Hodge theory

lecture 8: Sobolev lemma

NRU HSE, Moscow

Misha Verbitsky, February 17, 2018

Fredholm operators (reminder)

DEFINITION: A continuous operator F: $H_1 \rightarrow H_2$ of Hilbert spaces is called **Fredholm** if its image is closed and kernel and cokernel are finite-dimensional.

REMARK: "Cokernel" of a morphism $F : H_1 \longrightarrow H_2$ of topological vector spaces is often defined as $\frac{H_2}{\operatorname{im} F}$.

DEFINITION: An operator $F : H_1 \longrightarrow H_2$ has finite rank if its image has finite rank.

CLAIM: An operator $F : H_1 \longrightarrow H_2$ is **Fredholm** if and only if there exists $F_1 : H_2 \longrightarrow H_1$ such that **the operators** $Id - FF_1$ and $Id - F_1F$ have finite rank.

Proof: This is because F defines an isomorphism $F : H_1 / \ker F \longrightarrow \operatorname{im} F$ as shown above.

Connections (reminder)

DEFINITION: Recall that a connection on a bundle *B* is an operator ∇ : $B \longrightarrow B \otimes \Lambda^1 M$ satisfying $\nabla(fb) = b \otimes df + f\nabla(b)$, where $f \longrightarrow df$ is de Rham differential. When *X* is a vector field, we denote by $\nabla_X(b) \in B$ the term $\langle \nabla(b), X \rangle$.

REMARK: In local coordinates, connection on *B* is a sum of differential and a form $A \in \text{End } B \otimes \Lambda^1 M$. Therefore, ∇_X is a derivation along *X* plus linear endomorphism. This implies that **any first order differential operator on** *B* is expressed as a linear combination of the compositions of covariant derivatives ∇_X and linear maps.

This follows from the definition of the first order differential operator: by definition, it is a linear combination of partial derivatives combined with linear maps.

L_p^2 -metrics and connections (reminder)

DEFINITION: Let *F* be a vector bundle on a compact manifold. The L_p^2 topology on the space of sections of *F* is a topology defined by the norm $|f|_p$ with $|f|_p^2 = \sum_{i=0}^p \int_M |\nabla^i f|^2 \operatorname{Vol}_M$, for some connection and scalar product on *F* and $\Lambda^1 M$.

REMARK: The metric $|f|_p^2$ is equivalent to the Sobolev's L_p^2 -metric on $C^{\infty}(M)$. Indeed, all partial derivatives of a function f are expressed through $\nabla^i f$, hence an L^2 -bound on partial derivatives gives L^2 -bound on $\nabla^i f$, and is given by such a bound.

From now on, we write (x, y) instead of $\int_M (x, y) \operatorname{Vol}_M$. This metric is also denoted L^2 ; the space of sections of B with this metric (B, L^2) .

DEFINITION: We define the **Sobolev's** L_p^2 -metric on vector bundles by $L_p^2(x,y) = \sum_{i=0}^p (\nabla^i(x), \nabla^i(y)).$

Properties of L_p^2 -metric

These results were proven earlier.

CLAIM: The Sobolev's L_p^2 -metric is equivalent to $g(x,y) := (\nabla^p(x), \nabla^p(y)) + (x,y).$

THEOREM: (Rellich lemma) Let M be a compact manifold. Then the identity map $L_p^2(M) \longrightarrow L_{p-1}^2(M)$ is compact.

THEOREM: Let *B* be a vector bundle, and *D* : $B \rightarrow B$ a differential operator which has the same symbol as $(\nabla^p)^* \nabla^p$. Then *D* : $(B, L_{2p}^2) \rightarrow (B, L^2)$ is Fredholm.

Laplace operators (reminder)

DEFINITION: Let *M* be a Riemannian manifold, and $d : \Lambda^*(M) \longrightarrow \Lambda^{*+1}(M)$ de Rham differential. Then $\Delta := dd^* + d^*d$ is called **the Laplacian**.

