Hodge theory

lecture 12: Levi-Civita connection

NRU HSE, Moscow

Misha Verbitsky, March 3, 2018

Riemannian manifolds (reminder)

DEFINITION: Let $h \in \text{Sym}^2 T^*M$ be a symmetric 2-form on a manifold which satisfies h(x,x) > 0 for any non-zero tangent vector x. Then h is called **Riemannian metric**, of **Riemannian structure**, and (M,h) **Riemannian manifold**.

DEFINITION: For any $x, y \in M$, and any path γ : $[a, b] \longrightarrow M$ connecting x and y, consider the length of γ defined as $L(\gamma) = \int_{\gamma} |\frac{d\gamma}{dt}| dt$, where $|\frac{d\gamma}{dt}| = h(\frac{d\gamma}{dt}, \frac{d\gamma}{dt})^{1/2}$. Define the geodesic distance as $d(x, y) = \inf_{\gamma} L(\gamma)$, where infimum is taken for all paths connecting x and y.

EXAMPLE: Let $M = \mathbb{R}^n$, $h = \sum_i dx_i^2$. Prove that the geodesic distance coincides with d(x, y) = |x - y|.

EXERCISE: Using partition of unity, **prove that any manifold admits a Riemannian structure.**

Connections (reminder)

DEFINITION: Recall that a connection on a bundle *B* is an operator ∇ : $B \longrightarrow B \otimes \Lambda^1 M$ satisfying $\nabla(fb) = b \otimes df + f\nabla(b)$, where $f \longrightarrow df$ is de Rham differential. When *X* is a vector field, we denote by $\nabla_X(b) \in B$ the term $\langle \nabla(b), X \rangle$.

REMARK: A connection ∇ on B gives a connection $B^* \xrightarrow{\nabla^*} \Lambda^1 M \otimes B^*$ on the dual bundle, by the formula

$$d(\langle b,\beta\rangle) = \langle \nabla b,\beta\rangle + \langle b,\nabla^*\beta\rangle$$

These connections are usually denoted by the same letter ∇ .

REMARK: For any tensor bundle $\mathcal{B}_1 := B^* \otimes B^* \otimes ... \otimes B^* \otimes B \otimes B \otimes ... \otimes B$ a connection on *B* defines a connection on \mathcal{B}_1 using the Leibniz formula:

$$\nabla(b_1 \otimes b_2) = \nabla(b_1) \otimes b_2 + b_1 \otimes \nabla(b_2).$$

Parallel transport along the connection

THEOREM: Let *B* be a vector bundle with connection over \mathbb{R} . Then for each $x \in \mathbb{R}$ and each vector $b_x \in B|_x$ there exists a unique section $b \in B$ such that $\nabla b = 0$, $b|_x = b_x$.

Proof: This is existence and uniqueness of solutions of an ODE $\frac{db}{dt} + A(b) = 0$.

DEFINITION: Let $\gamma : [0,1] \longrightarrow M$ be a smooth path in M connecting x and y, and (B, ∇) a vector bundle with connection. Restricting (B, ∇) to $\gamma([0,1])$, we obtain a bundle with connection on an interval. Solve an equation $\nabla(b) = 0$ for $b \in B|_{\gamma([0,1])}$ and initial condition $b|_x = b_x$. This process is called **parallel transport** along the path via the connection. The vector $b_y := b|_y$ is called **vector obtained by parallel transport of** b_x along γ . Holonomy group of γ is the group of endomorphisms of the fiber B_x obtained from parallel transports along all paths starting and ending in $x \in M$

Parallel tensors

DEFINITION: Let *B* be a vector bundle, and $\Psi \in B^{\otimes i} \otimes (B^*)^{\otimes j}$ a tensor on *B*. We say that **connection** ∇ **preserves** Ψ if $\nabla(\Psi) = 0$. In this case we also say that Ψ is **parallel** with respect to the connection.

