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Inverting ∂ using the Hodge theory

CLAIM: Let β be a ∂-exact form, and γ := ∆−1∂
∗
β. Then ∂(γ) = β.

Proof: Indeed,

∂
∗
β = {∂, ∂∗}(∆−1∂

∗
β) = ∂

∗
∂γ

because (∂
∗
)2 = 0 and ∆−1 commutes with ∂

∗
. However, ker ∂

∗
is orthogonal

to im ∂, hence ∂
∗∣∣∣im ∂ is injective. Then ∂

∗
β = ∂

∗
∂γ implies β = ∂γ.

REMARK: For a different proof of the following proposition, see Lecture 16.
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Poincaré-Dolbeault-Grothendieck (dimension 1)

PROPOSITION: Let α be a (p,1)-form on a disk Dr+ε ⊂ C of radius r+ ε.
Then α

∣∣∣Dr = Pξ(α), where Pξ : Λp,1(Dr+ε)−→ Λp,0(Dr) is an operator
which depends only on r and ε.

Proof. Step 1: Hodge theory implies that cohomology of ∂ on any Kähler
manifold are identified with cohomology of d. Indeed, the corresponding
Laplacians coinside.

Step 2: Then the cohomology of ∂ on a 1-dimensional complex torus T are
1-dimensional in each bidegree (p, q). However, averaging of a (p, q)-form
on a torus gives a map from Λp,q(T ) to T -invariant forms, which are clearly
parallel, hence harmonic. Since torus acts on itself by isometries, this action
commutes with harmonic projection. Therefore, a form is cohomologous
to 0 if and only if is average on T vanishes. This is true for the de Rham
differential and for the Dolbeault differential.

Step 3: Fix an embedding from Dr+ε to a torus, and let ψ be a cutoff function
which is 1 on Dr and 0 outside of Dr+ε. Then ψα is can be extended to a
smooth (p,1)-form on T . Chose a (p,1)-form which is supported on T\Dr+ε
and has non-zero ∂-cohomology class v ∈ Hp,1(T ) in T , and let A(ψα) ∈
Hp,1(T ) be the ∂-cohomology class of ψα. Denote by λ(ψα) ∈ C the number
such that ψα − λ(ψα)v is cohomologous to 0. Then Pξ(α) := ∆−1∂

∗
(ψα −

λ(ψα)v) satisfies ∂(Pξ(α)) = α+λ(ψα)v, and this form is equal to α on Dr ⊂ T .
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Poincaré-Dolbeault-Grothendieck lemma

DEFINITION: Polydisc Dn is a product of n discs D ⊂ C.

THEOREM: (Poincaré-Dolbeault-Grothendieck lemma)
Let η ∈ Λ0,p(Dn) be a ∂-closed form on a polydisc, smoothly extended to a
neighbourhood of its closure Dn ⊂ Cn. Then η is ∂-exact.

REMARK: We have proven PDG-lemma for an (0,1)-form η with compact
support in C. In this case η = ∂α, where α is a smooth function on C.
This function is not necessarily compactly supported, but is is bounded by
C/|z| for large z.

REMARK: Using the decomposition Λp,q(Dn) ∼= Λp,0(Dn) ⊗ Λ0,q(Dn), any
form can be represented by a sum

∑
iα

0,q
i ∧ P

p,0
i , where Pi are monomials on

dzi, where zi are holomorphic coordinate functions. Since ∂(α0,q
i ∧ P p,0i ) =

∂(α0,q
i ) ∧ P p,0i , it suffices to prove the Poincaré-Dolbeault-Grothendieck

lemma for (0, q)-forms.

REMARK: To prove vanishing of cohomology of ∂ : Λ0,q(M)−→ Λ0,q+1(M),
it suffices to construct the homotopy operator, that is, a map
∂ : Λ0,q(M)−→ Λ0,q−1(M) satisfying {∂, γ} = Id. This is how we prove the
Poincaré lemma in Handout 8.
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Proof of Poincaré-Dolbeault-Grothendieck lemma

Proof. Step 1: Let ∂i : Λ0,q(Dn)−→ Λ0,q+1(Dn) be the operator α−→ dzi ∧
d
dzi
α, where zi is i-th coordinate on Dn. Then ∂ =

∑
i ∂i.