DEFINITION: Let M be a Riemannian manifold, and B a bundle with orthogonal metric and a connection $\nabla : B \longrightarrow B \otimes \Lambda^1 M$. Using the formula $\nabla(b \otimes \eta) = \nabla(b) \wedge \eta + b \otimes d\eta$, we extend ∇ to an operator $\nabla : B \otimes \Lambda^i M \longrightarrow B \otimes \Lambda^{i+1}M$ satisfying the Leibnitz equation. This operator is denoted d_{∇} to distinguish it from the connection. The Laplacian with coefficients in B is $d_{\nabla}d_{\nabla}^* + d_{\nabla}^*d_{\nabla}$.

THEOREM: The Laplacian has the same symbol $\sigma \in \text{Sym}^2(TM) \otimes \text{End}(\Lambda^*M \otimes B)$ as $\nabla^*\nabla$, and it is equal to $g^{-1} \otimes \text{Id}_{B \otimes \Lambda^*M}$, where $g^{-1} \in \text{Sym}^2TM$ is the bivector which corresponds to the Riemannian metric.

The following corollary is immediate.

COROLLARY: The Laplacian is a Fredholm map from $(\Lambda^*(M) \otimes B, L_p^2)$ to $(\Lambda^*(M) \otimes B, L_{p-2}^2)$.

Proof: Indeed, Laplacian is a sum of a Fredholm map $(\nabla^*)\nabla$ and a compact operator (all lower order differential operators are compact by Rellich lemma).

Green operator

CLAIM: Let Δ : $(\Lambda^*(M), L_2^2) \longrightarrow (\Lambda^*(M), L^2)$ be the Laplacian operator **Then** im $\Delta = \ker \Delta^{\perp}$, **taken with respect to the** L^2 -**metric. Proof:** Since Δ is self-adjoint with respect to L^2 -metric, for each $x, y \in (\Lambda^*(M), L_2^2)$ one has $(x, \Delta y) = 0 \Leftrightarrow (\Delta x, y) = 0$. Therefore, $x \in \ker \Delta \Leftrightarrow x \perp \operatorname{im} \Delta$.

COROLLARY: The restriction Δ : $(im \Delta, L_2^2) \rightarrow (im \Delta, L^2)$ is an isomorphism of Hilbert spaces.

DEFINITION: The Green operator G_{Δ} is a map $(\Lambda^*(M), L^2) \xrightarrow{G_{\Delta}} (\Lambda^*(M), L^2)$ defined as Δ^{-1} on im Δ and as 0 on ker $\Delta = \operatorname{im} \Delta^{\perp}$.

CLAIM: The Green operator G_{Δ} : $(\Lambda^*(M), L^2) \longrightarrow (\Lambda^*(M), L^2)$ is selfadjoint and compact in the usual L^2 -metric on $\Lambda^*(M)$.

Proof: Since Δ is self-adjoint on im Δ , the same is true for Δ^{-1} . However, when $x \in \operatorname{im} \Delta^{\perp}$, one has $0 = (G_{\Delta}x, y) = (x, G_{\Delta}y)$ as shown above. Compactness follows immediately from Rellich lemma, because G_{Δ} is a composition of a continuous operator $(\Lambda^*(M), L^2) \xrightarrow{\Delta^{-1}} (\Lambda^*(M), L^2)$ and a compact map $(\Lambda^*(M), L^2) \xrightarrow{\operatorname{Id}} (\Lambda^*(M), L^2)$.

Green operator diagonalizes

THEOREM: The Green operator G_{Δ} : $(\Lambda^*(M), L^2) \longrightarrow (\Lambda^*(M), L^2)$ can be diagonalized in an orthonormal basis. Its eigenvalues are non-negative and converge to 0, and each eigenspace is finite-dimensional.

Proof: Follows from the von Neumann spectral theorem.