REMARK: $\nabla(\Psi) = 0$ is equivalent to Ψ being a solution of $\nabla(\Psi) = 0$ on each path γ . This means that **parallel transport preserves** Ψ .

We obtained

COROLLARY: A tensor is parallel if and only if it is holonomy invariant.

EXAMPLE: Orthogonal connection: given a positive definite form $h \in$ Sym² B^* on B, a connection ∇ such that $\nabla(h) = 0$ is called **orthogonal**.

EXAMPLE: Suppose that (B, I) is a complex vector bundle equipped with a Hermitian metric h. A connection ∇ such that $\nabla(I) = \nabla(h) = 0$ is called **unitary**, or **Hermitian**.

Torsors and affine spaces

DEFINITION: A torsor over a group G is a space X equipped with a free and transitive action of G, $g, x \longrightarrow \rho(g, x)$.

DEFINITION: Morphism of torsors $(X, G, \rho) \xrightarrow{\Psi} (X', G', \rho')$ is a pair Ψ_X : $X \longrightarrow X', \Psi_G$: $G \longrightarrow G'$, where Ψ_G is a group homomorphism satisfying $\Psi_X(\rho(g, x)) = \rho'(\Psi_G(g), \Psi_X(x))$ (that is, compatible with the map Ψ_X).

REMARK: This defines the category of torsors.

DEFINITION: Affine space is a torsor over a vector space V, which is called **linearization**. The action of V on A is denoted $a, v \rightarrow a + v$. Morphism of affine spaces is the morphism of the corresponding torsors.

REMARK: Morphism of affine spaces a map $A \xrightarrow{\Psi_A} A'$ and a homomorphism of their linearizations $V \xrightarrow{\Psi_V} V'$ such that $\Psi_A(a+l) = \Psi_A(a) + \Psi_L(l)$.

EXAMPLE: Given two connections ∇ and ∇_1 on B, the difference $\nabla - \nabla_1$ is an End(B)-valued 1-form. Converse is also true: for any End(B)-valued 1-form $A \in \Lambda^1 M \otimes \text{End}(B)$, the operator $\nabla + A$ is a connection. In other words, the space of connections is an affine space over $\Lambda^1 M \otimes \text{End}(B)$.

M. Verbitsky

Lie algebra and tensors

DEFINITION: Let V be a representation of a Lie algebra \mathfrak{g} . Then V^* is also a representation; the action of \mathfrak{g} on V^* is given by the formula $\langle g(x), \lambda \rangle = -\langle x, g(\lambda) \rangle$, for all $x \in V, \lambda \in V^*$. A tensor product of two \mathfrak{g} representations V_1, V_2 is also a \mathfrak{g} -representation, with the action of \mathfrak{g} defined by $g(x \otimes y) = g(x) \otimes y + x \otimes g(y)$. This defines the action of \mathfrak{g} on all tensor powers $V^{\otimes i} \otimes (V^*)^{\otimes j}$, which are called **the tensor representations** of \mathfrak{g} . We say that \mathfrak{g} preserves a tensor Φ if $g(\Psi) = 0$ for all $g \in \mathfrak{g}$.

EXAMPLE: The algebra of all $g \in End(V)$ preserving a non-degenerate bilinear symmetric form $h \in Sym^2(V^*)$ is called **orthogonal algebra**, denoted $\mathfrak{so}(V,h)$ or $\mathfrak{so}(V)$. Since $g \in \mathfrak{so}(V)$ if and only if h(g(x), y) = -h(x, g(y)), $\mathfrak{so}(V)$ is represented by antisymmetric matrices.

CLAIM: Let $h \in \text{Sym}^2(V^*)$ be a non-degenerate bilinear symmetric form. Using h, we identify V and V^* . This gives an isomorphism $V^* \otimes V^* \xrightarrow{\tau} V^* \otimes V = \text{End}(V)$. Then $\tau(\Lambda^2 V^*) = \mathfrak{so}(V)$.

