Hodge theory

lecture 17: Poincaré-Dolbeault-Grothendieck lemma

NRU HSE, Moscow

Misha Verbitsky, March 24, 2018

Inverting $\overline{\partial}$ using the Hodge theory

CLAIM: Let β be a $\overline{\partial}$ -exact form, and $\gamma := \Delta^{-1}\overline{\partial}^*\beta$. Then $\overline{\partial}(\gamma) = \beta$.

Proof: Indeed,

$$\overline{\partial}^*\beta = \{\overline{\partial}, \overline{\partial}^*\}(\Delta^{-1}\overline{\partial}^*\beta) = \overline{\partial}^*\overline{\partial}\gamma$$

because $(\overline{\partial}^*)^2 = 0$ and Δ^{-1} commutes with $\overline{\partial}^*$. However, ker $\overline{\partial}^*$ is orthogonal to im $\overline{\partial}$, hence $\overline{\partial}^*|_{\operatorname{im}\overline{\partial}}$ is injective. Then $\overline{\partial}^*\beta = \overline{\partial}^*\overline{\partial}\gamma$ implies $\beta = \overline{\partial}\gamma$.

REMARK: For a different proof of the following proposition, see Lecture 16.

Poincaré-Dolbeault-Grothendieck (dimension 1)

PROPOSITION: Let α be a (p,1)-form on a disk $D_{r+\varepsilon} \subset \mathbb{C}$ of radius $r + \varepsilon$. Then $\alpha|_{D_r} = P_{\xi}(\alpha)$, where $P_{\xi} : \Lambda^{p,1}(D_{r+\varepsilon}) \longrightarrow \Lambda^{p,0}(D_r)$ is an operator which depends only on r and ε .

Proof. Step 1: Hodge theory implies that cohomology of $\overline{\partial}$ on any Kähler manifold are identified with cohomology of d. Indeed, the corresponding Laplacians coinside.

Step 2: Then the cohomology of $\overline{\partial}$ on a 1-dimensional complex torus T are 1-dimensional in each bidegree (p,q). However, averaging of a (p,q)-form on a torus gives a map from $\Lambda^{p,q}(T)$ to T-invariant forms, which are clearly parallel, hence harmonic. Since torus acts on itself by isometries, this action commutes with harmonic projection. Therefore, a form is cohomologous to 0 if and only if is average on T vanishes. This is true for the de Rham differential and for the Dolbeault differential.

Step 3: Fix an embedding from $D_{r+\varepsilon}$ to a torus, and let ψ be a cutoff function which is 1 on D_r and 0 outside of $D_{r+\varepsilon}$. Then $\psi \alpha$ is can be extended to a smooth (p, 1)-form on T. Chose a (p, 1)-form which is supported on $T \setminus D_{r+\varepsilon}$ and has non-zero $\overline{\partial}$ -cohomology class $v \in H^{p,1}(T)$ in T, and let $A(\psi \alpha) \in H^{p,1}(T)$ be the $\overline{\partial}$ -cohomology class of $\psi \alpha$. Denote by $\lambda(\psi \alpha) \in \mathbb{C}$ the number such that $\psi \alpha - \lambda(\psi \alpha)v$ is cohomologous to 0. Then $P_{\xi}(\alpha) := \Delta^{-1}\overline{\partial}^*(\psi \alpha - \lambda(\psi \alpha)v)$ satisfies $\overline{\partial}(P_{\xi}(\alpha)) = \alpha + \lambda(\psi \alpha)v$, and this form is equal to α on $D_r \subset T$.

Poincaré-Dolbeault-Grothendieck lemma

DEFINITION: Polydisc D^n is a product of n discs $D \subset \mathbb{C}$.

THEOREM: (Poincaré-Dolbeault-Grothendieck lemma)

Let $\eta \in \Lambda^{0,p}(D^n)$ be a $\overline{\partial}$ -closed form on a polydisc, smoothly extended to a neighbourhood of its closure $\overline{D^n} \subset \mathbb{C}^n$. Then η is $\overline{\partial}$ -exact.

REMARK: We have proven PDG-lemma for an (0,1)-form η with compact support in \mathbb{C} . In this case $\eta = \overline{\partial} \alpha$, where α is a smooth function on \mathbb{C} . This function is not necessarily compactly supported, but is is bounded by C/|z| for large z.

