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Curvature (reminder)

DEFINITION: Let ∇ : B −→B ⊗ Λ1M be a connection on a vector bundle

B. We extend ∇ to an operator

V
∇−→ Λ1(M)⊗ V ∇−→ Λ2(M)⊗ V ∇−→ Λ3(M)⊗ V ∇−→ ...

using the Leibnitz identity ∇(η ⊗ b) = dη + (−1)η̃η ∧ ∇b. Then the operator

∇2 : B −→B ⊗ Λ2(M) is called the curvature of ∇.

REMARK: The algebra of differential forms with coefficients in EndB

acts on Λ∗M⊗B via η⊗a(η′⊗b) = η∧η′⊗a(b), where a ∈ End(B), η, η′ ∈ Λ∗M ,

and b ∈ B.

REMARK: ∇2(fb) = d2fb + df ∧ ∇b− df ∧ ∇b + f∇2b, hence the curvature

is a C∞M-linear operator. We shall consider the curvature B as a 2-

form with values in EndB. Then ∇2 := ΘB ∈ Λ2M ⊗ EndB, where an

End(B)-valued form acts on Λ∗M ⊗B as above.
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Holomorphic bundles (reminder)

DEFINITION: Holomorphic vector bundle on a complex manifold M is a

locally trivial sheaf of OM-modules.

DEFINITION: The total space Tot(B) of a holomorphic bundle B over

M is the space of all pairs {x ∈ M, b ∈ Bx/mxB}, where Bx is the stalk of B

in x ∈ M and mx the maximal ideal of x. We equip Tot(B) with the natural

topology and holomorphic structure, in such a way that Tot(B) becomes a

locally trivial holomorphic fibration with fiber Cr, r = rkB.

REMARK: The set of holomorphic sections of a map Tot(B)−→M is

naturally identified with the set of sections of the sheaf B.

CLAIM: Ler B be a holomorphic bundle. Consider the sheaf BC∞ := B ⊗OM
C∞M . Then BC∞ is a locally trivial sheaf of C∞M-modules.

DEFINITION: BC∞ is called smooth vector bundle underlying the holo-

morphic vector bundle B.

REMARK: The natural map Tot(B)−→ Tot(BC∞) is a diffeomorphism.
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∂-operator on vector bundles (reminder)

DEFINITION: Let B be a holomorphic vector bundle on M . Consider an
operator ∂ : BC∞ −→BC∞ ⊗ Λ0,1(M) mapping b ⊗ f to b ⊗ ∂f , where b is a
holomorphic section of B, and f smooth. This operator is called a holomor-
phic structure operator on B. It is well-defined because ∂ is OM-linear,
and BC∞ = B ⊗OM C∞M .

DEFINITION: A ∂-operator on a smooth complex vector bundle V over

a complex manifold is a differential operator V
∂−→ Λ0,1(M) ⊗ V satisfying

∂(fb) = ∂(f)⊗ b+ f∂(b) for any f ∈ C∞M, b ∈ V .

REMARK: A ∂-operator can be extended to ∂ : Λ0,i(M)⊗V −→ Λ0,i+1(M)⊗
V, using the Leibnitz identity ∂(η ⊗ b) = ∂(η)⊗ b+ (−1)η̃η ∧ ∂(b), for all b ∈ V
and η ∈ Λ0,i(M).

THEOREM: (Malgrange) Let ∂ : V −→ Λ0,1(M)⊗ V be a ∂-operator on a
complex vector bundle, satisfying ∂

2
= 0, where ∂ is extended to

V
∂−→ Λ0,1(M)⊗ V ∂−→ Λ0,2(M)⊗ V ∂−→ Λ0,3(M)⊗ V ∂−→ ...

as above. Then B := ker ∂ ⊂ V is a holomorphic bundle of the same
rank, and V = BC∞.
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Chern connection (reminder)

DEFINITION: Let V be a smooth complex vector bundle with connection
∇ : V −→ Λ1(M) ⊗ V and holomorphic structure ∂ : V −→ Λ0,1(M) ⊗ V .
Consider the Hodge type decomposition of ∇, ∇ = ∇0,1 +∇1,0, where

∇0,1 : V −→ Λ0,1(M)⊗ V, ∇1,0 : V −→ Λ1,0(M)⊗ V.

We say that the connection ∇ is compatible with the holomorphic struc-
ture if ∇0,1 = ∂.

DEFINITION: A holomorphic Hermitian vector buncle is a smooth com-
plex vector bundle equipped with a Hermitian metric and a holomorphic struc-
ture.

