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Riemannian manifolds (reminder)

DEFINITION: Let h ∈ Sym2 T ∗M be a symmetric 2-form on a manifold

which satisfies h(x, x) > 0 for any non-zero tangent vector x. Then h is called

Riemannian metric, of Riemannian structure, and (M,h) Riemannian

manifold.

DEFINITION: For any x, y ∈ M , and any path γ : [a, b]−→M connecting

x and y, consider the length of γ defined as L(γ) =
∫
γ |
dγ
dt |dt, where |dγdt | =

h(dγdt ,
dγ
dt )

1/2. Define the geodesic distance as d(x, y) = infγ L(γ), where

infimum is taken for all paths connecting x and y.

EXAMPLE: Let M = Rn, h =
∑
i dx

2
i . Prove that the geodesic distance

coincides with d(x, y) = |x− y|.

EXERCISE: Using partition of unity, prove that any manifold admits a

Riemannian structure.
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Connections (reminder)

DEFINITION: Recall that a connection on a bundle B is an operator ∇ :

B −→B ⊗ Λ1M satisfying ∇(fb) = b⊗ df + f∇(b), where f −→ df is de Rham

differential. When X is a vector field, we denote by ∇X(b) ∈ B the term

〈∇(b), X〉.

REMARK: A connection ∇ on B gives a connection B∗ ∇∗−→ Λ1M ⊗ B∗

on the dual bundle, by the formula

d(〈b, β〉) = 〈∇b, β〉+ 〈b,∇∗β〉

These connections are usually denoted by the same letter ∇.

REMARK: For any tensor bundle B1 := B∗⊗B∗⊗ ...⊗B∗⊗B ⊗B ⊗ ...⊗B a

connection on B defines a connection on B1 using the Leibniz formula:

∇(b1 ⊗ b2) = ∇(b1)⊗ b2 + b1 ⊗∇(b2).
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Parallel transport along the connection

THEOREM: Let B be a vector bundle with connection over R. Then for

each x ∈ R and each vector bx ∈ B|x there exists a unique section b ∈ B
such that ∇b = 0, b|x = bx.

Proof: This is existence and uniqueness of solutions of an ODE db
dt+A(b) = 0.

DEFINITION: Let γ : [0,1]−→M be a smooth path in M connecting x and

y, and (B,∇) a vector bundle with connection. Restricting (B,∇) to γ([0,1]),

we obtain a bundle with connection on an interval. Solve an equation ∇(b) = 0

for b ∈ B
∣∣∣γ([0,1]) and initial condition b|x = bx. This process is called parallel

transport along the path via the connection. The vector by := b|y is called

vector obtained by parallel transport of bx along γ. Holonomy group

of γ is the group of endomorphisms of the fiber Bx obtained from parallel

transports along all paths starting and ending in x ∈M

4



Hodge theory, lecture 12 M. Verbitsky

Parallel tensors

DEFINITION: Let B be a vector bundle, and Ψ ∈ B⊗i⊗ (B∗)⊗j a tensor on

B. We say that connection ∇ preserves Ψ if ∇(Ψ) = 0. In this case we

also say that Ψ is parallel with respect to the connection.

REMARK: ∇(Ψ) = 0 is equivalent to Ψ being a solution of ∇(Ψ) = 0 on

each path γ. This means that parallel transport preserves Ψ.

We obtained

COROLLARY: A tensor is parallel if and only if it is holonomy invariant.

EXAMPLE: Orthogonal connection: given a positive definite form h ∈
Sym2B∗ on B, a connection ∇ such that ∇(h) = 0 is called orthogonal.

EXAMPLE: Suppose that (B, I) is a complex vector bundle equipped with

a Hermitian metric h. A connection ∇ such that ∇(I) = ∇(h) = 0 is called

unitary, or Hermitian.
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Torsors and affine spaces

DEFINITION: A torsor over a group G is a space X equipped with a free
and transitive action of G, g, x−→ ρ(g, x).

DEFINITION: Morphism of torsors (X,G, ρ)
Ψ−→ (X ′, G′, ρ′) is a pair ΨX :

X −→X ′,ΨG : G−→G′, where ΨG is a group homomorphism satisfying
ΨX(ρ(g, x)) = ρ′(ΨG(g),ΨX(x)) (that is, compatible with the map ΨX).

REMARK: This defines the category of torsors.

DEFINITION: Affine space is a torsor over a vector space V , which is called
linearization. The action of V on A is denoted a, v −→ a + v. Morphism of
affine spaces is the morphism of the corresponding torsors.

REMARK: Morphism of affine spaces a map A
ΨA−→ A′ and a homomorphism

of their linearizations V
ΨV−→ V ′ such that ΨA(a+ l) = ΨA(a) + ΨL(l).