Step 2: By PDG-lemma in dimension 1, cohomology of ∂i vanish. Denote by
γi the corresponding integral operator Pξ. If α = dzi∧β, one has {∂i, γi}(α) =
α. If α contains no monomials divisible by dzi, one has ∂i{∂i, γi}(α) = 0.
This implies that im

[
{∂i, γi} − Id

]
lies in the space Ri forms without dzi

in monomial decomposition and with all coefficients holomorphic as
functions on zi.

Step 3: Properties γi:
(1). im

[
{∂i, γi} − Id

]
⊂ Ri. (2). {∂i, γj} = 0, if i 6= j. (3).

[
{∂i, γi}

]∣∣∣Ri = 0.
(4). γi(Rj) ⊂ Rj, ∂i(Rj) ⊂ Rj for all i 6= j.
Property (1) is proven in Step 2, properties (2) and (4) are implied by the
exlicit formula for γi. Finally, (3) follows because for all forms α without dzi
in monomial decomposition one has {γi, ∂}(α) = γi(∂i(α)).

Step 4: Properties (1), (3) and (4) give
[
{∂i, γi} − Id

]
(Ri1 ∩Ri2 ∩ ... ∩Rik) ⊂

Ri ∩ Ri1 ∩ Ri2 ∩ ... ∩ Rik for i /∈ {i1, i2, ..., ik}, and {∂i, γi}
∣∣∣∣Ri1∩Ri2∩...∩Rik = 0

otherwise.
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Proof of Poincaré-Dolbeault-Grothendieck lemma (2)

Step 4: Properties (1), (3) and (4) give
[
{∂i, γi} − Id

]
(Ri1 ∩Ri2 ∩ ... ∩Rik) ⊂

Ri ∩ Ri1 ∩ Ri2 ∩ ... ∩ Rik for i /∈ {i1, i2, ..., ik}, and {∂i, γi}
∣∣∣∣Ri1∩Ri2∩...∩Rik = 0

otherwise.

Step 5: Let γ :=
∑
i γi. Since {∂i, γj} = 0 for i 6= j, Step 4 gives[

{∂, γ} − (n− k) Id
]
(Ri1 ∩Ri2 ∩ ... ∩Rik) ⊂

∑
i 6=i1,i2,...,ik

Ri ∩Ri1 ∩Ri2 ∩ ... ∩Rik

Step 6: Let W0 be the space of (0, p)-forms on Dn which can be smoothly
extended in a certain neighbourhood of the closure Dn ⊂ Cn, and Wk ⊂Wk−1
its subspace generated by all Ri1 ∩ Ri2 ∩ ... ∩ Rik for i1 < i2 < ... < ik. Step 5

implies
[
{∂, γ} − (n− k) Id

]∣∣∣Wk
⊂Wk+1.

Step 7: Clearly, Wn = 0 for any p > 0: elements of this space are (0, p)-forms
without any dzi in its monomial decomposition. Using induction in d = n− k,
we can assume that any ∂-closed form in Wk+1 is ∂-closed; to prove
PDG-lemma, it would suffice to prove the same for any ∂-closed form
α ∈Wk. Step 6 gives (n− k)α−{∂, γ}(α) = (n− k)α− ∂γ(α) ∈Wk+1, and this
for is ∂-exact by the induction assumption. This gives (n−k)α−∂γ(α) = ∂η,
hence α is ∂-exact.
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Algebra of supersymmetry of a Kähler manifold: reminder

Let (M, I, g) be a Kaehler manifold, ω its Kaehler form. On Λ∗(M), the
following operators are defined.

0. d, d∗, ∆, because it is Riemannian.

1. L(α) := ω ∧ α

2. Λ(α) := ∗L ∗ α. It is easily seen that Λ = L∗.

3. The Weil operator W
∣∣∣Λp,q(M) =

√
−1 (p− q)

THEOREM: These operators generate a Lie superalgebra a of dimen-
sion (5|4), acting on Λ∗(M). Moreover, the Laplacian ∆ is central in a, hence
a also acts on the cohomology of M.

The odd part of this algebra generates “odd Heisenberg algebra” 〈d, dc, d∗, (dc)∗,∆〉,
with the only non-zero anticommutator {d, d∗} = {dc, (dc)∗} = ∆.

The even part of this algebra contains an sl(2)-triple 〈L,Λ, H〉 acting on aodd as
on a direct sum of two weight 1 representations (“Kodaira relations”). The
Weil element commutes with 〈L,Λ, H,∆〉 and acts on aodd via [W,d] = dc,
[W,d∗] = (dc)∗.
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Inverting ∂ using the Hodge theory (reminder)

CLAIM: Let β be a ∂-exact form, and γ := ∆−1∂
∗
β. Then ∂(γ) = β.