Today I will prove the following theorem.

THEOREM: Let $\alpha \in L^2(\Lambda^*(M))$ be an eigenvector of G_{Δ} , $G_{\Delta}(\alpha) = \lambda \alpha$. **Then** α is smooth.

Proof: Notice that the identity map $L_p^2(\Lambda^*(M)) \longrightarrow L_{p-i}^2(\Lambda^*(M))$ is continuous for all $i \ge 0$. This gives a natural chain of embeddings $L_p^2(\Lambda^*(M)) \subset L_{p-1}^2(\Lambda^*(M)) \subset \ldots \subset L^2(\Lambda^*(M))$. Since $\lambda^k \alpha = G_{\Delta}^k(\alpha)$ belongs to $L_{2k}^2(\Lambda^*(M))$, we have $\alpha \in \bigcap_p L_p^2(\Lambda^*(M))$. Then the theorem is implied by the following result of Sobolev, proven later today.

THEOREM: (Sobolev) Any vector in the intersection of all $L_p^2(\Lambda^*(M))$ is represented by a smooth form: $\bigcap_p L_p^2(\Lambda^*(M)) = \Lambda^*(M)$.

REMARK: The same arguments work for Laplacian with coefficients in a vector bundle.

Sobolev lemma

DEFINITION: Let *B* be a bundle over *M*. Recall that C^{l} -topology on the space of sections $C^{l}(B)$ of *B* of class C^{l} is defined by the norm $|b|_{C^{p}} = \sup_{M} \sum_{i=0}^{l} |\nabla^{i}b|$.

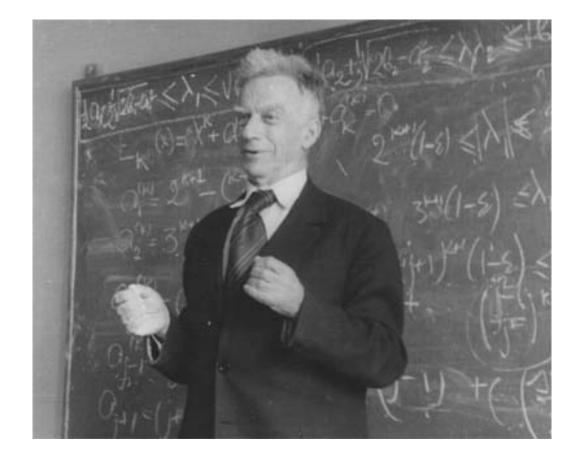
EXERCISE: Prove that $C^{l}(B)$ is a Banach space with respect to this norm.

Sobolev's theorem $\bigcap_p L_p^2(\Lambda^*(M)) = \Lambda^*(M)$ is immediately implied by the following lemma.

THEOREM: (Sobolev lemma)

Let $\{b_i\}$ be a sequence of sections of a vector bundle B over a manifold M with dim M = n, converging to b in L_s^2 , where $s > l + \frac{n}{2}$. Then it converges to a section in $C^l(B)$ in C^l -topology.

It is proven later today.



Sergei Lvovich Sobolev 6 October 1908 - 3 January 1989

Fourier series (reminder)

CLAIM: ("Fourier series") Functions $e_k(t) = e^{2\pi\sqrt{-1}kt}$, $k \in \mathbb{Z}$ on $S^1 = \mathbb{R}/\mathbb{Z}$ form an orthonormal basis in the space $L^2(S^1)$ of square-integrable functions on the circle.

Proof: Orthogonality is clear from $\int_{S^1} e^{2\pi\sqrt{-1}kt} dt = 0$ for all $k \neq 0$ (prove it). To show that the space of Fourier polynomials $\sum_{i=-n}^{n} a_k e_k(t)$ is dense in the space of continuous functions on circle, use the Stone-Weierstrass approximation theorem, applied to the ring $R = \langle \sin(mx), \cos(nx) \rangle$ of functions obtained from real and imaginary parts of $e^{2\pi\sqrt{-1}kt}$.

