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Sheaves (reminder)

DEFINITION: An open cover of a topological space X is a family of open

sets {Ui} such that
⋃
iUi = X.

DEFINITION: A presheaf on a topological space M is a collection of vector

spaces F(U), for each open subset U ⊂ M , together with restriction maps

RUWF(U)−→F(W ) defined for each W ⊂ U , such that for any three open

sets W ⊂ V ⊂ U , ΨUW = ΨUV ◦ΨVW . Elements of F(U) are called sections

of F over U , and restriction map often denoted f |W

DEFINITION: A presheaf F is called a sheaf if for any open set U and any

cover U =
⋃
UI the following two conditions are satisfied.

1. Let f ∈ F(U) be a section of F on U such that its restriction to each

Ui vanishes. Then f = 0.

2. Let fi ∈ F(Ui) be a family of sections compatible on the pairwise

intersections: fi|Ui∩Uj = fj|Ui∩Uj for every pair of members of the cover.

Then there exists f ∈ F(U) such that fi is the restriction of f to Ui for

all i.
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Direct limits

DEFINITION: Commutative diagram of vector spaces is given by the
following data. There is a directed graph (graph with arrows). For each
vertex of this graph we have a vector space, and each arrow corresponds to a
homomorphism of the associated vector spaces. These homomorphism are
compatible, in the following way. Whenever there exist two ways of going
from one vertex to another, the compositions of the corresponding arrows are
equal.

DEFINITION: Let C be a commutative diagram of vector spaces, A,B –
vector spaces, corresponding to two vertices of a diagram, and a ∈ A, b ∈ B
elements of these vector spaces. Write a ∼ b if a and b are mapped to the same
element d ∈ D by a composition of arrows from C. Let ∼ be an equivalence
relation generated by such a ∼ b. A quotient

⊕
iCi/E is called a direct limit

of a diagram {Ci}. The same notion is also called colimit and inductive
limit. Direct limit is denoted lim→ .

DEFINITION: Let F be a sheaf on M , x ∈ M a point, and {Ui} the set of
all neighbourhoods of x. Consider a diagram with the set of vertices indexed
by {Ui}, and arrows from Ui to Uj corresponding to inclusions Uj ↪→ Ui. The
space of germs of F in x is a direct limit lim→ F(Ui) over this diagram. The
space of germs is also called a stalk of a sheaf.
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Sheaf morphisms (reminder)

DEFINITION: Let B,B′ be sheaves on M . A sheaf morphism from B to

B′ is a collection of homomorphisms B(U)−→B′(U), defined for each open

subset U ⊂M , and compatible with the restriction maps:

B(U) −→ B′(U)y y
B(U1) −→ B′(U1)

REMARK: Morphisms of sheaves of modules are defined in the same way,

but in this case the maps B(U)−→B′(U) should be compatible with the

module structure.

DEFINITION: A sheaf morphism is called injective if it is injective on stalks

and surjective, if it is surjective on stalks.
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Čech cohomology

DEFINITION: Let F be a sheaf on a topological space M and {Ui} an open

cover of M indexed by a linearly ordered set I. Define the space of Čech

chains

Ck−1 :=
∏

i1<i2<...<ik

F

 k⋃
j=1

Uij

 .
Define the Čech differential d : Ck−1 −→ Ck mapping f ∈ F

(⋂k
j=1Uij

)
to

∑
i∈I\{i1,...,ik}

(−1)σf
∣∣∣∣Ui1∩...∩Uik∩Ui

where σ − 1 is the number of i in the sequence i1 < i2 < ... < i < ... < ik.

Consider the sequence

...
d−→ Ci

d−→ Ci−1
d−→ ...

Its cohomology are called the Čech cohomology of the sheaf F, associated

with the cover {Ui}. Elements of ker d are called Čech cocycles and elements

of im d the Čech coboundaries.
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Čech cohomology and global sections

DEFINITION: A topological space M is called paracompact if any open

cover of M has a locally finite refinement.

