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Inverting 0 using the Hodge theory
CLAIM: Let 8 be a d-exact form, and v := A~19"3. Then d(v) = 5.

Proof: Indeed,
9B =1{9,0} (A1) = 57Dy
because (87)2 = 0 and A~! commutes with 8°. However, kerd" is orthogonal

to imd, hence 9*|, = is injective. Then 88 =8 9~ implies 3 =0~. =
im o

REMARK: For a different proof of the following proposition, see Lecture 16.
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Poincaré-Dolbeault-Grothendieck (dimension 1)

PROPOSITION: Let o be a (p,1)-form on a disk D, . C C of radius r +e¢.
Then 04|Dr = P¢(a), where P : /\p,l(DT+€) — APO(D,) is an operator
which depends only on » and «.

Proof. Step 1: Hodge theory implies that cohomology of 9 on any Kahler
manifold are identified with cohomology of d. Indeed, the corresponding
LLaplacians coinside.

Step 2: Then the cohomology of 9 on a 1-dimensional complex torus T are
1-dimensional in each bidegree (p,q). However, averaging of a (p,q)-form
on a torus gives a map from AP4(T) to T-invariant forms, which are clearly
parallel, hence harmonic. Since torus acts on itself by isometries, this action
commutes with harmonic projection. Therefore, a form is cohomologous
to O if and only if is average on 7' vanishes. This is true for the de Rham
differential and for the Dolbeault differential.

Step 3: Fix an embedding from D, 4. toatorus, and let ¢ be a cutoff function
which is 1 on D, and 0 outside of D,y .. Then ¥« is can be extended to a
smooth (p,1)-form on T. Chose a (p,1)-form which is supported on T\D, 4.
and has non-zero d-cohomology class v € HPI(T) in T, and let A(ya) €
HP1(T) be the d-cohomology class of ya. Denote by A(ya) € C the number
such that ¢¥a — A(ya)v is conomologous to 0. Then Pe(a) := A9 (Yo —
A(Ya)v) satisfies O(Pe(a)) = a+A(pa)v, and this form is equal to aon D, C T
|
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Poincaré-Dolbeault-Grothendieck lemma
DEFINITION: Polydisc D" is a product of n discs D C C.

THEOREM: (Poincaré-Dolbeault-Grothendieck lemma)
Let n € AOP(D") be a d-closed form on a polydisc, smoothly extended to a
neighbourhood of its closure D* C C". Then n is d-exact.

REMARK: We have proven PDG-lemma for an (0, 1)-form n with compact
support in C. In this case n = da, Where o« is a smooth function on C.
This function is not necessarily compactly supported, but is is bounded by
C/|z| for large :z.

REMARK: Using the decomposition AP:4(D"™) =2 APO(D™) @ AD:4(D"), any
form can be represented by a sum Y, a?’q/\ Pf’o, where P; are monomials on
dz;, where 26 are holomorphic coordinate functions. Since g(a?’q A\ Pf’o) =

d(a?) A PPP| it suffices to prove the Poincaré-Dolbeault-Grothendieck
lemma for (0, q)-forms.

REMARK: To prove vanishing of cohomology of 8 : A%4(M) — AOat1(ar),
it suffices to construct the homotopy operator, that is, a map
0 NO9(M) — NO9=1 (M) satisfying {9,7} =Id. This is how we prove the
Poincaré lemma in Handout 8.
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Proof of Poincaré-Dolbeault-Grothendieck lemma

Proof. Step 1: Let 9, : A%9(D"™) —s AO:4+1(D") pbe the operator a —» dz; A
d%a, where z; is i-th coordinate on D". Then 0 =3, 0,.

Step 2: By PDG-lemma in dimension 1, cohomology of 9; vanish. Denote by
v; the corresponding integral operator Pe. If a = dz; A3, one has {0;,vi}(a) =
a. If a contains no monomials divisible by dz;, one has 0;{9;,v;}(a) = O.
This implies that im [{52-,%-} — Id} lies in the space R; forms without dz;
in monomial decomposition and with all coefficients holomorphic as
functions on z,.

Step 3: Properties ~;:

(1). im [{5@,%} —Id| C R;. (2). {94} =0, if i #j. (3). [{5@,%}}
(4). %;(Rj) C R, 0, Rj) C R; for all + = ;.

Property (1) is proven in Step 2, properties (2) and (4) are implied by the
exlicit formula for ~;. Finally, (3) follows because for all forms o without dz;
in monomial decomposition one has {v;,9}(a) = v;(9;(a)).

Rr, = 0.

Step 4: Properties (1), (3) and (4) give [{Ei,fyi} —Id} (Riy; "R, N...NR;, ) C

R; N Ril M Rig M...N Rik for ¢« ¢ {iq,ip,...,9;}, and {57;,"}/7;}
otherwise.

RilﬂRiQQ---ﬂRik =0
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Proof of Poincaré-Dolbeault-Grothendieck lemma (2)

Step 4: Properties (1), (3) and (4) give [{57;,%-} —Id} (Riy NR;;N..NR;) C

RN Ry N Ry, N ... N Ry, for i ¢ {iq,io,...,3t}, and {0;,v;}
otherwise.