DEFINITION: Chern connection on a holomorphic Hermitian vector bundle
is a unitary connection compatible with the holomorphic structure.

THEOREM: Every holomorphic Hermitian vector bundle admits a Chern
connection, which is unique.

REMARK: When people say about “curvature of a holomorphic Hermitian
line bundle”, they speak about curvature of a Hermitian connection.
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Bianchi identity

REMARK: [∇, {∇,∇}] = [{∇,∇},∇] + [∇, {∇,∇}] = 0 by the super Jacobi

identity. This gives the Bianchi identity: ∇(ΘB ∧ η) = ΘB ∧∇(η).

REMARK: When B is a line bundle, End(B) is trivial, and ΘB is a 2-form.

CLAIM: A curvature of a line bundle is a closed 2-form.

Proof: For any form θ ∈ Λi(M)⊗ End(B), Leibnitz identity gives ∇(θ ∧ η) =

dθ∧η+(−1)iθ∧∇(η). Bianchi identity gives ∇(ΘB∧η) = ΘB∧∇(η). Therefore

dΘB = 0.

REMARK: The same argument can be used to show that TrB Θi
B is a closed

2i-form, where TrB denotes the trace in End(B), and Θi
B is the i-th power

of an End(B)-valued form.

DEFINITION: Cohomology classes of TrB Θi
B are called characteristic

vlasses of a bundle B (“Chern-Weil formula”). When B is a line bundle,

the cohomology class of −
√
−1
π ΘB is called first Chern class of B, denoted

c1(B).
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Luigi Bianchi

Luigi Bianchi (1856 - 1928)
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Exponential sequence

REMARK: Let B be a line bundle on a manifold, {Uα} its cover where B is

trivialized, and ϕαβ the corresponding transition functions defined on Uα∩Uβ.

On each intersection Uα∩Uβ∩Uγ we have ϕαβϕβγ = ϕαγ, hence a trivialization

of B on {Uα} defines a Čech 1-cocycle on B with values in (C∞M)∗.

The following claim is clear from the definitions.

CLAIM: Isomorphism classes of vector bundles are in bijective corre-

spondence with H1(M, (C∞M)∗).

DEFINITION: Exponential exact sequence is the following exact sequence

of sheaves:

0−→ ZM −→ C∞M −→ (C∞M)∗ −→ 0,

Since Hi(C∞M) = 0 for i > 0, the corresponding long exact sequence

gives 0−→H1(M, (C∞M)∗) −̃→H2(M,Z)−→ 0.
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Line bundles on CP∞

EXERCISE: Let B be a vector bundle on M . Prove that B ⊕ B′ is trivial

for some bundle B′.

CLAIM: For any complex line bundle L on M , there exists a map ϕ :

M −→ CPn such that L = π∗O(−1).

Proof: Indeed, suppose that L⊕B′ is trivial, B1 = L⊕B′ = V ⊗CC
∞M . Then

each point x ∈ M defines a line ϕ(x) ∈ PV such that L|x = ϕ(x) ⊂ B1|x = V .

In this situation, L is obtained as a pullback of the tautological vector

bundle.
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First Chern class

DEFINITION: The isomorphism H1(M, (C∞M)∗) −̃→H2(M,Z) maps a line

bundle L ∈ H1(M, (C∞M)∗) to its integer Chern class cZ1(B) ∈ H2(M,Z)

THEOREM: (Gauss-Bonnet)

Let L be a line bundle on M . Then the natural map H2(M,Z)−→H2(M,R)

maps cZ1(L) to the class c1(L) = −
√
−1
π [ΘL] defined above.

Proof: Let O(−1) be the tautological bundle on CPn. As shown above, any

line bundle L on M can be obtained as ϕ∗(O(−1)), hence it suffices to prove

[ΘL] =
√
−1 πcZ1(L) for L = O(−1) on CPn. Since a cohomology class in

H2(CPn) is determined by its restriction to CP1, it would suffice to prove this

formula for L = O(−1) on CP1. In this case, cZ1(L) is the Euler characteristic

of L, and [ΘL] =
√
−1πcZ1(L) is the usual Gauss-Bonnet formula on a 2-sphere,

which can be obtained by computing the volume of S2.
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Real structures on a complex vector space

DEFINITION: Real structure on a complex vector space is anticomplex

involution.

EXERCISE: For any complex vector space V and a real structure ι, denote

by VR the fixed point set of ι. Prove that V = VR ⊗R C.

