Hodge theory

Lecture 20: Curvature of line bundles

NRU HSE, Moscow

Misha Verbitsky, April 7, 2018

Curvature (reminder)

DEFINITION: Let ∇ : $B \longrightarrow B \otimes \Lambda^1 M$ be a connection on a vector bundle *B*. We extend ∇ to an operator

$$V \xrightarrow{\nabla} \Lambda^{1}(M) \otimes V \xrightarrow{\nabla} \Lambda^{2}(M) \otimes V \xrightarrow{\nabla} \Lambda^{3}(M) \otimes V \xrightarrow{\nabla} \dots$$

using the Leibnitz identity $\nabla(\eta \otimes b) = d\eta + (-1)^{\tilde{\eta}}\eta \wedge \nabla b$. Then the operator $\nabla^2: B \longrightarrow B \otimes \Lambda^2(M)$ is called **the curvature** of ∇ .

REMARK: The algebra of differential forms with coefficients in End *B* **acts on** $\Lambda^*M \otimes B$ via $\eta \otimes a(\eta' \otimes b) = \eta \wedge \eta' \otimes a(b)$, where $a \in \text{End}(B)$, $\eta, \eta' \in \Lambda^*M$, and $b \in B$.

REMARK: $\nabla^2(fb) = d^2fb + df \wedge \nabla b - df \wedge \nabla b + f\nabla^2 b$, hence **the curvature** is a $C^{\infty}M$ -linear operator. We shall consider the curvature *B* as a 2form with values in End *B*. Then $\nabla^2 := \Theta_B \in \Lambda^2 M \otimes \text{End } B$, where an End(*B*)-valued form acts on $\Lambda^*M \otimes B$ as above.

Holomorphic bundles (reminder)

DEFINITION: Holomorphic vector bundle on a complex manifold M is a locally trivial sheaf of \mathcal{O}_M -modules.

DEFINITION: The total space Tot(B) of a holomorphic bundle B over M is the space of all pairs $\{x \in M, b \in B_x/\mathfrak{m}_x B\}$, where B_x is the stalk of B in $x \in M$ and \mathfrak{m}_x the maximal ideal of x. We equip Tot(B) with the natural topology and holomorphic structure, in such a way that Tot(B) becomes a locally trivial holomorphic fibration with fiber \mathbb{C}^r , $r = \operatorname{rk} B$.

REMARK: The set of holomorphic sections of a map $Tot(B) \rightarrow M$ is naturally identified with the set of sections of the sheaf B.

CLAIM: Let *B* be a holomorphic bundle. Consider the sheaf $B_{C^{\infty}} := B \otimes_{\mathcal{O}_M} C^{\infty} M$. Then $B_{C^{\infty}}$ is a locally trivial sheaf of $C^{\infty}M$ -modules.

DEFINITION: $B_{C^{\infty}}$ is called **smooth vector bundle underlying the holomorphic vector bundle** *B*.

REMARK: The natural map $Tot(B) \rightarrow Tot(B_{C^{\infty}})$ is a diffeomorphism.

$\overline{\partial}$ -operator on vector bundles (reminder)

DEFINITION: Let *B* be a holomorphic vector bundle on *M*. Consider an operator $\overline{\partial}$: $B_{C^{\infty}} \longrightarrow B_{C^{\infty}} \otimes \Lambda^{0,1}(M)$ mapping $b \otimes f$ to $b \otimes \overline{\partial} f$, where *b* is a holomorphic section of *B*, and *f* smooth. This operator is called a holomorphic structure operator on *B*. It is well-defined because $\overline{\partial}$ is \mathcal{O}_M -linear, and $B_{C^{\infty}} = B \otimes_{\mathcal{O}_M} C^{\infty} M$.

DEFINITION: A $\overline{\partial}$ -operator on a smooth complex vector bundle V over a complex manifold is a differential operator $V \xrightarrow{\overline{\partial}} \Lambda^{0,1}(M) \otimes V$ satisfying $\overline{\partial}(fb) = \overline{\partial}(f) \otimes b + f\overline{\partial}(b)$ for any $f \in C^{\infty}M, b \in V$.

