inequality (3 a;b;)° <
ZCLZ-QZI)Z-Q gives after putting a;b; = |Tz'|, a; = Z|Tz|

2 /o —2
N k2|2 > (Z |Tk|) (Z kz)
k k k=0
Therefore it converges in Co—topology.

K
Step 2: % = Y ez klme?™ 1kt and this series converges absolutely when
S kez k2T m|? < oo for the same reason. m

COROLLARY: Let {f;} be a sequence of smooth functions on S! which
converges in L229+1. Then it also converges in CP-topology. =
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Sobolev Lemma on a torus

LEMMA: Consider Fourier series on a torus T":
f= > Thpk,edV 2=kl ()
Suppose that

mn
2 24 2n+
> Tky kel S EETAL ()

converges. Then Y., 7,e?™V 1t converges to a function in C!-topology.

Proof. Step 1: If | = 0, convergence of (**) implies absolute convergence
of (*¥). Indeed, the Cauchy-Schwarz inequality (3 aaba)? < Y a2 Y b2 applied
to anba = |Tal, aa = X k212" 70|, where a = (k1, ..., kn) is @ multi-index, gives

2, 2
) Z’f¢2+2n7k1,...kn|2>( 2. |Tk1,...kn|> ( > ki—z—zn) .
K,k k

kl,...kn 1,...kn

The last sum converges, hence }° |7, .| converges in cO.

Step 2: Same computation as above (left as an exercise). m
15
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Sobolev Lemma

COROLLARY: Let {f;} be a sequence of smooth functions on a torus T"
which converges in L2, with s > [+ Z. Then it also converges in C'-
topology. =

THEOREM: (Sobolev lemma) Let B be a bundle on a compact manifold
M, and {f;} be a sequence of smooth functions which converges in L2, with
s> 1+ % Then it also converges in Cl—topology.

Proof. Step 1: Let {U,} be a finite atlas on M and {v;} the corresponding
partition of unity. We will identify U; with bounded subsets in R™. Then
[fl5 = 3; 1%, f|3, where the second |- [2-norm is taken on a bounded subset in
R™, considered as a subset in a torus.

Step 2: Let {f;} be a sequence of sections of a bundle B converging to f in

L2. Then {¢;f;} converges to ¢;f in L2. Applying Sobolev lemma for torus,
we obtain that {v;f;} converges to v;f in Cl. m
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