CLAIM: Let A be a sheaf on a paracompact topological space such that its

first Čech cohomology vanish for any locally finite covering. Then for any

exact sequence 0−→A−→B
ψ−→ C −→ 0 of sheaves, the sequence

0−→ Γ(A)−→ Γ(B)−→ Γ(C)−→ 0 is exact, where Γ denotes the space of

global sections.

Proof: Let c be a global section of C. Since ψ is surjective, there exists a

locally finite (by paracompactness) covering {Ui} and bi ∈ B(Ui) such that

ψ(bi) = c
∣∣∣Ui . Then bi − bj

∣∣∣Ui∩Uj ∈ A(Ui ∩ Uj) give a Čech 1-cocycle. If it is a

coboundary, this means that bi − bj = ai − aj for some collection of sections

ai ∈ A(Ui). Then b̃i := bi − ai agree on pairwise intersections; gluing all b̃i to

a global section b̃ of B, we obtain that ψ(b) = c.
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Fine sheaves

DEFINITION: Let {Ui}, be a locally finite open covering of a manifold M ,
with the closure of Ui compact. Denote by F c|U the group of sections of a
sheaf F with compact support. Partition of unity on a sheaf of rings is a set
of sections with compact support ψi ∈ F c(Ui), such that

∑
iψi = 1. A sheaf

of rings is called fine if it admits a partition of unity for any locally finite
covering.

REMARK: The sheaf C∞(M) is fine.

CLAIM: Let F be a sheaf of modules over a fine sheaf of rings. Then the
Čech cohomology of F vanish for any locally finite covering.

Proof: Let {Ui} be a covering of M , and P =
∏
i1<i2<...<ik+1

fi1,...,ik+1
∈

F (Ui1∩...∩Uik+2
) a k-cocycle. Consider a partition of unity

∑
ψi = 1 associated

with {Ui}. Then for any i, the product ψiP is also a k-cocycle, hence we may
assume that P is compactly supported in some Ui, say, Ui1. Put

g :=
∏

i2<...<ik+1

gi2,...,ik+1
∈

∏
i2<...<ik+1

F (Ui2 ∩ ... ∩ Uik+2
)

by taking gi2,...,ik+1
= fi1,i2,...ik+1

and extending fi1,i2,...ik+1
to Ui2 ∩ ... ∩ Uik+2

using compactness of support of fi1,i2,...ik+1
in U1.
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Fine sheaves and flasque sheaves

DEFINITION: Let F be a sheaf such that all restriction maps F (U)−→ F (V )

are surjective. Then F is called flasque, or flabby.

EXERCISE: Prove that the Čech cohomology of flasque sheaves van-

ish.

COROLLARY: Let 0−→A−→B −→ C −→ 0 be an exact sequence of sheaves,

with A fine or flasque. Then the sequence of global sections

0−→ Γ(A)−→ Γ(B)−→ Γ(C)−→ 0

is also exact.

Proof: This follows from vanishing of Čech cohomology, as shown above.
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Godement resolutions

DEFINITION: Let F be a sheaf on M , and Fx the stalk of F in x ∈ M . It

is clearly flasque. Denote by G(F ) the sheaf
∏
x∈M Fx. We consider F as a

subsheaf of G(F ), and consider the following flasque resolution of F = F0

0−→ F
d−→ F1 d−→ F2 −→ ... (∗ ∗ ∗)

with F i+1 = G(F i/d(F i−1)), and d induced by the tautological map

F i −→ F i/d(F i−1) ↪→ G(F i/d(F i−1)).

The resolution (***) is called Godement resolution.

REMARK: The same argument as used for fine sheaves above also proves

that the Čech cohomology of flasqye sheaves vanish. Therefore, for

an exact sequence 0−→A−→B −→ C −→ 0 of sheaves with A flasque, the

sequence of global sections

0−→ Γ(A)−→ Γ(B)−→ Γ(C)−→ 0

is also exact.
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Cohomology of a sheaf

DEFINITION: Let F be a sheaf and 0−→ F
d−→ F1 d−→ F2 −→ ... is Gode-

ment resolution. Consider the complex of global sections

0−→ Γ(F1)−→ Γ(F2)−→ .... Its cohomology are called cohomology of the

sheaf F , denoted Hi(F ). The global sections Γ(F ) are identified with

H0(F ).

