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Connections (reminder)

DEFINITION: Recall that a connection on a bundle B is an operator ∇ :

B −→B ⊗ Λ1M satisfying ∇(fb) = b⊗ df + f∇(b), where f −→ df is de Rham

differential. When X is a vector field, we denote by ∇X(b) ∈ B the term

〈∇(b), X〉.

REMARK: A connection ∇ on B gives a connection B∗ ∇∗−→ Λ1M ⊗ B∗

on the dual bundle, by the formula

d(〈b, β〉) = 〈∇b, β〉+ 〈b,∇∗β〉

These connections are usually denoted by the same letter ∇.

REMARK: For any tensor bundle B1 := B∗⊗B∗⊗ ...⊗B∗⊗B ⊗B ⊗ ...⊗B a

connection on B defines a connection on B1 using the Leibniz formula:

∇(b1 ⊗ b2) = ∇(b1)⊗ b2 + b1 ⊗∇(b2).
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Parallel transport along the connection (reminder)

THEOREM: Let B be a vector bundle with connection over R. Then for

each x ∈ R and each vector bx ∈ B|x there exists a unique section b ∈ B
such that ∇b = 0, b|x = bx.

Proof: This is existence and uniqueness of solutions of an ODE db
dt+A(b) = 0.

DEFINITION: Let γ : [0,1]−→M be a smooth path in M connecting x and

y, and (B,∇) a vector bundle with connection. Restricting (B,∇) to γ([0,1]),

we obtain a bundle with connection on an interval. Solve an equation ∇(b) = 0

for b ∈ B
∣∣∣γ([0,1]) and initial condition b|x = bx. This process is called parallel

transport along the path via the connection. The vector by := b|y is called

vector obtained by parallel transport of bx along γ. Holonomy group

of γ is the group of endomorphisms of the fiber Bx obtained from parallel

transports along all paths starting and ending in x ∈M
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Lie algebra and tensors (reminder)

DEFINITION: Let V be a representation of a Lie algebra g. Then V ∗

is also a representation; the action of g on V ∗ is given by the formula
〈g(x), λ〉 = −〈x, g(λ)〉, for all x ∈ V, λ ∈ V ∗. A tensor product of two g-
representations V1, V2 is also a g-representation, with the action of g defined
by g(x ⊗ y) = g(x) ⊗ y + x ⊗ g(y). This defines the action of g on all tensor
powers V ⊗i⊗ (V ∗)⊗j, which are called the tensor representations of g. We
say that g preserves a tensor Φ if g(Ψ) = 0 for all g ∈ g.

EXAMPLE: The algebra of all g ∈ End(V ) preserving a non-degenerate
bilinear symmetric form h ∈ Sym2(V ∗) is called orthogonal algebra, denoted
so(V, h) or so(V ). Since g ∈ so(V ) if and only if h(g(x), y) = −h(x, g(y)), so(V )
is represented by antisymmetric matrices.

CLAIM: Let h ∈ Sym2(V ∗) be a non-degenerate bilinear symmetric form.
Using h, we identify V and V ∗. This gives an isomorphism V ∗ ⊗ V ∗ τ−→
V ∗ ⊗ V = End(V ). Then τ(Λ2V ∗) = so(V ).

Proof: For any f ∈ End(V ), the 2-form τ−1(f) is written as x, y −→ h(f(x), y).
By definition, f ∈ so(V ) means that h(f(x), y) = −h(x, f(y)) and this happens
if and only if τ−1(f) is antisymmetric.
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The Lie algebra u(V ) (reminder)

EXAMPLE: Let (V, I) be a real vector space with a complex structure map

I : V −→ V , I2 = − Id, and a Hermitian (that is, I-invariant) scalar product.

Define the unitary Lie algebra u(V ) = {f ∈ End(V ) | f(I) = f(h) = 0}.
This is the same as the space of I-invariant orthogonal matrices.

CLAIM: Consider the natural map V ∗⊗V ∗ τ−→ V ∗⊗V = End(V ) associated

with h. Then τ(Λ1,1(V ∗)) = u(V ).

Proof: The isomorphism τ is I-invariant, because h is I-invariant. Then

τ−1(u(V )) is the space of I-invariant 2-forms, which is precisely Λ1,1(V ∗).
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Affine space of orthogonal connections (reminder)

CLAIM: Let B be a bundle with a scalar product. Then the space of

orthogonal connections on B an affine space over Λ1M ⊗ so(B).