EXAMPLE: Given two connections ∇ and ∇1 on B, the difference ∇ −∇1
is an End(B)-valued 1-form. Converse is also true: for any End(B)-valued
1-form A ∈ Λ1M ⊗ End(B), the operator ∇ + A is a connection. In other
words, the space of connections is an affine space over Λ1M ⊗ End(B).
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Lie algebra and tensors

DEFINITION: Let V be a representation of a Lie algebra g. Then V ∗

is also a representation; the action of g on V ∗ is given by the formula
〈g(x), λ〉 = −〈x, g(λ)〉, for all x ∈ V, λ ∈ V ∗. A tensor product of two g-
representations V1, V2 is also a g-representation, with the action of g defined
by g(x ⊗ y) = g(x) ⊗ y + x ⊗ g(y). This defines the action of g on all tensor
powers V ⊗i⊗ (V ∗)⊗j, which are called the tensor representations of g. We
say that g preserves a tensor Φ if g(Ψ) = 0 for all g ∈ g.

EXAMPLE: The algebra of all g ∈ End(V ) preserving a non-degenerate
bilinear symmetric form h ∈ Sym2(V ∗) is called orthogonal algebra, denoted
so(V, h) or so(V ). Since g ∈ so(V ) if and only if h(g(x), y) = −h(x, g(y)), so(V )
is represented by antisymmetric matrices.

CLAIM: Let h ∈ Sym2(V ∗) be a non-degenerate bilinear symmetric form.
Using h, we identify V and V ∗. This gives an isomorphism V ∗ ⊗ V ∗ τ−→
V ∗ ⊗ V = End(V ). Then τ(Λ2V ∗) = so(V ).

Proof: For any f ∈ End(V ), the 2-form τ−1(f) is written as x, y −→ h(f(x), y).
By definition, f ∈ so(V ) means that h(f(x), y) = −h(x, f(y)) and this happens
if and only if τ−1(f) is antisymmetric.
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The Lie algebra u(V )

EXAMPLE: Let (V, I) be a real vector space with a complex structure map

I : V −→ V , I2 = − Id, and a Hermitian (that is, I-invariant) scalar product.

Define the unitary Lie algebra u(V ) = {f ∈ End(V ) | f(I) = f(h) = 0}.
This is the same as the space of I-invariant orthogonal matrices.

CLAIM: Consider the natural map V ∗⊗V ∗ τ−→ V ∗⊗V = End(V ) associated

with h. Then τ(Λ1,1(V ∗)) = u(V ).

Proof: The isomorphism τ is I-invariant, because h is I-invariant. Then

τ−1(u(V )) is the space of I-invariant 2-forms, which is precisely Λ1,1(V ∗).
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Affine space of orthogonal connections

CLAIM: Let B be a bundle with a scalar product. Then the space of

orthogonal connections on B an affine space over Λ1M ⊗ so(B).

Proof: Let s ∈ B∗ ⊗ B∗ be a 2-form on B. The action of A := ∇ − ∇1

on B∗ ⊗ B∗ is given by A(s)(x, y) = −s(A(x), y) − s(x,A(y)). Therefore, a

difference A of orthogonal connections satisfies h(A(x), y) = −h(x,A(y)) for

all x, y ∈ B. This is the same as A ∈ Λ1M ⊗ so(B).

Similarly one proves

CLAIM: Let B be a bundle with a Hermitian structure product. Then the

space of orthogonal connections on B an affine space over Λ1M ⊗ u(B).

CLAIM: Let B be a bundle with a Hermitian structure and a tensor Φ, and

g ⊂ End(B) the Lie algebra of endomorphisms preserving Φ. Then the space

of connections on B preserving Φ is an affine space over Λ1M ⊗ g.
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REMINDER: de Rham algebra

DEFINITION: Let Λ∗M denote the vector bundle with the fiber Λ∗T ∗xM
at x ∈ M (Λ∗T ∗M is the Grassman algebra of the cotangent space T ∗xM).

The sections of ΛiM are called differential i-forms. The algebraic operation

“wedge product” defined on differential forms is C∞M-linear; the space Λ∗M
of all differential forms is called the de Rham algebra.

REMARK: Λ0M = C∞M .

THEOREM: There exists a unique operator C∞M d−→ Λ1M
d−→ Λ2M

d−→
Λ3M

d−→ ... satisfying the following properties

1. On functions, d is equal to the differential.

2. d2 = 0

3. d(η ∧ ξ) = d(η)∧ ξ+ (−1)η̃η ∧ d(ξ), where η̃ = 0 where η ∈ λ2iM is an even

form, and η ∈ λ2i+1M is odd.

DEFINITION: The operator d is called de Rham differential.
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Cartan formula

CLAIM: For any η ∈ Λ1M , and X,Y ∈ TM one has

dη(X,Y ) = η([X,Y ])− LieX(η(Y )) + LieY (η(X)).

Proof: Two sides of this equation define two operators d, d1Λ1M −→ Λ2M .

Both operators satisfy the Leibniz rule d(fη) = df ∧ dη + fdη. When η = df is

exact, one has

η([X,Y ])− LieX(η(Y )) + LieY (η(X)) =

= Lie[X,Y ](f)− LieX LieY (f) + LieY LieX(f) = 0

hence d1(α) = 0 on all closed forms. A map δ : Λ1(M)−→ Λ2(M) which

vanishes on closed forms and satisfies the Leibniz rule is de Rham differential,

which can be seen from the axiomatic definition of d.
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Torsion

DEFINITION: Let ∇ be a connection on Λ1M ,

Λ1 ∇−→ Λ1M ⊗ Λ1M.