Proof: For any $f \in \text{End}(V)$, the 2-form $\tau^{-1}(f)$ is written as $x, y \longrightarrow h(f(x), y)$. By definition, $f \in \mathfrak{so}(V)$ means that h(f(x), y) = -h(x, f(y)) and this happens if and only if $\tau^{-1}(f)$ is antisymmetric.

The Lie algebra $\mathfrak{u}(V)$

EXAMPLE: Let (V, I) be a real vector space with a complex structure map $I: V \longrightarrow V, I^2 = -\text{Id}$, and a Hermitian (that is, *I*-invariant) scalar product. Define **the unitary Lie algebra** $\mathfrak{u}(V) = \{f \in \text{End}(V) \mid f(I) = f(h) = 0\}$. This is the same as the space of *I*-invariant orthogonal matrices.

CLAIM: Consider the natural map $V^* \otimes V^* \xrightarrow{\tau} V^* \otimes V = \text{End}(V)$ associated with *h*. Then $\tau(\Lambda^{1,1}(V^*)) = \mathfrak{u}(V)$.

Proof: The isomorphism τ is *I*-invariant, because *h* is *I*-invariant. Then $\tau^{-1}(\mathfrak{u}(V))$ is the space of *I*-invariant 2-forms, which is precisely $\Lambda^{1,1}(V^*)$.

Affine space of orthogonal connections

CLAIM: Let *B* be a bundle with a scalar product. Then **the space of** orthogonal connections on *B* an affine space over $\Lambda^1 M \otimes \mathfrak{so}(B)$.

Proof: Let $s \in B^* \otimes B^*$ be a 2-form on B. The action of $A := \nabla - \nabla_1$ on $B^* \otimes B^*$ is given by A(s)(x,y) = -s(A(x),y) - s(x,A(y)). Therefore, a difference A of orthogonal connections satisfies h(A(x),y) = -h(x,A(y)) for all $x, y \in B$. This is the same as $A \in \Lambda^1 M \otimes \mathfrak{so}(B)$.

Similarly one proves

CLAIM: Let *B* be a bundle with a Hermitian structure product. Then **the** space of orthogonal connections on *B* an affine space over $\Lambda^1 M \otimes \mathfrak{u}(B)$.

CLAIM: Let *B* be a bundle with a Hermitian structure and a tensor Φ , and $\mathfrak{g} \subset \operatorname{End}(B)$ the Lie algebra of endomorphisms preserving Φ . Then **the space** of connections on *B* preserving Φ is an affine space over $\Lambda^1 M \otimes \mathfrak{g}$.

REMINDER: de Rham algebra

DEFINITION: Let Λ^*M denote the vector bundle with the fiber $\Lambda^*T_x^*M$ at $x \in M$ (Λ^*T^*M is the Grassman algebra of the cotangent space T_x^*M). The sections of $\Lambda^i M$ are called **differential** *i*-forms. The algebraic operation "wedge product" defined on differential forms is $C^{\infty}M$ -linear; the space Λ^*M of all differential forms is called **the de Rham algebra**.

REMARK: $\Lambda^0 M = C^{\infty} M$.

THEOREM: There exists a unique operator $C^{\infty}M \xrightarrow{d} \wedge^{1}M \xrightarrow{d} \wedge^{2}M \xrightarrow{d} \wedge^{3}M \xrightarrow{d} \dots$ satisfying the following properties

- 1. On functions, d is equal to the differential.
- 2. $d^2 = 0$

3. $d(\eta \wedge \xi) = d(\eta) \wedge \xi + (-1)^{\tilde{\eta}} \eta \wedge d(\xi)$, where $\tilde{\eta} = 0$ where $\eta \in \lambda^{2i}M$ is an even form, and $\eta \in \lambda^{2i+1}M$ is odd.