REMARK: A $\overline{\partial}$ -operator can be extended to $\overline{\partial}$: $\Lambda^{0,i}(M) \otimes V \longrightarrow \Lambda^{0,i+1}(M) \otimes V$, using the Leibnitz identity $\overline{\partial}(\eta \otimes b) = \overline{\partial}(\eta) \otimes b + (-1)^{\tilde{\eta}} \eta \wedge \overline{\partial}(b)$, for all $b \in V$ and $\eta \in \Lambda^{0,i}(M)$.

THEOREM: (Malgrange) Let $\overline{\partial}$: $V \longrightarrow \Lambda^{0,1}(M) \otimes V$ be a $\overline{\partial}$ -operator on a complex vector bundle, satisfying $\overline{\partial}^2 = 0$, where $\overline{\partial}$ is extended to

$$V \xrightarrow{\overline{\partial}} \Lambda^{0,1}(M) \otimes V \xrightarrow{\overline{\partial}} \Lambda^{0,2}(M) \otimes V \xrightarrow{\overline{\partial}} \Lambda^{0,3}(M) \otimes V \xrightarrow{\overline{\partial}} \dots$$

as above. Then $B := \ker \overline{\partial} \subset V$ is a holomorphic bundle of the same rank, and $V = B_{\mathbb{C}^{\infty}}$.

Chern connection (reminder)

DEFINITION: Let *V* be a smooth complex vector bundle with connection $\nabla : V \longrightarrow \Lambda^1(M) \otimes V$ and holomorphic structure $\overline{\partial} : V \longrightarrow \Lambda^{0,1}(M) \otimes V$. Consider the Hodge type decomposition of ∇ , $\nabla = \nabla^{0,1} + \nabla^{1,0}$, where

$$\nabla^{0,1}: V \longrightarrow \Lambda^{0,1}(M) \otimes V, \quad \nabla^{1,0}: V \longrightarrow \Lambda^{1,0}(M) \otimes V.$$

We say that the connection ∇ is compatible with the holomorphic structure if $\nabla^{0,1} = \overline{\partial}$.

DEFINITION: A holomorphic Hermitian vector buncle is a smooth complex vector bundle equipped with a Hermitian metric and a holomorphic structure.

DEFINITION: Chern connection on a holomorphic Hermitian vector bundle is a unitary connection compatible with the holomorphic structure.

THEOREM: Every holomorphic Hermitian vector bundle **admits a Chern connection, which is unique.**

REMARK: When people say about "curvature of a holomorphic Hermitian line bundle", **they speak about curvature of a Hermitian connection.**

5

Bianchi identity

REMARK: $[\nabla, \{\nabla, \nabla\}] = [\{\nabla, \nabla\}, \nabla] + [\nabla, \{\nabla, \nabla\}] = 0$ by the super Jacobi identity. This gives the Bianchi identity: $\nabla(\Theta_B \wedge \eta) = \Theta_B \wedge \nabla(\eta)$.

REMARK: When B is a line bundle, End(B) is trivial, and Θ_B is a 2-form.

CLAIM: A curvature of a line bundle is a closed 2-form.

Proof: For any form $\theta \in \Lambda^i(M) \otimes \text{End}(B)$, Leibnitz identity gives $\nabla(\theta \wedge \eta) = d\theta \wedge \eta + (-1)^i \theta \wedge \nabla(\eta)$. Bianchi identity gives $\nabla(\Theta_B \wedge \eta) = \Theta_B \wedge \nabla(\eta)$. Therefore $d\Theta_B = 0$.

REMARK: The same argument can be used to show that $\text{Tr}_B \Theta_B^i$ is a closed 2*i*-form, where Tr_B denotes the trace in End(*B*), and Θ_B^i is the *i*-th power of an End(*B*)-valued form.