REMARK: Given an exact sequence of sheaves 0−→A−→B −→ C −→ 0, we

obtain an exact sequence of their Godement resolutions 0−→A∗ −→B∗ −→ C∗ −→ 0,

(prove that it is exact). The sequences of sheaves 0−→Ai −→Bi −→ Ci −→ 0

gives an exact sequence

0−→ Γ(A>1)−→ Γ(B>1)−→ Γ(C>1)−→ 0

as shown above. Its cohomology are cohomology of A,B,C. This gives an

exact sequence of cohomology

0−→H0(A)−→H0(B)−→H0(C)−→H1(A)−→H1(B)−→H1(C)−→ ...
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Roger Godement

Roger Godement

October 1, 1921 - July 21, 2016
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Acyclic resolutions

DEFINITION: A sheaf A on M is called acyclic if Hi(U,A) = 0 for any

opens set U ⊂ M and any i > 0. An acyclic resolution for F = F0 is an

exact sequence

0−→ F0 −→ F1 −→ F2 −→ ...

where all F i, i > 0 are acyclic.

EXAMPLE: Let x ∈M and A a vector space. A skyscraper sheaf is a sheaf

F such that F (U) = A for all U 3 x and F (U) = 0 for U 63 x.

EXERCISE: Prove that product of skyscraper sheaves is acyclic. In

particular, the Godement sheaf G(F ) is acyclic for any sheaf F . Prove

that any fine sheaf is also acyclic.

Further on, we shall prove the following resultat.

THEOREM: Let 0−→ F0 −→ F1 −→ F2 −→ ... be an acyclic resolution for a

sheaf F = F0. Then cohomology of the complex 0−→ Γ(F1)−→ Γ(F2)−→ ...

are equal to H∗(F ).
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Morphisms of complexes

DEFINITION: A complex is a sequence of objects of abelian category

(sheaves, groups, modules) ...
d−→ Ci−1 d−→ Ci

d−→ Ci+1 d−→ ..., i ∈ Z, with

d2 = 0. Cohomology of a complex is ker d/ im d. A morphism of complexes

(Ci, d)−→ (Ci1, d) is a sequence of maps ψi : Ci −→ Ci1 commuting with d.

Category of complexes is also abelian.

EXERCISE: Let 0−→A∗ −→B∗ −→ C∗ −→ 0 be an exact sequence of com-

plexes. Prove that there exists a long exact sequence

...−→Hi(A)−→Hi(B)−→Hi(C)−→Hi+1(A)−→Hi+1(B)−→Hi+1(C)−→ ...

DEFINITION: A morphism of complexes is called quasi-isomorphism if it

induces an isomorphism on cohomology.
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Cones of morphisms

DEFINITION: Let (F i, dF )
ψi−→ (Gi, dG) be a morphism of complexes. The

cone C(ψ) is a complex F i+1 ⊕ Gi, with differential given by dF + dG +

(−1)iψi+1.

REMARK: Denote by F ∗[1] the complex (F i+1, d), that is, F ∗ shifted by 1.

Since the sequence of complexes 0−→G∗ −→ C(ψ)−→ F ∗[1]−→ 0 is exact,

we obtain an exact sequence

...−→Hi(G)−→Hi(C(ψ))−→Hi+1(F )−→Hi+1(G)−→Hi+1(C(ψ))−→ ...

COROLLARY: A morphism of complexes is a quasi-isomorphism if and

only if its cone has zero cohomology.

Exercise 1: Let 0−→ C1 −→ C2 −→ ... be an exact sequence of acyclic sheaves.