Proof: Let s ∈ B∗ ⊗ B∗ be a 2-form on B. The action of A := ∇ − ∇1

on B∗ ⊗ B∗ is given by A(s)(x, y) = −s(A(x), y) − s(x,A(y)). Therefore, a

difference A of orthogonal connections satisfies h(A(x), y) = −h(x,A(y)) for

all x, y ∈ B. This is the same as A ∈ Λ1M ⊗ so(B).

Similarly one proves

CLAIM: Let B be a bundle with a Hermitian structure product. Then the

space of orthogonal connections on B an affine space over Λ1M ⊗ u(B).

CLAIM: Let B be a bundle with a Hermitian structure and a tensor Φ, and

g ⊂ End(B) the Lie algebra of endomorphisms preserving Φ. Then the space

of connections on B preserving Φ is an affine space over Λ1M ⊗ g.
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Torsion (reminder)

DEFINITION: Let ∇ be a connection on Λ1M ,

Λ1 ∇−→ Λ1M ⊗ Λ1M.

Torsion of ∇ T∇ : Λ1M −→ Λ2M is a map ∇ ◦ Alt−d, where Alt : Λ1M ⊗
Λ1M −→ Λ2M is exterior multiplication.

REMARK: Torsion is often defined as a map Λ2TM −→ TM using the

formula ∇X(Y )−∇Y (X)− [X,Y ]. This map coincides with the torsion map

Λ1M −→ Λ2M defined above.

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ on

TM is called orthogonal if ∇(g) = 0, and Levi-Civita connection if it is

orthogonal and has zero torsion.

THEOREM: (“the fundamental theorem of Riemannian geometry”)

Every Riemannian manifold admits a Levi-Civita connection, and it is

unique.
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Levi-Civita connection, its existence and uniqueness (reminder)

Proof. Step 1: Chose an orthogonal connection ∇0 on Λ1M . The space A of
orthogonal connections is affine and its linearization is Λ1M ⊗ so(TM). We
shall identify so(TM) and Λ2M . Then A is an affine space over Λ1M⊗Λ2M .

Step 2: Then the linearized torsion map is

Tlin : Λ1M ⊗ so(TM) = Λ1(M)⊗ Λ2M
Alt12−→ Λ2M ⊗ Λ1M = Λ2M ⊗ TM.

It is an isomorphism. Indeed, on the right and on the left there are bundles
of the same rank, hence it would suffice to show that Tlin = Alt12 is injective.
However, if η ∈ ker Tlin, it is a form which is symmetric on first two argu-
ments and antisymmetric on the second two, giving η(x, y, z) = η(y, x, z) =
−η(y, z, x). This gives σ(η) = −η, where σ is a cyclic permutation of the
arguments. Since σ3 = 1, this implies η = 0.

Step 3: We have shown that an orthogonal connection is uniquely de-
termined by its torsion. Indeed, torsion map is an isomorphism of affine
spaces.

Step 4: Let ∇ := ∇0 − T−1
lin (T∇0

). Then T∇ = T∇0
− Tlin(T−1

lin (T∇0
)) = 0,

hence ∇ is torsion-free.
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Space of Cartan tensors

DEFINITION: Let C(V ) ⊂ V ⊗ V ⊗ V be ker Sym∩ ker Alt, where Sym is
the symmetrization map Sym : V ⊗ V ⊗ V −→ Sym3(V ) and Alt the antisym-
metrization map Alt : V ⊗ V ⊗ V −→ Λ3(V ). Then C(V ) is called the space

of Cartan tensors on V .

REMARK: Clearly, there is a direct sum decomposition V ⊗V ⊗V = Λ3(V )⊕
Sym3(V )⊕ C(V ).

Lemma 1: Denote by Symij, Altij the operators of symmetrization and
antisymmetrization of Φ ∈ V ⊗3 using the indices i, j. Then

C(V ) = Alt12(Sym23(V ⊗3))⊕ Sym12(Alt23(V ⊗3)).

Proof: Since Sym23(V ⊗3) is generated by x⊗y⊗y, one has im(Alt12 Sym23) ⊃
C(V ). Similarly, im(Alt12 Sym23) ⊃ C(V ).

For a converse statement, we use the decomposition V ⊗ V = Sym2 V ⊕Λ2V .
This gives

V ⊗3 = im Alt12 Sym23⊕ im Alt12 Alt23⊕ im Sym12 Alt23⊕ im Sym12 Sym23 .