DEFINITION: Fourier monomials on a torus are functions $F_{l_1,...,l_n} := \exp(2\pi\sqrt{-1}\sum_{i=1}^n l_i t_i)$, where $l_1,...,l_n \in \mathbb{Z}$.

CLAIM: Fourier monomials form an orthonormal basis in the space $L^2(T^n)$ of square-integrable functions on the torus T^n .

Proof: The same. ■

Sobolev's L^2 -norm on $C_c^{\infty}(\mathbb{R}^n)$ (reminder)

DEFINITION: Denote by $C_c^{\infty}(\mathbb{R}^n)$ the space of smooth functions with compact support. For each differential monomial

$$P_{\alpha} = \frac{\partial^{k_1}}{\partial x_1^{k_1}} \frac{\partial^{k_2}}{\partial x_2^{k_2}} \dots \frac{\partial^{k_n}}{\partial x_1^{k_n}}$$

consider the corresponding partial derivative

$$P_{\alpha}(f) = \frac{\partial^{k_1}}{\partial x_1^{k_1}} \frac{\partial^{k_2}}{\partial x_2^{k_2}} \dots \frac{\partial^{k_n}}{\partial x_1^{k_n}} f.$$

Given $f \in C_c^{\infty}(\mathbb{R}^n)$, one defines the L_p^2 Sobolev's norm $|f|_p$ as follows:

$$|f|_s^2 = \sum_{\deg P_\alpha \leqslant p} \int |P_\alpha(f)|^2 \operatorname{Vol}$$

where the sum is taken over all differential monomials P_{α} of degree $\leq p$, and $Vol = dx_1 \wedge dx_2 \wedge ... dx_n$ - the standard volume form.

REMARK: Same formula defines Sobolev's L^2 -norm L_p^2 on the space of smooth functions on a torus T^n .

Sobolev's L^2 -norm on a torus (reminder)

CLAIM: The Fourier monomials $F_{l_1,...,l_n} := e^{2\pi\sqrt{-1}\sum l_i t_i}$ are eigenvectors for the differential monomials $P_{\alpha} = \frac{\partial^{k_1}}{\partial x_1^{k_1}} \frac{\partial^{k_2}}{\partial x_2^{k_2}} \dots \frac{\partial^{k_n}}{\partial x_1^{k_n}}$. Moreover, $P_{\alpha}(F_{l_1,...,l_n}) = \prod_{i=1}^n (2\pi\sqrt{-1} k_i)^{l_i}$.

COROLLARY: The Fourier monomials are orthogonal in the Sobolev's L_p^2 -metric, and

$$|F_{l_1,\dots,l_n}|_{2,p}^2 = \sum_{k_1+\dots+k_n=1}^p \prod_{i=1}^n (2\pi l_i)^{2k_i}.$$

THEOREM: (Rellich lemma for a torus) The identity map $L_p^2(T^n) \longrightarrow L_{p-1}^2(T^n)$. is compact.

Sobolev Lemma on a circle

LEMMA: Consider Fourier series on S^1 : $f(t) := \sum_{k \in \mathbb{Z}} \tau_k e^{2\pi\sqrt{-1}kt}$. Suppose that $\sum_{k \in \mathbb{Z}} k^{2+l} |\tau_k|^2$ converges. Then $\sum_{k \in \mathbb{Z}} \tau_k e^{2\pi\sqrt{-1}kt}$ converges to a function of class C^l in C^l -topology.

Proof. Step 1: If l = 0, convergence of $\sum_{k \in \mathbb{Z}} k^2 |\tau_k|^2$ implies that $\sum_{k \in \mathbb{Z}} \tau_k e^{2\pi\sqrt{-1}kt}$ converges absolutely, because the Cauchy-Schwarz inequality $(\sum a_i b_i)^2 \leq \sum a_i^2 \sum b_i^2$ gives after putting $a_i b_i = |\tau_i|$, $a_i = i |\tau_i|$

$$\sum_{k} k^2 |\tau_k|^2 \ge \left(\sum_{k} |\tau_k|\right)^2 \left(\sum_{k=0}^{\infty} k^{-2}\right)^{-2}$$

Therefore it converges in C^0 -topology.