Prove that the sequence of global sections 0−→ Γ(C1)−→ Γ(C2)−→ ...

is also exact.
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Cones and cohomology

CLAIM: Let 0−→A0
1 −→A1

1 −→A2
1 −→ ... be an acyclic resolution for a sheaf

A, and 0−→A0
2 −→A1

2 −→A2
2 −→ ... another acyclic resolution. Suppose that

there exists a morphism ϕ of complexes inducing identity on A0
2 = A0

1 = A.
Then the cohomology of the complex Γ(A∗1) are equal to the cohomol-
ogy of Γ(A∗2).

Proof. Step 1: Consider the complex X∗, given by 0−→A1
1 −→A2

1 −→ ...

and Y ∗, given by 0−→A1
2 −→A2

2 −→ ... (we drop the first term A0
2 = A0

1 = A).
Then the cohomology sheaves Hi(·) of these complexes are equal to A in 0,
and vanish in other terms. The map ϕ induces a morphism of complexes
X∗

ϕ−→ Y ∗ which induces identity on the cohomology sheaves H0(A∗2) =
H0(A∗1) = A. The long exact sequence
...−→Hi(A∗1)−→Hi(A∗2)−→Hi(C(ϕ))−→ ... implies that the cone C(ϕ) is
an exact complex of acyclic sheaves.

Step 2: Exercise 1 implies that the sequence
...

d−→ Γ(Ci(ϕ))
d−→ Γ(Ci+1(ϕ))

d−→ ... is exact. However, this sequence
is a complex of vector spaces, obtained as a cone of a morphism of com-
plexes Γ(A∗1)−→ Γ(A∗2), and from the cone exact sequence we obtain
that cohomology of these complexes are equal.
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Bicomplexes

DEFINITION: Bicomplex is a collection Ci,j of objects in abelian cate-

gory, enumerated by i, j ∈ Z2, and equipped with two differentials d1,0 :

Ci,j −→ Ci+1,j and d0,1 : Ci,j −→ Ci,j+1, anti-commuting and satisfying (d0,1)2 =

0 and (d1,0)2 = 0.

DEFINITION: Totalization of a bicomplex (Ci,j, d1,0, d0,1) is a complex

Tot∗(Ci,j, d) with d = d1,0 + d0,1 and Totp(Ci,j) =
⊕
i+j=pC

i,j.

Exercise 2: Let (Ci,j, d1,0, d0,1) be a bicomplex, with i, j > 0. Suppose that

cohomology of d1,0 are equal 0. Prove that cohomology of Tot∗(Ci,j)
vanish.
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Bicomplexes (2)

Exercise 2: Let (Ci,j, d1,0, d0,1) be a bicomplex, with i, j > 0. Suppose that

cohomology of d1,0 are equal 0. Prove that cohomology of Tot∗(Ci,j)
vanish.

Claim 1: Let (Ci,j, d1,0, d0,1) be a bicomplex, with i, j > 0. Suppose that

cohomology of (Ci,∗, d0,1) vanish for all i > 0. Then the cohomology of

Tot∗(Ci,j) are equal to cohomology of (C0,∗, d0,1).

Proof: Consider the natural surjective morphism of complexes Tot∗(Ci,j) Ψ−→
(C0,∗, d0,1). Then ker Ψ = Tot∗i>0(Ci,j), where Tot∗i>0(Ci,j) is totalization of

the subcomplex (C∗+1,∗, d1,0, d0,1) ⊂ (C∗,∗, d1,0, d0,1). By Exercise 2, coho-

mology of Tot∗i>0(Ci,j) vanish. Taking the long exact sequence associated

with the exact sequence of complexes

0−→ Tot∗i>0(Ci,j)−→ Tot∗(Ci,j)−→ C0,∗ −→ 0

we obtain that cohomology of (C0,∗, d0,1) are equal to the cohomology of

(Tot∗(Ci,j), d1,0 + d0,1).
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Godement bicomplex

Let A = A0 be a sheaf and 0−→A0 −→A1 −→A2 −→ ... an acyclic resolu-

tion, and Gn(Ai) the n-th term of Godement resolution for Ai. This gives a

bicomplex G∗,∗

0 0 0y y y
0 −→ A0 −→ A1 −→ A2 −→y y y
0 −→ G1(A0) −→ G1(A1) −→ G1(A2) −→y y y
0 −→ G2(A0) −→ G2(A1) −→ G2(A2) −→y y y

with all sheaves acyclic except A0.
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Acyclic sheaves

DEFINITION: A sequence 0−→A−→B −→ C −→ 0 of sheaves is called an
exact sequence if the corresponding sequences of stalks are exact.