EXAMPLE: Let V be a Hermitian vector space, andEndC V its endomor-

phism space. Consider the real structure ϕ
ι−→ −ϕ∗, where ϕ∗ denotes the

Hermitian conjugate. Prove that the fixed point set of ι is the space of

anti-Hermitian matrices u(V ).
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Curvature of the Chern connection

PROPOSITION: Curvaure ΘB of a Chern connection on B is a (1,1)-
form: ΘB ∈ Λ1,1(M)⊗ End(B).

Proof. Step 1: Let B be a Hermitan bundle. Consider the operator ϕ
ι−→

−ϕ∗ acting on End(B), where ϕ−→ ϕ∗ denotes the Hermitian conjugation.
Since ι2 = Id, and this is an anticomplex operator, it defines the real structure,
and its fixed point set is uB.

Step 2: Since the Chern connection preserves the Hermitian structure g, one
has ∇(g) = 0, which gives ∇2(g) = 0. This means that ΘB ∈ Λ2M ⊗ uB, and
this for is real with respect to the real structure defined by ι.

Step 3: The (0,2)-part of the curvature vanishes, because ∂
2

= 0. The
(2,0)-part of the curvature vanishes, because ι(ΘB) = ΘB, and any real
structure on End(B) exchanges Λ2,0(M)⊗End(B) and Λ0,2(M)⊗End(B).

COROLLARY: For the Chern connection ∇ = ∂ +∇1,0 on B, one has
ΘB = {∇1,0, ∂}.

COROLLARY: A curvature of a holomorphic Hermitian line bundle is
a closed (1,1)-form.
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Curvature of the Chern connection on a line bundle

REMARK: Let B he a Hermitian holomorphic line bundle, and b ∈ Γ(B) a

nowhere vanishing holomorphic section. Then

d|b|2 = (∇1,0b, b) + (b,∇1,0b) = 2 Re(∇1,0b, b),

which gives

∇1,0b =
∂|b|2

|b|2
b = 2∂ log |b|b.

We obtaim that ΘB(b) = 2∂∂ log |b|b, hence ΘB = −2∂∂ log |b|.

Corollary 1: Let g′ = e2fg be Hermitian metrics on a holomorphic line bundle,

and Θ,Θ′ the corresponding curvatures. Then Θ′ −Θ = −2∂∂f.

DEFINITION: Tensor multiplication defines the structure of abelian group

on the set Pic(M) of equivalence classes of holomorphic line bundles

on a complex manifod M . This group is called the Picard group of M .
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ddc-lemma (reminder)

THEOREM: Let η be a form on a compact Kähler manifold, satisfying one
of the following conditions.
(1). η is an exact (p, q)-form. (2). η is d-exact, dc-closed.
(3). η is ∂-exact, ∂-closed.
Then η ∈ im ddc = im ∂∂.

Proof: Notice immediately that in all three cases η is closed and orthogonal
to the kernel of ∆, hence its cohomology class vanishes.

Since η is exact, it lies in the image of ∆. Operator G∆ := ∆−1 is defined
on im ∆ = ker ∆⊥ and commutes with d, dc.

In case (1), η is d-exact, and I(η) = η is d-closed, hence η is d-exact, dc-closed
like in (2).

Then η = dα, where α := G∆d
∗η. Since G∆ and d∗ commute with dc, the

form α is dc-closed; since it belongs to im ∆ = imG∆, it is dc-exact, α = dcβ
which gives η = ddcβ.

In case (3), we have η = ∂α, where α := G∆∂
∗η. Since G∆ and ∂∗ commute

with ∂, the form α is ∂-closed; since it belongs to im ∆, it is ∂-exact, α = ∂β
which gives η = ∂∂β.
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Forms realized as a curvature of a line bundle

COROLLARY: Let ω be an integer (1,1)-form with integer cohomology class

on a compact Kähler manifold. Then ω is a curvature of a holomorphic

line bundle.

Proof. Step 1: Exponential exact sequence 0−→ ZM −→OM −→O∗M −→ 0

gives

H1(O∗M)
c−→ H2(M,Z)

p−→ H2(M,OM),

where H1(O∗M) = Pic(M) is the group of holomorphic line bundles, c maps

a bundle to its first Chern class, and p projects H2(M) to its Hodge compo-

nent H2(M,OM) = H0,2(M). Then for any integer class [ω] ∈ H1,1(M) ∩
H2(M,Z), there exists a line bundle L such that [ω] = c1(L).

Step 2: Take any metric h on L. Its curvature ωh is a closed (1,1)-form,

cohomologous to ω. By ddc-lemma, ωh − ω = −2∂∂f for some f ∈ C∞M .

By Corollary 1, curvature of h′ := e2fh satisfies ωh − ωh′ = −2∂∂f, giving

ωh′ = ω.
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