Step 2: $\frac{d^k f}{dt^k} = \sum_{k \in \mathbb{Z}} k^l \tau_k e^{2\pi \sqrt{-1} kt}$, and this series converges absolutely when $\sum_{k \in \mathbb{Z}} k^{2+l} |\tau_k|^2 < \infty$ for the same reason.

COROLLARY: Let $\{f_i\}$ be a sequence of smooth functions on S^1 which converges in L^2_{p+1} . Then it also converges in C^p -topology.

M. Verbitsky

Sobolev Lemma on a torus

LEMMA: Consider Fourier series on a torus T^n :

$$f = \sum_{k_1, \dots, k_n \in \mathbb{Z}^n} \tau_{k_1, \dots, k_n} e^{2\pi\sqrt{-1} \sum_{i=1}^n k_i t_i} \quad (*)$$

Suppose that

$$\sum_{k_1,\dots,k_n \in \mathbb{Z}^n} |\tau_{k_1,\dots,k_n}|^2 \sum_{i=1}^n k_i^{2+2n+l} \quad (**)$$

converges. Then $\sum_{k \in \mathbb{Z}} \tau_k e^{2\pi \sqrt{-1} kt}$ converges to a function in C^l -topology.

Proof. Step 1: If l = 0, convergence of (**) implies absolute convergence of (*). Indeed, the Cauchy-Schwarz inequality $(\sum a_{\alpha}b_{\alpha})^2 \leq \sum a_{\alpha}^2 \sum b_{\alpha}^2$ applied to $a_{\alpha}b_{\alpha} = |\tau_{\alpha}|, a_{\alpha} = \sum k_i^{2+2n} |\tau_{\alpha}|$, where $\alpha = (k_1, ..., k_n)$ is a multi-index, gives

$$\sum_{k_1,\dots,k_n} \sum k_i^{2+2n} |\tau_{k_1,\dots,k_n}|^2 \ge \left(\sum_{k_1,\dots,k_n} |\tau_{k_1,\dots,k_n}|\right)^2 \left(\sum_{k_1,\dots,k_n}^n k_i^{-2-2n}\right)^{-2}$$

The last sum converges, hence $\sum |\tau_{k_1,\ldots,k_n}|$ converges in C^0 .

Step 2: Same computation as above (left as an exercise). ■

Sobolev Lemma

COROLLARY: Let $\{f_i\}$ be a sequence of smooth functions on a torus T^n which converges in L_s^2 , with $s > l + \frac{n}{2}$. Then it also converges in C^l -topology.

THEOREM: (Sobolev lemma) Let *B* be a bundle on a compact manifold *M*, and $\{f_i\}$ be a sequence of smooth functions which converges in L_s^2 , with $s > l + \frac{n}{2}$. Then it also converges in C^l -topology.

Proof. Step 1: Let $\{U_j\}$ be a finite atlas on M and $\{\psi_j\}$ the corresponding partition of unity. We will identify U_j with bounded subsets in \mathbb{R}^n . Then $|f|_p^2 = \sum_j |\psi_j f|_p^2$, where the second $|\cdot|_p^2$ -norm is taken on a bounded subset in \mathbb{R}^n , considered as a subset in a torus.

Step 2: Let $\{f_i\}$ be a sequence of sections of a bundle *B* converging to *f* in L_s^2 . Then $\{\psi_j f_i\}$ converges to $\psi_j f$ in L_s^2 . Applying Sobolev lemma for torus, we obtain that $\{\psi_j f_i\}$ converges to $\psi_j f$ in C^l .