DEFINITION: A functor Φ from sheaves to vector spaces is called left exact
if any exact sequence of sheaves 0−→A−→B −→ C −→ 0 is mapped to a left
exact sequence 0−→Φ(A)−→Φ(B)−→Φ(C).

EXAMPLE: Functor of global sections F −→ ΓM(F) is left exact.

DEFINITION: A sheaf is called acyclic if for any open set U ⊂ M and any
exact sequence of sheaves 0−→A−→B −→ C −→ 0, the sequence

0−→ ΓU(A)−→ ΓU(B)−→ ΓU(C)−→ 0

is exact.

REMARK: As shown above, a sheaf A is acyclic if its Čech cohomology
H1(A) vanish for any locally finite covering. In particular, all sheaves of
modules over C∞M are acyclic.

DEFINITION: Let 0−→ F −→ F1 −→ F2 −→ ... be an exact sequence of sheaves.
Assume that all Fi are acyclic. Then this sequence is called an acyclic res-
olution for F .
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Sheaf cohomology

DEFINITION: Let 0−→ F −→ F1 −→ F2 −→ ... be an acyclic resolution of F .

Cohomology group Hi(F ) is defined as i-th group of cohomology of the

corresponding complex of global sections

ΓM(F )−→ ΓM(F1)−→ ΓM(F2)−→ ...

PROPOSITION: (Properties of cohomology sheaves):

1. The groups Hi(F ) don’t depend on the choice of acyclic resolution.

2. Hi(F ) = 0 for all i > 0 if and only if F is acyclic.

3. For any exact sequence of sheaves 0−→A−→B −→ C −→ 0 there is a long

exact sequence

0−→ Γ(A)−→ Γ(B)−→ Γ(C)−→H1(A)−→H1(B)−→H1(C)−→ ...

Proof is later today.
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Independence of cohomology

REMARK: The following theorem implies that the cohomology of a sheaf

are independent from the choice of acyclic resolution.

THEOREM: Let A = A0 and 0−→A0 −→A1 −→ ... be an acyclic resolution

of A. Then the cohomology of Γ(Ai) are equal to the cohomology of

the global sections of the Godement resolution Γ(Gi(A0)).

Proof: Apply the functor Γ(·) to the bicomplex G∗,∗. Exercise 1 implies that

the columns and rows of Γ(G∗,∗) are exact, with the possible exception of

Γ(G0,∗) and Γ(G∗,0). Then Claim 1 implies that cohomology of totalization

of Γ(G∗,∗) are equal to the cohomology of Γ(G0,∗), d0,1, which is cohomology

of Γ(G∗(A0)) and to the cohomology of Γ(G∗,0), d1,0 which is the same as

cohomology of Γ(A∗).
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Dolbeault resolution

REMARK: From Poincaré-Dolbeault-Grothendieck lemma we obtain an acyclic

resolution

0−→Ωp(M) ↪→ Λp,0(M)
∂−→ Λp,1(M)

∂−→ Λp,2(M)
∂−→ ... (∗ ∗ ∗∗)

of the sheaf of holomorphic p-forms. Indeed, the kernel of Λp,0(M)
∂−→

Λp,1(M) is forms with holomorphic coefficients; other terms of (**) are exact

by Poincaré-Dolbeault-Grothendieck lemma. The sheaves Λp,0(M) are all

sheaves of C∞(M)-modules, hence they are acyclic.

COROLLARY: Let M be a compact Kähler manifold. Then the space

Hp,q(M) is identified with the cohomology group Hq(Ωp(M)).

Proof: Indeed, the cohomology of Γ(·) applied to (****) is the kernel of

the corresponding Laplacian ∆∂, which is the same as the kernel of ∆d on

Hp,∗(M).
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