REMARK: Using the decomposition $\Lambda^{p,q}(D^n) \cong \Lambda^{p,0}(D^n) \otimes \Lambda^{0,q}(D^n)$, any form can be represented by a sum $\sum_i \alpha_i^{0,q} \wedge P_i^{p,0}$, where P_i are monomials on dz_i , where z_i are holomorphic coordinate functions. Since $\overline{\partial}(\alpha_i^{0,q} \wedge P_i^{p,0}) = \overline{\partial}(\alpha_i^{0,q}) \wedge P_i^{p,0}$, it suffices to prove the Poincaré-Dolbeault-Grothendieck lemma for (0,q)-forms.

REMARK: To prove vanishing of cohomology of $\overline{\partial}$: $\Lambda^{0,q}(M) \longrightarrow \Lambda^{0,q+1}(M)$, it suffices to construct **the homotopy operator**, that is, a map $\overline{\partial}$: $\Lambda^{0,q}(M) \longrightarrow \Lambda^{0,q-1}(M)$ satisfying $\{\overline{\partial},\gamma\} = \text{Id}$. This is how we prove the **Poincaré lemma in Handout 8.**

Proof of Poincaré-Dolbeault-Grothendieck lemma

Proof. Step 1: Let $\overline{\partial}_i : \Lambda^{0,q}(D^n) \longrightarrow \Lambda^{0,q+1}(D^n)$ be the operator $\alpha \longrightarrow d\overline{z}_i \land \frac{d}{d\overline{z}_i} \alpha$, where z_i is *i*-th coordinate on D^n . Then $\overline{\partial} = \sum_i \overline{\partial}_i$.

Step 2: By PDG-lemma in dimension 1, cohomology of ∂_i vanish. Denote by γ_i the corresponding integral operator P_{ξ} . If $\alpha = d\overline{z}_i \wedge \beta$, one has $\{\overline{\partial}_i, \gamma_i\}(\alpha) = \alpha$. If α contains no monomials divisible by $d\overline{z}_i$, one has $\overline{\partial}_i \{\overline{\partial}_i, \gamma_i\}(\alpha) = 0$. This implies that im $[\{\overline{\partial}_i, \gamma_i\} - \text{Id}]$ lies in the space R_i forms without $d\overline{z}_i$ in monomial decomposition and with all coefficients holomorphic as functions on z_i .

Step 3: Properties γ_i : (1). im $\left[\{\overline{\partial}_i, \gamma_i\} - \text{Id}\right] \subset R_i$. (2). $\{\overline{\partial}_i, \gamma_j\} = 0$, if $i \neq j$. (3). $\left[\{\overline{\partial}_i, \gamma_i\}\right]|_{R_i} = 0$. (4). $\gamma_i(R_j) \subset R_j$, $\overline{\partial}_i(R_j) \subset R_j$ for all $i \neq j$. Property (1) is proven in Step 2, properties (2) and (4) are implied by the exlicit formula for γ_i . Finally, (3) follows because for all forms α without $d\overline{z}_i$ in monomial decomposition one has $\{\gamma_i, \overline{\partial}\}(\alpha) = \gamma_i(\overline{\partial}_i(\alpha))$.

Step 4: Properties (1), (3) and (4) give $\left[\{\overline{\partial}_i, \gamma_i\} - \mathrm{Id}\right](R_{i_1} \cap R_{i_2} \cap ... \cap R_{i_k}) \subset R_i \cap R_{i_1} \cap R_{i_2} \cap ... \cap R_{i_k}$ for $i \notin \{i_1, i_2, ..., i_k\}$, and $\{\overline{\partial}_i, \gamma_i\}\Big|_{R_{i_1} \cap R_{i_2} \cap ... \cap R_{i_k}} = 0$ otherwise.

Proof of Poincaré-Dolbeault-Grothendieck lemma (2)

Step 4: Properties (1), (3) and (4) give $\left[\{\overline{\partial}_i, \gamma_i\} - \mathrm{Id}\right](R_{i_1} \cap R_{i_2} \cap ... \cap R_{i_k}) \subset R_i \cap R_{i_1} \cap R_{i_2} \cap ... \cap R_{i_k}$ for $i \notin \{i_1, i_2, ..., i_k\}$, and $\{\overline{\partial}_i, \gamma_i\}\Big|_{R_{i_1} \cap R_{i_2} \cap ... \cap R_{i_k}} = 0$ otherwise.