Then ker Sym∩ ker Alt is precisely im Alt12 Sym23⊕ im Sym12 Alt23.
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Torsion and the differential forms

DEFINITION: When B = Λ1M , consider the exterior multiplication map

Alt : ΛiM ⊗ Λ1M −→ Λi+1M . Define the torsion map T∇(η) := Alt(∇(η))−
dη. Then T∇ is equal to torsion on Λ1M and satisfies the Leibnitz identity,

which can be used to extend T∇ from Λ1M to Λ∗M :

T∇(λ ∧ µ) = T∇(λ) ∧ µ+ (−1)λ̃λ ∧ T∇(µ)
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Symplectic connections

DEFINITION: An almost symplectic structure on a manifold is a non-

degenerate 2-form.

EXERCISE: Let (M,ω) be an almost symplectic manifold. Prove that there

exists a connection ∇ on TM such that ∇(ω) = 0. We call such connection

a symplectic connection.

Lemma 2: Let ω ∈ Λ2M be an almost symplectic structure, and ∇ a sym-

plectic connection. Using ω, we will identify TM and Λ1M , and then we

can consider the torsion tensor T∇ of ∇ as a section τ ∈ Λ2M ⊗ Λ1M . Let

ρ := Alt(T∇). Then dω = 2ρ.

Proof: T∇(ω) = dω, because ∇(ω) = 0. However, T∇(ω) = Alt(A1(ω ⊗ T∇)−
A2(ω⊗T∇)), where Ai : Λ2M⊗TM⊗Λ2M is the convolution of i-th component

of ω ⊗ T∇ and the last. Clearly, Ai(ω ⊗ T∇) = τ . This gives T∇(ω) = dω = 2ρ.
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Torsion of almost symplectic structures

Theorem 1: Let (M,ω) be an almost symplectic manifold, and ∇ a symplectic
connection. Denote its torsion by T∇ ∈ Λ2M ⊗ TM . Using the form ω, we
identify TM and Λ1M and consider T∇ as a section τ ∈ Λ2M⊗Λ1M . Denote by
Alt123 the multiplication map Λ2M ⊗ Λ1M −→ Λ3M . Then Alt123(τ) = 1

2dω.
Moreover, any tensor T ∈ Λ2M ⊗ Λ1M such that Alt123(τ) = 1

2dω can be
realized as a torsion of a symplectic connection.

Proof. Step 1: Let sp(TM) be the Lie algebra of all tensors a ∈ End(TM)
such that ω(a(x), y) = −ω(x, a(y)). The same argument as the one used to
show so(TM) = Λ2M shows that sp(TM) = Sym2(Λ1M).

Step 2: The space of symplectic connections is an affine space with lin-
earization Λ1M ⊗ sp(TM) = Λ1M ⊗ Sym2(Λ1M). The image of the linearized
torsion map Tlin = Alt12 belongs to C(V ) (Lemma 1). Therefore, the image
of Alt123(τ) is independent from the choice of ∇. Any tensor T ∈ Λ2M ⊗ TM
with Alt123(τ) = Alt123(T) can be obtained as a torsion of an appropriate
connection, because the part of C(V ) which is antisymmetric in the first two
multipliers is precisely Alt12(Λ1M ⊗ Sym2(Λ1M)).

Step 3: Alt123(τ) = 1
2dω (Lemma 2).
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Torsion of Hermitian connection

PROPOSITION: Let (M, I, ω) be an Hermitian complex manifold, ∇ a con-

nection on TM preserving I and ω, and T∇ ∈ Λ2M ⊗ TM = Λ2M ⊗ Λ1M (we

identify TM and Λ1M using the Riemannian structure). Then

T∇ ∈
(

Λ2,0(M)⊗ Λ0,1(M)

)
⊕
(

Λ0,2 ⊗ Λ1,0(M)

)
⊕
(

Λ1,1(M)⊗ Λ1M

)
. (∗∗)

Proof. Step 1: Integrability of I implies that [T1,0M,T1,0M ] ⊂ T1,0M . Since

∇(I) = 0, one also has ∇X(T1,0M) ⊂ T1,0M for any vector field X ∈ TM .

This gives ∇X(Y )−∇Y (X)− [X,Y ] ∈ T1,0M for any X,Y ∈ T1,0M . We have

shown that

T∇ ∈
(

Λ2,0(M)⊗ T1,0(M)

)
⊕
(

Λ0,2 ⊗ T0,1(M)

)
⊕
(

Λ1,1(M)⊗ Λ1M

)
.