DEFINITION: The operator *d* is called **de Rham differential**.

Cartan formula

CLAIM: For any $\eta \in \Lambda^1 M$, and $X, Y \in TM$ one has

 $d\eta(X,Y) = \eta([X,Y]) - \operatorname{Lie}_X(\eta(Y)) + \operatorname{Lie}_Y(\eta(X)).$

Proof: Two sides of this equation define two operators $d, d_1 \Lambda^1 M \longrightarrow \Lambda^2 M$. Both operators satisfy the Leibniz rule $d(f\eta) = df \wedge d\eta + f d\eta$. When $\eta = df$ is exact, one has

$$\eta([X,Y]) - \operatorname{Lie}_X(\eta(Y)) + \operatorname{Lie}_Y(\eta(X)) =$$

= $\operatorname{Lie}_{[X,Y]}(f) - \operatorname{Lie}_X \operatorname{Lie}_Y(f) + \operatorname{Lie}_Y \operatorname{Lie}_X(f) = 0$

hence $d_1(\alpha) = 0$ on all closed forms. A map $\delta : \Lambda^1(M) \longrightarrow \Lambda^2(M)$ which vanishes on closed forms and satisfies the Leibniz rule is de Rham differential, which can be seen from the axiomatic definition of d.

Torsion

DEFINITION: Let ∇ be a connection on $\Lambda^1 M$,

 $\Lambda^1 \xrightarrow{\nabla} \Lambda^1 M \otimes \Lambda^1 M.$

Torsion of ∇T_{∇} : $\wedge^1 M \longrightarrow \wedge^2 M$ is a map $\nabla \circ \operatorname{Alt} -d$, where Alt : $\wedge^1 M \otimes \wedge^1 M \longrightarrow \wedge^2 M$ is exterior multiplication.

REMARK:

$$T_{\nabla}(f\eta) = \operatorname{Alt}(f\nabla\eta + df \otimes \eta) - d(f\eta)$$
$$= f \left[\operatorname{Alt}(\nabla\eta) - d\eta\right] + df \wedge \eta - df \wedge \eta = fT_{\nabla}(\eta).$$

Therefore T_{∇} is linear.

DEFINITION: Let (M,g) be a Riemannian manifold. A connection ∇ on TM is called **orthogonal** if $\nabla(g) = 0$, and **Levi-Civita connection** if it is orthogonal and has zero torsion.

THEOREM: ("the fundamental theorem of Riemannian geometry") Every Riemannian manifold admits a Levi-Civita connection, and it is unique.

Will be proven later today.

Gregorio Ricci-Curbastro, Tullio Levi-Civita

Gregorio Ricci-Curbastro, 1853-1925

Tullio Levi-Civita, 1873-1941

...With his former student Tullio Levi-Civita, he wrote his most famous single publication, a pioneering work on the calculus of tensors, signing it as Gregorio Ricci. This appears to be the only time that Ricci-Curbastro used the shortened form of his name in a publication, and continues to cause confusion.

Torsion and commutator of vector fields

REMARK: Cartan formula gives

$$T_{\nabla}(\eta)(X,Y) = \nabla_X(\eta)(Y) - \nabla_Y(\eta)(X) - d\eta(X,Y)$$

= $\nabla_X(\eta)(Y) - \nabla_Y(\eta)(X) - \eta([X,Y]) - \operatorname{Lie}_X(\eta(Y)) + \operatorname{Lie}_Y(\eta(X)).$

On the other hand, $\nabla_X(\eta)(Y) = \text{Lie}_X(\eta(Y)) - \eta(\nabla_X(Y))$. Comparing the equations, we obtain

$$T_{\nabla}(\eta)(X,Y) = \eta \bigg(\nabla_X(Y) - \nabla_Y(X) - [X,Y] \bigg).$$

Torsion is often defined as a map $\Lambda^2 TM \longrightarrow TM$ using the formula $\nabla_X(Y) - \nabla_Y(X) - [X, Y].$

We have just proved

CLAIM: The torsion tensor $\nabla_X(Y) - \nabla_Y(X) - [X, Y]$ is dual to the torsion $\nabla \circ \operatorname{Alt} - d : \Lambda^1 M \longrightarrow \Lambda^2 M$ defined above.

