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Almost complex manifolds (reminder)

DEFINITION: Let I : TM −→ TM be an endomorphism of a tangent bundle

satisfying I2 = − Id. Then I is called almost complex structure operator,

and the pair (M, I) an almost complex manifold.

EXAMPLE: M = Cn, with complex coordinates zi = xi +
√
−1 yi, and

I(d/dxi) = d/dyi, I(d/dyi) = −d/dxi.

DEFINITION: Let (V, I) be a space equipped with a complex structure

I : V −→ V , I2 = − Id. The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1

is defined in such a way that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a

−
√
−1 -eigenspace.

DEFINITION: A function f : M −→ C on an almost complex manifold is

called holomorphic if df ∈ Λ1,0(M).

REMARK: For some almost complex manifolds, there are no holomorphic

functions at all, even locally.
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Complex manifolds and almost complex manifolds (reminder)

DEFINITION: Standard almost complex structure is I(d/dxi) = d/dyi,

I(d/dyi) = −d/dxi on Cn with complex coordinates zi = xi +
√
−1 yi.

DEFINITION: A map Ψ : (M, I)−→ (N, J) from an almost complex mani-

fold to an almost complex manifold is called holomorphic if Ψ∗(Λ1,0(N)) ⊂
Λ1,0(M).

REMARK: This is the same as dΨ being complex linear; for standard almost

complex structures, this is the same as the coordinate components of Ψ

being holomorphic functions.

DEFINITION: A complex manifold is a manifold equipped with an at-

las with charts identified with open subsets of Cn and transition functions

holomorphic.
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Integrability of almost complex structures (reminder)

DEFINITION: An almost complex structure I on a manifold is called inte-

grable if any point of M has a neighbourhood U diffeomorphic to an open

subset of Cn, in such a way that the almost complex structure I is induced

by the standard one on U ⊂ Cn.

CLAIM: Complex structure on a manifold M uniquely determines an

integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of

holomorphic functions OM , because dOM generates Λ1,0(M), and OM is de-

termined by I, because OM = {f | df ∈ Λ1,0(M)}.
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Formal integrability (reminder)

DEFINITION: An almost complex structure I on (M, I) is called formally

integrable if [T1,0M,T1,0] ⊂ T1,0, that is, if T1,0M is involutive.

DEFINITION: The Frobenius form Ψ ∈ Λ2,0M⊗TM is called the Nijenhuis

tensor.

CLAIM: If a complex structure I on M is integrable, it is formally

integrable.

Proof: Locally, the bundle T1,0(M) is generated by d/dzi, where zi are com-

plex coordinates. These vector fields commute, hence satisfy [d/dzi, d/dzj] ∈
T1,0(M). This means that the Frobenius form vanishes.

THEOREM: (Newlander-Nirenberg)

A complex structure I on M is integrable if and only if it is formally

integrable.

REMARK: In dimension 1, formal integrability is automatic. Indeed,

T1,0M is 1-dimensional, hence all skew-symmetric 2-forms on T1,0M vanish.
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Riemannian manifolds

DEFINITION: Let h ∈ Sym2 T ∗M be a symmetric 2-form on a manifold
which satisfies h(x, x) > 0 for any non-zero tangent vector x. Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: For any x, y ∈ M , and any path γ : [a, b]−→M connecting
x and y, consider the length of γ defined as L(γ) =

∫
γ |
dγ
dt |dt, where |dγdt | =

h(dγdt ,
dγ
dt )

1/2. Define the geodesic distance as d(x, y) = infγ L(γ), where
infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality
and defines metric on M.

EXERCISE: Prove that this metric induces the standard topology on
M.

EXAMPLE: Let M = Rn, h =
∑
i dx

2
i . Prove that the geodesic distance

coincides with d(x, y) = |x− y|.

EXERCISE: Using partition of unity, prove that any manifold admits a
Riemannian structure.
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Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =

−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

REMARK: Given any Riemannian metric g on an almost complex manifold,

a Hermitian metric h can be obtained as h = g+ I(g), where I(g)(x, y) =

g(I(x), I(y)).

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian

form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

REMARK: In the triple I, g, ω, each element can recovered from the

other two.

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if

dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler

class of M , and ω the Kähler form.
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Homogeneous spaces

DEFINITION: A Lie group is a smooth manifold equipped with a group

structure such that the group operations are smooth. Lie group G acts on

a manifold M if the group action is given by the smooth map G×M −→M .

DEFINITION: Let G be a Lie group acting on a manifold M transitively.

Then M is called a homogeneous space. For any x ∈ M the subgroup

Stx(G) = {g ∈ G | g(x) = x} is called stabilizer of a point x, or isotropy

subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one

has M = G/H, where H = Stx(G) is an isotropy subgroup.

