Hodge theory

lecture 11: Kähler manifolds

NRU HSE, Moscow

Misha Verbitsky, February 28, 2018

Almost complex manifolds (reminder)

DEFINITION: Let $I: TM \longrightarrow TM$ be an endomorphism of a tangent bundle satisfying $I^2 = -$ Id. Then I is called **almost complex structure operator**, and the pair (M, I) **an almost complex manifold**.

EXAMPLE: $M = \mathbb{C}^n$, with complex coordinates $z_i = x_i + \sqrt{-1} y_i$, and $I(d/dx_i) = d/dy_i$, $I(d/dy_i) = -d/dx_i$.

DEFINITION: Let (V, I) be a space equipped with a complex structure $I: V \longrightarrow V, I^2 = -\text{Id.}$ The Hodge decomposition $V \otimes_{\mathbb{R}} \mathbb{C} := V^{1,0} \oplus V^{0,1}$ is defined in such a way that $V^{1,0}$ is a $\sqrt{-1}$ -eigenspace of I, and $V^{0,1}$ a $-\sqrt{-1}$ -eigenspace.

DEFINITION: A function $f : M \longrightarrow \mathbb{C}$ on an almost complex manifold is called **holomorphic** if $df \in \Lambda^{1,0}(M)$.

REMARK: For some almost complex manifolds, **there are no holomorphic functions at all**, even locally.

M. Verbitsky

Complex manifolds and almost complex manifolds (reminder)

DEFINITION: Standard almost complex structure is $I(d/dx_i) = d/dy_i$, $I(d/dy_i) = -d/dx_i$ on \mathbb{C}^n with complex coordinates $z_i = x_i + \sqrt{-1} y_i$.

DEFINITION: A map Ψ : $(M, I) \longrightarrow (N, J)$ from an almost complex manifold to an almost complex manifold is called **holomorphic** if $\Psi^*(\Lambda^{1,0}(N)) \subset \Lambda^{1,0}(M)$.

REMARK: This is the same as $d\Psi$ being complex linear; for standard almost complex structures, **this is the same as the coordinate components of** Ψ **being holomorphic functions.**

DEFINITION: A complex manifold is a manifold equipped with an atlas with charts identified with open subsets of \mathbb{C}^n and transition functions holomorphic.

Integrability of almost complex structures (reminder)

DEFINITION: An almost complex structure I on a manifold is called **integrable** if any point of M has a neighbourhood U diffeomorphic to an open subset of \mathbb{C}^n , in such a way that the almost complex structure I is induced by the standard one on $U \subset \mathbb{C}^n$.

CLAIM: Complex structure on a manifold *M* uniquely determines an integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of holomorphic functions \mathcal{O}_M , because $d\mathcal{O}_M$ generates $\Lambda^{1,0}(M)$, and \mathcal{O}_M is determined by I, because $\mathcal{O}_M = \{f \mid df \in \Lambda^{1,0}(M)\}$.

Formal integrability (reminder)

DEFINITION: An almost complex structure I on (M, I) is called **formally integrable** if $[T^{1,0}M, T^{1,0}] \subset T^{1,0}$, that is, if $T^{1,0}M$ is involutive.

DEFINITION: The Frobenius form $\Psi \in \Lambda^{2,0} M \otimes TM$ is called **the Nijenhuis tensor**.

CLAIM: If a complex structure I on M is integrable, it is formally integrable.

Proof: Locally, the bundle $T^{1,0}(M)$ is generated by d/dz_i , where z_i are complex coordinates. These vector fields commute, hence satisfy $[d/dz_i, d/dz_j] \in T^{1,0}(M)$. This means that the Frobenius form vanishes.

THEOREM: (Newlander-Nirenberg)

A complex structure I on M is integrable if and only if it is formally integrable.

REMARK: In dimension 1, formal integrability is automatic. Indeed, $T^{1,0}M$ is 1-dimensional, hence all skew-symmetric 2-forms on $T^{1,0}M$ vanish.

Riemannian manifolds

DEFINITION: Let $h \in \text{Sym}^2 T^*M$ be a symmetric 2-form on a manifold which satisfies h(x,x) > 0 for any non-zero tangent vector x. Then h is called **Riemannian metric**, of **Riemannian structure**, and (M,h) **Riemannian manifold**.

DEFINITION: For any $x, y \in M$, and any path γ : $[a, b] \longrightarrow M$ connecting x and y, consider **the length** of γ defined as $L(\gamma) = \int_{\gamma} |\frac{d\gamma}{dt}| dt$, where $|\frac{d\gamma}{dt}| = h(\frac{d\gamma}{dt}, \frac{d\gamma}{dt})^{1/2}$. Define **the geodesic distance** as $d(x, y) = \inf_{\gamma} L(\gamma)$, where infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality and defines metric on M.

EXERCISE: Prove that this metric induces the standard topology on M.

EXAMPLE: Let $M = \mathbb{R}^n$, $h = \sum_i dx_i^2$. Prove that the geodesic distance coincides with d(x, y) = |x - y|.

EXERCISE: Using partition of unity, **prove that any manifold admits a Riemannian structure.**

M. Verbitsky

Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifold M is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

REMARK: Given any Riemannian metric g on an almost complex manifold, a Hermitian metric h can be obtained as h = g + I(g), where I(g)(x, y) = g(I(x), I(y)).

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called the Hermitian form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

REMARK: In the triple I, g, ω , each element can recovered from the other two.

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d\omega = 0$. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called the Kähler class of M, and ω the Kähler form.