Linearization of the torsion

REMARK: Consider the space $\mathcal{A}(\Lambda^1 M)$ of connections on $\Lambda^1 M$. The torsion defines an affine map

$$\mathcal{A}(\Lambda^1 M) \longrightarrow \operatorname{Hom}(\Lambda^1 M, \Lambda^2 M) = TM \otimes \Lambda^2 M.$$

because $T(\nabla + \alpha) = T(\nabla) + \operatorname{Alt}_{12}(\alpha)$, where $\operatorname{Alt}_{12} : \Lambda^1 M \otimes \operatorname{End}(\Lambda^1 M) \longrightarrow \Lambda^2 M \otimes TM$ is antisymmetrization in the first two indices.

DEFINITION: Liearized torsion is a map

$$T_{lin}: \ \Lambda^1(M) \otimes \Lambda^1(M) \otimes TM \longrightarrow \Lambda^2 M \otimes TM$$

obtained as a linearization of the torsion map. It is equal to Alt_{12} .

Existence of orthogonal connections

CLAIM: Let *B* be a vector bundle equipped with a scalar product. Then *B* admits an orthogonal connection.

Proof: Chose a covering $\{U_i\}$, such that B is trivial on each U_i and admits an orthonormal basis in each U_i . On each U_i we chose a connection ∇_i preserving this basis. Let ψ_i be a partition of unit subjugated to $\{U_i\}$. Then **the formula** $\nabla(b) := \sum \nabla_i(\psi_i b)$ **defines an orthogonal connection**.

THEOREM: ("the fundamental theorem of Riemannian geometry") Every Riemannian manifold admits a Levi-Civita connection, and it is unique.

Proof: See the next slide.

Levi-Civita connection (existence and uniqueness)

Proof. Step 1: Chose an orthogonal connection ∇_0 on $\Lambda^1 M$. The space \mathcal{A} of orthogonal connections is affine and **its linearization is** $\Lambda^1 M \otimes \mathfrak{so}(TM)$. We shall identify $\mathfrak{so}(TM)$ and $\Lambda^2 M$. Then \mathcal{A} is an affine space over $\Lambda^1 M \otimes \Lambda^2 M$.

Step 2: Then the linearized torsion map is

$$T_{lin}: \Lambda^1 M \otimes \mathfrak{so}(TM) = \Lambda^1(M) \otimes \Lambda^2 M \xrightarrow{\mathsf{Alt}_{12}} \Lambda^2 M \otimes \Lambda^1 M = \Lambda^2 M \otimes TM.$$

It is an isomorphism. Indeed, on the right and on the left there are bundles of the same rank, hence it would suffice to show that $T_{lin} = \text{Alt}_{12}$ is injective. However, if $\eta \in \ker T_{lin}$, it is a form which is symmetric on first two arguments and antisymmetric on the second two, giving $\eta(x, y, z) = \eta(y, x, z) =$ $-\eta(y, z, x)$. This gives $\sigma(\eta) = -\eta$, where σ is a cyclic permutation of the arguments. Since $\sigma^3 = 1$, this implies $\eta = 0$.

Step 3: We have shown that **an orthogonal connection is uniquely determined by its torsion**. Indeed, torsion map is an isomorphism of affine spaces.

Step 4: Let $\nabla := \nabla_0 - T_{lin}^{-1}(T_{\nabla_0})$. Then $T_{\nabla} = T_{\nabla_0} - T_{lin}(T_{lin}^{-1}(T_{\nabla_0})) = 0$, hence ∇ is torsion-free.