Proof: The natural surjective map G−→M putting g to g(x) identifies M

with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then Stx(G)g = Sty(G): all the isotropy groups

are conjugate.
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Isotropy representation

DEFINITION: Let M = G/H be a homogeneous space, x ∈ M and Stx(G)

the corresponding stabilizer group. The isotropy representation is the nat-

ural action of Stx(G) on TxM .

DEFINITION: A tensor Φ on a homogeneous manifold M = G/H is called

invariant if it is mapped to itself by all diffeomorphisms which come from

g ∈ G.

REMARK: Let Φx be an isotropy invariant tensor on Stx(G). For any y ∈M
obtained as y = g(x), consider the tensor Φy on TyM obtained as Φy := g(Φ).

The choice of g is not unique, however, for another g′ ∈ G which satisfies

g′(x) = y, we have g = g′h where h ∈ Stx(G). Since Φ is h-invariant, the

tensor Φy is independent from the choice of g.

We proved

Theorem 1: G-invariant tensors on M = G/H are in bijective correspon-

dence with isotropy invariant tensors on TxM, for any x ∈M .
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Representations acting transitively on a sphere

THEOREM: Let G be a group acting on a vector space V . Suppose that G

acts transitively on a unit sphere {x ∈ V | g(x) = 1}. Then a G-invariant

bilinear symmetric form is unique up to a constant multiplier.

Proof. Step 1: Since G preserves the sphere, which is a level set of the

quadratic form g, g is G-invariant.

Step 2: For any G-invariant quadratic form g′, the function x−→ g′(x)
g(x) is

constant on spheres and invariant under homothety, hence it is constant.

EXERCISE: Let V be a representation of G, and suppose G acts transitively

on a sphere. Prove that V is an irreducible representation.

EXERCISE: Prove the Schur lemma: let V be an irreducible representation

of G over R, and g a G-invariant positive definite bilinear symmetric form.

Then any G-invariant bilinear symmetric form is proportional to g.
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Fubini-Study form

EXAMPLE: Consider the natural action of the unitary group U(n + 1) on
CPn. The stabilizer of a point is U(n)× U(1).

THEOREM: There exists an U(n + 1)-invariant Riemann form on CPn.
Moreover, such a form is unique up to a constant multiplier, and Kähler.

REMARK: This Riemannian structure is called the Fubini-Study metric,
and its Hermitian form the Fubini-Study form.

Proof. Step 1: To construct a U(n+1)-invariant Riemann form on CPn, we
take a U(n)-invariant form on TxCPn and apply Theorem 1. A U(n)-invariant
form on TxCPn exists, because it is a standard representation.

Step 2: Uniqueness follows because the isotropy group acts transitively on a
sphere.

CLAIM: The Fubini-Study form is closed, and the corresponding metric
is Kähler.

Proof: Let ω be a Fubini-Study form. Then dω is an isotropy-invariant 3-form
on TxCPn. However, the isotropy group contains − Id, hence all isotropy-
invariant odd tensors vanish.
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Projective manifolds

DEFINITION: Let M be a complex manifold, and X ⊂ M a smooth sub-

manifold. It is called a complex submanifold if I(TX) ⊂ TX, and the map

X ↪→M a complex embedding. A complex manifold which admits a complex

embedding to CPn is called a projective manifold.

REMARK: A complex submanifold of a Kähler manifold is Kähler.

Indeed, restriction of a Hermitian metric is Hermitian, and restriction of a

closed form is closed. Therefore, all projective manifolds are Kähler.

DEFINITION: A subvariety of CPn is called complex algebraic if can be

obtained as common zeroes of a system of homogeneous polynomial equa-

tions.

THEOREM: (Chow theorem) All complex submanifolds in CPn are

complex algebraic.
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Kodaira embedding theorem

DEFINITION: Kähler class of a Kähler manifold is the cohomology class

[ω] ∈ H2(M,R) of its Kähler form. We say that M has integer Kähler class

if [ω] belongs to the image of H2(M,Z) in H2(M,R)

REMARK: H2(CPn,R) = R. This implies that the cohomology class of

Fubini-Study form can be chosen integer. In particular, all projective

manifolds admit Kähler structures with integer Kähler classes.

THEOREM: (Kodaira embedding theorem) Let M be a Kähler manifold

with an integer Kähler class. Then it is projective.

This theorem will be proven later in these lectures.
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Classes of almost complex manifolds

projective

manifolds

("algebraic spaces") 

Moishezon

        manifolds
manifolds

Kähler

manifolds

symplecticcomplex

manifolds

almost

complex

manifolds
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