Homogeneous spaces

DEFINITION: A Lie group is a smooth manifold equipped with a group structure such that the group operations are smooth. Lie group G acts on a manifold M if the group action is given by the smooth map $G \times M \longrightarrow M$.

DEFINITION: Let *G* be a Lie group acting on a manifold *M* transitively. Then *M* is called **a homogeneous space**. For any $x \in M$ the subgroup $St_x(G) = \{g \in G \mid g(x) = x\}$ is called **stabilizer of a point** *x*, or **isotropy subgroup**.

CLAIM: For any homogeneous manifold M with transitive action of G, one has M = G/H, where $H = St_x(G)$ is an isotropy subgroup.

Proof: The natural surjective map $G \longrightarrow M$ putting g to g(x) identifies M with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then $St_x(G)^g = St_y(G)$: all the isotropy groups are conjugate.

Isotropy representation

DEFINITION: Let M = G/H be a homogeneous space, $x \in M$ and $St_x(G)$ the corresponding stabilizer group. The **isotropy representation** is the natural action of $St_x(G)$ on T_xM .

DEFINITION: A tensor Φ on a homogeneous manifold M = G/H is called **invariant** if it is mapped to itself by all diffeomorphisms which come from $g \in G$.

REMARK: Let Φ_x be an isotropy invariant tensor on $St_x(G)$. For any $y \in M$ obtained as y = g(x), consider the tensor Φ_y on T_yM obtained as $\Phi_y := g(\Phi)$. The choice of g is not unique, however, for another $g' \in G$ which satisfies g'(x) = y, we have g = g'h where $h \in St_x(G)$. Since Φ is h-invariant, the tensor Φ_y is independent from the choice of g.

We proved

Theorem 1: *G*-invariant tensors on M = G/H are in bijective correspondence with isotropy invariant tensors on T_xM , for any $x \in M$.

Representations acting transitively on a sphere

THEOREM: Let *G* be a group acting on a vector space *V*. Suppose that *G* acts transitively on a unit sphere $\{x \in V \mid g(x) = 1\}$. Then a *G*-invariant bilinear symmetric form is unique up to a constant multiplier.

Proof. Step 1: Since G preserves the sphere, which is a level set of the quadratic form g, g is G-invariant.

Step 2: For any *G*-invariant quadratic form g', the function $x \longrightarrow \frac{g'(x)}{g(x)}$ is constant on spheres and invariant under homothety, hence it is constant.

EXERCISE: Let V be a representation of G, and suppose G acts transitively on a sphere. Prove that V is an irreducible representation.

EXERCISE: Prove the Schur lemma: let V be an irreducible representation of G over \mathbb{R} , and g a G-invariant positive definite bilinear symmetric form. Then any G-invariant bilinear symmetric form is proportional to g.

Fubini-Study form

EXAMPLE: Consider the natural action of the unitary group U(n + 1) on $\mathbb{C}P^n$. The stabilizer of a point is $U(n) \times U(1)$.

THEOREM: There exists an U(n + 1)-invariant Riemann form on $\mathbb{C}P^n$. Moreover, such a form is unique up to a constant multiplier, and Kähler.

REMARK: This Riemannian structure is called **the Fubini-Study metric**, and its Hermitian form **the Fubini-Study form**.

Proof. Step 1: To construct a U(n+1)-invariant Riemann form on $\mathbb{C}P^n$, we take a U(n)-invariant form on $T_x\mathbb{C}P^n$ and apply Theorem 1. A U(n)-invariant form on $T_x\mathbb{C}P^n$ exists, because it is a standard representation.

Step 2: Uniqueness follows because the isotropy group acts transitively on a sphere. ■

CLAIM: The Fubini-Study form is closed, and the corresponding metric is Kähler.

Proof: Let ω be a Fubini-Study form. Then $d\omega$ is an isotropy-invariant 3-form on $T_x \mathbb{C}P^n$. However, the isotropy group contains -Id, hence all isotropy-invariant odd tensors vanish.

Projective manifolds

DEFINITION: Let M be a complex manifold, and $X \subset M$ a smooth submanifold. It is called a complex submanifold if $I(TX) \subset TX$, and the map $X \hookrightarrow M$ a complex embedding. A complex manifold which admits a complex embedding to $\mathbb{C}P^n$ is called a projective manifold.

REMARK: A complex submanifold of a Kähler manifold is Kähler. Indeed, restriction of a Hermitian metric is Hermitian, and restriction of a closed form is closed. Therefore, **all projective manifolds are Kähler**.

DEFINITION: A subvariety of $\mathbb{C}P^n$ is called **complex algebraic** if can be obtained as common zeroes of a system of homogeneous polynomial equations.

THEOREM: (Chow theorem) All complex submanifolds in $\mathbb{C}P^n$ are complex algebraic.

Kodaira embedding theorem

DEFINITION: Kähler class of a Kähler manifold is the cohomology class $[\omega] \in H^2(M, \mathbb{R})$ of its Kähler form. We say that M has integer Kähler class if $[\omega]$ belongs to the image of $H^2(M, \mathbb{Z})$ in $H^2(M, \mathbb{R})$

REMARK: $H^2(\mathbb{C}P^n,\mathbb{R}) = \mathbb{R}$. This implies that the cohomology class of Fubini-Study form can be chosen integer. In particular, all projective manifolds admit Kähler structures with integer Kähler classes.

THEOREM: (Kodaira embedding theorem) Let *M* be a Kähler manifold with an integer Kähler class. Then it is projective.

This theorem will be proven later in these lectures.

Classes of almost complex manifolds