Step 5: Let
$$\gamma := \sum_{i} \gamma_{i}$$
. Since $\{\overline{\partial}_{i}, \gamma_{j}\} = 0$ for $i \neq j$, Step 4 gives
 $\left[\{\overline{\partial}, \gamma\} - (n-k) \operatorname{Id}\right](R_{i_{1}} \cap R_{i_{2}} \cap \ldots \cap R_{i_{k}}) \subset \sum_{i \neq i_{1}, i_{2}, \ldots, i_{k}} R_{i} \cap R_{i_{1}} \cap R_{i_{2}} \cap \ldots \cap R_{i_{k}}$

Step 6: Let W_0 be the space of (0, p)-forms on D^n which can be smoothly extended in a certain neighbourhood of the closure $\overline{D^n} \subset \mathbb{C}^n$, and $W_k \subset W_{k-1}$ its subspace generated by all $R_{i_1} \cap R_{i_2} \cap \ldots \cap R_{i_k}$ for $i_1 < i_2 < \ldots < i_k$. **Step 5** implies $\left[\{\overline{\partial}, \gamma\} - (n-k) \operatorname{Id}\right]|_{W_k} \subset W_{k+1}$.

Step 7: Clearly, $W_n = 0$ for any p > 0: elements of this space are (0, p)-forms without any $d\overline{z}_i$ in its monomial decomposition. Using induction in d = n - k, we can assume that any $\overline{\partial}$ -closed form in W_{k+1} is $\overline{\partial}$ -closed; to prove **PDG-lemma, it would suffice to prove the same for any** $\overline{\partial}$ -closed form $\alpha \in W_k$. Step 6 gives $(n-k)\alpha - \{\overline{\partial},\gamma\}(\alpha) = (n-k)\alpha - \overline{\partial}\gamma(\alpha) \in W_{k+1}$, and this for is $\overline{\partial}$ -exact by the induction assumption. This gives $(n-k)\alpha - \overline{\partial}\gamma(\alpha) = \overline{\partial}\eta$, hence α is $\overline{\partial}$ -exact.

Algebra of supersymmetry of a Kähler manifold: reminder

Let (M, I, g) be a Kaehler manifold, ω its Kaehler form. On $\Lambda^*(M)$, the following operators are defined.

0. d, d^* , Δ , because it is Riemannian.

1. $L(\alpha) := \omega \wedge \alpha$

- 2. $\Lambda(\alpha) := *L * \alpha$. It is easily seen that $\Lambda = L^*$.
- 3. The Weil operator $W|_{\Lambda^{p,q}(M)} = \sqrt{-1} (p-q)$

THEOREM: These operators generate a Lie superalgebra \mathfrak{a} of dimension (5|4), acting on $\Lambda^*(M)$. Moreover, the Laplacian Δ is central in \mathfrak{a} , hence \mathfrak{a} also acts on the cohomology of M.

The odd part of this algebra generates "odd Heisenberg algebra" $\langle d, d^c, d^*, (d^c)^*, \Delta \rangle$, with the only non-zero anticommutator $\{d, d^*\} = \{d^c, (d^c)^*\} = \Delta$.

The even part of this algebra contains an $\mathfrak{sl}(2)$ -triple $\langle L, \Lambda, H \rangle$ acting on $\mathfrak{a}^{\text{odd}}$ as on a direct sum of two weight 1 representations ("Kodaira relations"). The Weil element commutes with $\langle L, \Lambda, H, \Delta \rangle$ and acts on $\mathfrak{a}^{\text{odd}}$ via $[W, d] = d^c$, $[W, d^*] = (d^c)^*$.

Inverting $\overline{\partial}$ using the Hodge theory (reminder)

CLAIM: Let β be a $\overline{\partial}$ -exact form, and $\gamma := \Delta^{-1}\overline{\partial}^*\beta$. Then $\overline{\partial}(\gamma) = \beta$.

Proof: Indeed,

$$\overline{\partial}^*\beta = \{\overline{\partial}, \overline{\partial}^*\}(\Delta^{-1}\overline{\partial}^*\beta) = \overline{\partial}^*\overline{\partial}\gamma$$

because $(\overline{\partial}^*)^2 = 0$ and Δ^{-1} commutes with $\overline{\partial}^*$. However, ker $\overline{\partial}^*$ is orthogonal to im $\overline{\partial}$, hence $\overline{\partial}^*|_{\operatorname{im}\overline{\partial}}$ is injective. Then $\overline{\partial}^*\beta = \overline{\partial}^*\overline{\partial}\gamma$ implies $\beta = \overline{\partial}\gamma$.

REMARK: Similarly, for any *d*-exact form β , one has $\beta = \Delta^{-1} d^* \beta$.

dd^c-lemma

THEOREM: Let η be a form on a compact Kähler manifold, satisfying one of the following conditions.

(1). η is an exact (p,q)-form. (2). η is *d*-exact, *d^c*-closed.

(3). η is ∂ -exact, $\overline{\partial}$ -closed.

Then $\eta \in \operatorname{im} dd^c = \operatorname{im} \partial\overline{\partial}$.