Ry NRiyN..NR; = O

Step 5: Let v :=>;~;. Since {57;,7]-} = 0 for ¢+ # j, Step 4 gives

[{5, v} — (n—k) Iol}(R?;1 NR,N..NR)C Y  RNR,NR,N..NR;
111,82l

Step 6: Let Wy be the space of (0,p)-forms on D™ which can be smoothly
extended in a certain neighbourhood of the closure D™ C C*, and W, C Wj_1
its subspace generated by all R;; N R, N... N R;, for i3 <ip <...<1i. Step 5

implies |{9,7} — (n — k)1d ||, C Wy

Step 7: Clearly, W, = 0 for any p > 0: elements of this space are (0, p)-forms
without any dz; in its monomial decomposition. Using induction in d =n — k,
we can assume that any 0-closed form in W41 1S 0-closed; to prove
PDG-lemma, it would suffice to prove the same for any 0-closed form
o € Wi. Step 6 gives (n—k)a—{9,7}(a) = (n—k)a—9v(a) € Wi41, and this
for is 9-exact by the induction assumption. This gives (n—k)a—0v(«) = 9n,
hence o is 9-exact. =
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Algebra of supersymmetry of a Kahler manifold: reminder

Let (M,I,g9) be a Kaehler manifold, w its Kaehler form. On A*(M), the
following operators are defined.

0. d, d*, A\, because it is Riemannian.

1. L(a) ' =wA«

2. N(a) ;= L x . It is easily seen that A = L*.
3. The Weil operator W‘,\p,q(M) =+v—-1(p—q)

THEOREM: These operators generate a Lie superalgebra a of dimen-
sion (5|4), acting on A*(M). Moreover, the Laplacian A is central in a, hence
a also acts on the cohomology of M.

The odd part of this algebra generates “odd Heisenberg algebra” (d, d¢, d*, (d°)*, A),
with the only non-zero anticommutator {d,d*} = {d¢, (d°)*} = A.

The even part of this algebra contains an sl(2)-triple (L, A, H) acting on a°99 as
on a direct sum of two weight 1 representations ( “Kodaira relations”). The
Weil element commutes with (L,A, H,A) and acts on a°99 via [W,d] = d¢,
(W, d¥] = (d°)*.
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Inverting 0 using the Hodge theory (reminder)
CLAIM: Let 8 be a d-exact form, and v := A~19"3. Then d(v) = 5.

Proof: Indeed,
"8 =1{0,0"H(AT18"B) = 5"y
because (87)2 = 0 and A~! commutes with 8°. However, kerd" is orthogonal

to im 9, hence 5*‘im5 is injective. Then 8°8 =90y implies 8 =0v. m

REMARK: Similarly, for any d-exact form 8, one has 8 = A~ 1d*5.
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dd°-lemma

THEOREM: Let n be a form on a compact Kahler manifold, satisfying one
of the following conditions.

(1). n is an exact (p,q)-form. (2). n is d-exact, d°-closed.

(3). n is 6-exact, d-closed.

Then n € imdd® = im dd.

Proof: Notice immediately that in all three cases n is closed and orthogonal
to the kernel of A, hence its cohomology class vanishes.

Since n is exact, it lies in the image of A. Operator Ga = A1 is defined
on im A = ker AL+ and commutes with d, dc.

In case (1), n is d-exact, and I(n) = 7 is d-closed, hence 7 is d-exact, d°-closed
like in (2).

Then n = da, where a := Gad*n. Since Ga and d* commute with d¢, the
form « is d°-closed; since it belongs to IMmA =imGpa, it is d®-exact, a = d°g3
which gives n = dd°g.

In case (3), we have n = da, where a := GA0*n. Since Ga and 9* commute
with 9, the form « is 9-closed; since it belongs to im A, it is 0-exact, o = 983
which gives n = 003. =
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Massey products

Let a,b,c € A*(M) be closed forms on a manifold M with cohomology classes
[a], [b], [c] satisfying [a][b] = [b][c] = O, and «a,v € A*(M) forms which satisfy
dla) = a ADb, d(v) = bAc. Denote by L[a]7L[c] . H*(M) — H*(M) the
operation of multiplication by the cohomology classes [a], [¢].

Then anc—aA~v is a closed form, and its cohomology class is well-defined
modulo im L[a] + im L[c]

DEFINITION: Cohomology class aAc—a Ay is called Massey product of

a,b, c.
PROPOSITION: On a Kahler manifold, Massey products vanish.

Proof: Let a,b,c be harmonic forms of pure Hodge type, that is, of type (p, q)
for some p,q. Then ab and bc are exact pure forms, hence ab,bc € imdd® by
dd®-lemma. This implies that a := d*Ga(ab) and ~ := d*Ga(bc) are d-exact.
Therefore u:=aAc—aA~ is a d*-exact, d-closed form. Applying dd“-lemma
adain, we obtain that p is dd“-exact, hence its cohomology class vanish.

m
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Hartogs theorem

THEOREM: Let f be a holomorphic function on C"\K, where K C C" is a
compact, and n > 1. Then f can be extended to a holomorphic function
on C".

Proof. Step 1: Replacing K by a bigger compact, we can assume that f
is smoothly extended to a small neighbourhood of the closure M\K. Then
f can be extended to a smooth function on C", holomorphic outside of K.
Then o := 0f is a d-closed (0, 1)-form with compact support.

Step 2: Using the standard open embedding of C" to CP"™, we may consider
a as a 0-closed (0,1)-form on CP™. Since H(CP") = 0, this gives o = do,
where ¢ is a continuous function on CP™. In particular, ¢ is bounded on
Cr c CpP™.

Step 3: Since dp vanishes outside of K, the function ¢ is holomorphic outside
of K. Since bounded holomorphic functions on C are constant, ¢ is constant
on any affine line not intersecting K.

Step 4: This implies that ¢ = const on the union of all affine lines not inter-
secting K. Since n > 1, the complement of this set is compact. Substracting
constant if necessary, we obtain that ¢ is a function with compact support.

Step 5: (f—¢) =a—a =0, hence f— ¢ is holomorphic. However, ¢ has
compact support, and therefore f = f — ¢ outside of a compact. m
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