Torsion of ∇ T∇ : Λ1M −→ Λ2M is a map ∇ ◦ Alt−d, where Alt : Λ1M ⊗
Λ1M −→ Λ2M is exterior multiplication.

REMARK:

T∇(fη) = Alt(f∇η + df ⊗ η)− d(fη)

=f

[
Alt(∇η)− dη

]
+ df ∧ η − df ∧ η = fT∇(η).

Therefore T∇ is linear.

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ on
TM is called orthogonal if ∇(g) = 0, and Levi-Civita connection if it is
orthogonal and has zero torsion.

THEOREM: (“the fundamental theorem of Riemannian geometry”)
Every Riemannian manifold admits a Levi-Civita connection, and it is
unique.

Will be proven later today.
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Gregorio Ricci-Curbastro, Tullio Levi-Civita

Gregorio Ricci-Curbastro, Tullio Levi-Civita,
1853-1925 1873-1941

...With his former student Tullio Levi-Civita, he wrote his most famous single

publication, a pioneering work on the calculus of tensors, signing it as Gre-

gorio Ricci. This appears to be the only time that Ricci-Curbastro used the

shortened form of his name in a publication, and continues to cause confusion.
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Torsion and commutator of vector fields

REMARK: Cartan formula gives

T∇(η)(X,Y ) =∇X(η)(Y )−∇Y (η)(X)− dη(X,Y )

=∇X(η)(Y )−∇Y (η)(X)− η([X,Y ])− LieX(η(Y )) + LieY (η(X)).

On the other hand, ∇X(η)(Y ) = LieX(η(Y )) − η(∇X(Y )). Comparing the

equations, we obtain

T∇(η)(X,Y ) = η

(
∇X(Y )−∇Y (X)− [X,Y ]

)
.

Torsion is often defined as a map Λ2TM −→ TM using the formula

∇X(Y )−∇Y (X)− [X,Y ].

We have just proved

CLAIM: The torsion tensor ∇X(Y )−∇Y (X)−[X,Y ] is dual to the torsion

∇ ◦Alt−d : Λ1M −→ Λ2M defined above.
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Linearization of the torsion

REMARK: Consider the space A(Λ1M) of connections on Λ1M . The torsion

defines an affine map

A(Λ1M)−→ Hom(Λ1M,Λ2M) = TM ⊗ Λ2M.

because T (∇+α) = T (∇)+Alt12(α), where Alt12 : Λ1M⊗End(Λ1M)−→ Λ2M⊗
TM is antisymmetrization in the first two indices.

DEFINITION: Liearized torsion is a map

Tlin : Λ1(M)⊗ Λ1(M)⊗ TM −→ Λ2M ⊗ TM

obtained as a linearization of the torsion map. It is equal to Alt12.
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Existence of orthogonal connections

CLAIM: Let B be a vector bundle equipped with a scalar product. Then B

admits an orthogonal connection.

Proof: Chose a covering {Ui}, such that B is trivial on each Ui and admits an

orthonormal basis in each Ui. On each Ui we chose a connection ∇i preserving

this basis. Let ψi be a partition of unit subjugated to {Ui}. Then the formula

∇(b) :=
∑
∇i(ψib) defines an orthogonal connection.

THEOREM: (“the fundamental theorem of Riemannian geometry”)

Every Riemannian manifold admits a Levi-Civita connection, and it is

unique.

Proof: See the next slide.
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Levi-Civita connection (existence and uniqueness)

Proof. Step 1: Chose an orthogonal connection ∇0 on Λ1M . The space A of
orthogonal connections is affine and its linearization is Λ1M ⊗ so(TM). We
shall identify so(TM) and Λ2M . Then A is an affine space over Λ1M⊗Λ2M .

Step 2: Then the linearized torsion map is

Tlin : Λ1M ⊗ so(TM) = Λ1(M)⊗ Λ2M
Alt12−→ Λ2M ⊗ Λ1M = Λ2M ⊗ TM.

It is an isomorphism. Indeed, on the right and on the left there are bundles
of the same rank, hence it would suffice to show that Tlin = Alt12 is injective.
However, if η ∈ ker Tlin, it is a form which is symmetric on first two argu-
ments and antisymmetric on the second two, giving η(x, y, z) = η(y, x, z) =
−η(y, z, x). This gives σ(η) = −η, where σ is a cyclic permutation of the
arguments. Since σ3 = 1, this implies η = 0.

Step 3: We have shown that an orthogonal connection is uniquely de-
termined by its torsion. Indeed, torsion map is an isomorphism of affine
spaces.

Step 4: Let ∇ := ∇0 − T−1
lin (T∇0

). Then T∇ = T∇0
− Tlin(T−1

lin (T∇0
)) = 0,

hence ∇ is torsion-free.
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