Step 2: Since the Riemannian form g is of type (1,1), it pairs (0,1)-vectors

and (1,0)-vectors. Therefore, it identifies T1,0M with Λ0,1(M). This proves

(**).
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Jean-Michel Bismut (born 26 February 1948)
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Bismut connection

THEOREM: (Bismut) Let (M, I, ω) be an Hermitian complex manifold.

Then there exists a unique connection ∇ preserving I and ω, such that its

torsion T∇ ∈ Λ2M ⊗ TM = Λ2M ⊗ Λ1M (we identify TM and Λ1M using the

Riemannian metric) is antisymmetric: T∇ ∈ Λ3M ⊂ Λ2M ⊗ Λ1M . Moreover,

in this case T∇ = −1
2I(dω).

REMARK: This connection is called the Bismut connection. When (M, I, ω)

is Kähler, it is torsion-free and orthogonal, hence ∇ is the Levi-Civita con-

nection. We obtain that on a Kähler manifold, Levi-Civita connection

satisfies ∇(I) = 0.

Proof. Step 1: There are two different ways to identify Λ2M ⊗ TM and

Λ2M ⊗ Λ1M : using g : TM −̃→ Λ1M and using ω : TM −̃→ Λ1M . Denote

the first tensor by τg and the second by τω. It is clear that I3(τg) = τω,

where I3(x ⊗ y ⊗ z) = x ⊗ y ⊗ I(z). Torsion of symplectic connections was

described earlier today (Theorem 1): we have shown that Alt(τω) = 1
2dω.

This implies that the image of the linearized torsion Tlin(Λ1M ⊗ u(TM))

satisfies Alt(I3(Tlin(Λ1M ⊗ u(TM))) = 0.
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Bismut connection (2)

Proof. Step 1: The image of the linearized torsion Tlin(Λ1M ⊗ u(TM))

satisfies Alt(I3(Tlin(Λ1M ⊗ u(TM))) = 0.

Step 2: The torsion of ∇ belongs to the space

W :=

(
Λ2,0(M)⊗ Λ0,1(M)

)
⊕
(

Λ0,2 ⊗ Λ1,0(M)

)
⊕
(

Λ1,1(M)⊗ Λ1M

)
,

as shown above. The linearized torsion map is Tlin : Λ1M ⊗ u(TM)−→W.

By the same argument as in the proof of existence of Levi-Civita connection,

this map is injective. This gives an exact sequence

0−→ Λ1M ⊗ u(TM)
Tlin−→ W

I3◦Alt−→ Λ2,1(M)⊕ Λ1,2(M)−→ 0, (∗ ∗ ∗)

The last arrow of (***) is surjective because any (2,1)+(1,2)-form can be

obtained as anti-symmetrization of α ∈ I3(W). The sequence (***) is exact

in the middle term because dimension of the middle term is equal to sum of

dimensions of the left and right terms.
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Bismut connection (3)

Step 2: Let W := (Λ2,0(M)⊗Λ0,1(M))⊕(Λ0,2⊗Λ1,0(M))⊕(Λ1,1(M)⊗Λ1M).
Then the sequence

0−→ Λ1M ⊗ u(TM)
Tlin−→ W

I3◦Alt−→ Λ2,1(M)⊕ Λ1,2(M)−→ 0 (∗ ∗ ∗)
is exact.

Step 3: Let U ⊂W be a subspace consisting of all antisymmetric 3-forms, U =
Λ2,1(M)⊕ Λ1,2(M). Clearly, for any differential form η, one has Alt(I3(η)) =
W (η), where W is the Weil operator acting as W (η)(x, y, z) = η(Ix, y, z) +

η(x, Iy, z)+η(x, y, Iz). Then U
I3◦Alt−→ Λ2,1(M)⊕Λ1,2(M) is bijective. Therefore,

there exists a unique form σ ∈ U such that Alt(I3(σ)) = 1
2dω.

Step 4: Let ∇0 be a connection on TM which satisfies ∇0(g) = ∇0(I) =
0 (prove that it exists), and τg ∈ W its torsion. Then Alt(I3(τg)) =
Alt(I3(σ)) = 1

2dω by Theorem 1. Therefore, there exists a unique A ∈
Λ1M ⊗ u(TM) such that Tlin(A) + τg = σ, and the torsion of connection
∇ := ∇0 +A is equal to σ.

Step 5: Step 3 gives σ = 1
2W
−1(dω). However, dω is (2,1)+(1,2)-form, and

for such forms W = I, hence σ = −1
2I(dω).

17