Proof: Notice immediately that in all three cases η is closed and orthogonal to the kernel of Δ , hence its cohomology class vanishes.

Since η is exact, it lies in the image of Δ . Operator $G_{\Delta} := \Delta^{-1}$ is defined on im $\Delta = \ker \Delta^{\perp}$ and commutes with d, d^c .

In case (1), η is *d*-exact, and $I(\eta) = \overline{\eta}$ is *d*-closed, hence η is *d*-exact, *d^c*-closed like in (2).

Then $\eta = d\alpha$, where $\alpha := G_{\Delta}d^*\eta$. Since G_{Δ} and d^* commute with d^c , the form α is d^c -closed; since it belongs to im $\Delta = \operatorname{im} G_{\Delta}$, it is d^c -exact, $\alpha = d^c\beta$ which gives $\eta = dd^c\beta$.

In case (3), we have $\eta = \partial \alpha$, where $\alpha := G_{\Delta} \partial^* \eta$. Since G_{Δ} and ∂^* commute with $\overline{\partial}$, the form α is $\overline{\partial}$ -closed; since it belongs to im Δ , it is $\overline{\partial}$ -exact, $\alpha = \overline{\partial}\beta$ which gives $\eta = \partial \overline{\partial} \beta$.

Massey products

Let $a, b, c \in \Lambda^*(M)$ be closed forms on a manifold M with cohomology classes [a], [b], [c] satisfying [a][b] = [b][c] = 0, and $\alpha, \gamma \in \Lambda^*(M)$ forms which satisfy $d(\alpha) = a \wedge b$, $d(\gamma) = b \wedge c$. Denote by $L_{[a]}, L_{[c]} : H^*(M) \longrightarrow H^*(M)$ the operation of multiplication by the cohomology classes [a], [c].

Then $\alpha \wedge c - a \wedge \gamma$ is a closed form, and its cohomology class is well-defined modulo im $L_{[a]} + \operatorname{im} L_{[c]}$.

DEFINITION: Cohomology class $\alpha \wedge c - a \wedge \gamma$ is called **Massey product of** a, b, c.

PROPOSITION: On a Kähler manifold, Massey products vanish.

Proof: Let a, b, c be harmonic forms of pure Hodge type, that is, of type (p,q) for some p,q. Then ab and bc are exact pure forms, hence $ab, bc \in \operatorname{im} dd^c$ by dd^c -lemma. This implies that $\alpha := d^*G_{\Delta}(ab)$ and $\gamma := d^*G_{\Delta}(bc)$ are d^c -exact. Therefore $\mu := \alpha \wedge c - a \wedge \gamma$ is a d^c -exact, d-closed form. Applying dd^c -lemma again, we obtain that μ is dd^c -exact, hence its cohomology class vanish.

Hartogs theorem

THEOREM: Let f be a holomorphic function on $\mathbb{C}^n \setminus K$, where $K \subset \mathbb{C}^n$ is a compact, and n > 1. Then f can be extended to a holomorphic function on \mathbb{C}^n .

Proof. Step 1: Replacing K by a bigger compact, we can assume that f is smoothly extended to a small neighbourhood of the closure $\overline{M\setminus K}$. Then f can be extended to a smooth function on \mathbb{C}^n , holomorphic outside of K. **Then** $\alpha := \overline{\partial} \tilde{f}$ is a $\overline{\partial}$ -closed (0, 1)-form with compact support.

Step 2: Using the standard open embedding of \mathbb{C}^n to $\mathbb{C}P^n$, we may consider α as a $\overline{\partial}$ -closed (0,1)-form on $\mathbb{C}P^n$. Since $H^1(\mathbb{C}P^n) = 0$, this gives $\alpha = \overline{\partial}\varphi$, where φ is a continuous function on $\mathbb{C}P^n$. In particular, φ is bounded on $\mathbb{C}^n \subset \mathbb{C}P^n$.

Step 3: Since $\overline{\partial}\varphi$ vanishes outside of K, the function φ is holomorphic outside of K. Since bounded holomorphic functions on \mathbb{C} are constant, φ is constant on any affine line not intersecting K.

Step 4: This implies that $\varphi = \text{const}$ on the union of all affine lines not intersecting *K*. Since n > 1, the complement of this set is compact. Substracting constant if necessary, we obtain that φ is a function with compact support. **Step 5:** $\overline{\partial}(\tilde{f} - \varphi) = \alpha - \alpha = 0$, hence $\tilde{f} - \varphi$ is holomorphic. However, φ has compact support, and therefore $f = \tilde{f} - \varphi$ outside of a compact.