Proof: Indeed,

∂
∗
β = {∂, ∂∗}(∆−1∂

∗
β) = ∂

∗
∂γ

because (∂
∗
)2 = 0 and ∆−1 commutes with ∂

∗
. However, ker ∂

∗
is orthogonal

to im ∂, hence ∂
∗∣∣∣im ∂ is injective. Then ∂

∗
β = ∂

∗
∂γ implies β = ∂γ.

REMARK: Similarly, for any d-exact form β, one has β = ∆−1d∗β.

8



Hodge theory, lecture 17 M. Verbitsky

ddc-lemma

THEOREM: Let η be a form on a compact Kähler manifold, satisfying one
of the following conditions.
(1). η is an exact (p, q)-form. (2). η is d-exact, dc-closed.
(3). η is ∂-exact, ∂-closed.
Then η ∈ im ddc = im ∂∂.

Proof: Notice immediately that in all three cases η is closed and orthogonal
to the kernel of ∆, hence its cohomology class vanishes.

Since η is exact, it lies in the image of ∆. Operator G∆ := ∆−1 is defined
on im ∆ = ker ∆⊥ and commutes with d, dc.

In case (1), η is d-exact, and I(η) = η is d-closed, hence η is d-exact, dc-closed
like in (2).

Then η = dα, where α := G∆d
∗η. Since G∆ and d∗ commute with dc, the

form α is dc-closed; since it belongs to im ∆ = imG∆, it is dc-exact, α = dcβ
which gives η = ddcβ.

In case (3), we have η = ∂α, where α := G∆∂
∗η. Since G∆ and ∂∗ commute

with ∂, the form α is ∂-closed; since it belongs to im ∆, it is ∂-exact, α = ∂β
which gives η = ∂∂β.
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Massey products

Let a, b, c ∈ Λ∗(M) be closed forms on a manifold M with cohomology classes

[a], [b], [c] satisfying [a][b] = [b][c] = 0, and α, γ ∈ Λ∗(M) forms which satisfy

d(α) = a ∧ b, d(γ) = b ∧ c. Denote by L[a], L[c] : H∗(M)−→H∗(M) the

operation of multiplication by the cohomology classes [a], [c].

Then α∧c−a∧γ is a closed form, and its cohomology class is well-defined

modulo imL[a] + imL[c].

DEFINITION: Cohomology class α ∧ c− a ∧ γ is called Massey product of

a, b, c.

PROPOSITION: On a Kähler manifold, Massey products vanish.

Proof: Let a, b, c be harmonic forms of pure Hodge type, that is, of type (p, q)

for some p, q. Then ab and bc are exact pure forms, hence ab, bc ∈ im ddc by

ddc-lemma. This implies that α := d∗G∆(ab) and γ := d∗G∆(bc) are dc-exact.

Therefore µ := α∧ c−a∧γ is a dc-exact, d-closed form. Applying ddc-lemma

again, we obtain that µ is ddc-exact, hence its cohomology class vanish.
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Hartogs theorem

THEOREM: Let f be a holomorphic function on Cn\K, where K ⊂ Cn is a
compact, and n > 1. Then f can be extended to a holomorphic function
on Cn.

Proof. Step 1: Replacing K by a bigger compact, we can assume that f

is smoothly extended to a small neighbourhood of the closure M\K. Then
f can be extended to a smooth function on Cn, holomorphic outside of K.
Then α := ∂f̃ is a ∂-closed (0,1)-form with compact support.

Step 2: Using the standard open embedding of Cn to CPn, we may consider
α as a ∂-closed (0,1)-form on CPn. Since H1(CPn) = 0, this gives α = ∂ϕ,
where ϕ is a continuous function on CPn. In particular, ϕ is bounded on
Cn ⊂ CPn.

Step 3: Since ∂ϕ vanishes outside of K, the function ϕ is holomorphic outside
of K. Since bounded holomorphic functions on C are constant, ϕ is constant
on any affine line not intersecting K.

Step 4: This implies that ϕ = const on the union of all affine lines not inter-
secting K. Since n > 1, the complement of this set is compact. Substracting
constant if necessary, we obtain that ϕ is a function with compact support.

Step 5: ∂(f̃ −ϕ) = α−α = 0, hence f̃ −ϕ is holomorphic. However, ϕ has
compact support, and therefore f = f̃ − ϕ outside of a compact.
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