DEFINITION: Cohomology classes of $\operatorname{Tr}_B \Theta_B^i$ are called **characteristic vlasses** of a bundle *B* ("Chern-Weil formula"). When *B* is a line bundle, the cohomology class of $-\frac{\sqrt{-1}}{\pi}\Theta_B$ is called **first Chern class of** *B*, denoted $c_1(B)$.

Luigi Bianchi

Luigi Bianchi (1856 - 1928)

Exponential sequence

REMARK: Let *B* be a line bundle on a manifold, $\{U_{\alpha}\}$ its cover where *B* is trivialized, and $\varphi_{\alpha\beta}$ the corresponding transition functions defined on $U_{\alpha} \cap U_{\beta}$. On each intersection $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$ we have $\varphi_{\alpha\beta}\varphi_{\beta\gamma} = \varphi_{\alpha\gamma}$, hence a trivialization of *B* on $\{U_{\alpha}\}$ defines a Čech 1-cocycle on *B* with values in $(C^{\infty}M)^*$.

The following claim is clear from the definitions.

CLAIM: Isomorphism classes of vector bundles are in bijective correspondence with $H^1(M, (C^{\infty}M)^*)$.

DEFINITION: Exponential exact sequence is the following exact sequence of sheaves:

$$0 \longrightarrow \mathbb{Z}_M \longrightarrow C^{\infty}M \longrightarrow (C^{\infty}M)^* \longrightarrow 0,$$

Since $H^i(C^{\infty}M) = 0$ for i > 0, the corresponding long exact sequence gives $0 \longrightarrow H^1(M, (C^{\infty}M)^*) \xrightarrow{\sim} H^2(M, \mathbb{Z}) \longrightarrow 0$. Line bundles on $\mathbb{C}P^{\infty}$

EXERCISE: Let *B* be a vector bundle on *M*. **Prove that** $B \oplus B'$ **is trivial** for some bundle *B'*.

CLAIM: For any complex line bundle L on M, there exists a map φ : $M \longrightarrow \mathbb{C}P^n$ such that $L = \pi^* \mathcal{O}(-1)$.

Proof: Indeed, suppose that $L \oplus B'$ is trivial, $B_1 = L \oplus B' = V \otimes_{\mathbb{C}} C^{\infty} M$. Then each point $x \in M$ defines a line $\varphi(x) \in \mathbb{P}V$ such that $L|_x = \varphi(x) \subset B_1|_x = V$. In this situation, L is obtained as a pullback of the tautological vector bundle.

First Chern class

DEFINITION: The isomorphism $H^1(M, (C^{\infty}M)^*) \xrightarrow{\sim} H^2(M, \mathbb{Z})$ maps a line bundle $L \in H^1(M, (C^{\infty}M)^*)$ to its integer Chern class $c_1^{\mathbb{Z}}(B) \in H^2(M, \mathbb{Z})$

THEOREM: (Gauss-Bonnet)

Let L be a line bundle on M. Then the natural map $H^2(M,\mathbb{Z}) \longrightarrow H^2(M,\mathbb{R})$ maps $c_1^{\mathbb{Z}}(L)$ to the class $c_1(L) = -\frac{\sqrt{-1}}{\pi}[\Theta_L]$ defined above.

Proof: Let $\mathcal{O}(-1)$ be the tautological bundle on $\mathbb{C}P^n$. As shown above, any line bundle L on M can be obtained as $\varphi^*(\mathcal{O}(-1))$, hence it suffices to prove $[\Theta_L] = \sqrt{-1} \pi c_1^{\mathbb{Z}}(L)$ for $L = \mathcal{O}(-1)$ on $\mathbb{C}P^n$. Since a cohomology class in $H^2(\mathbb{C}P^n)$ is determined by its restriction to $\mathbb{C}P^1$, it would suffice to prove this formula for $L = \mathcal{O}(-1)$ on $\mathbb{C}P^1$. In this case, $c_1^{\mathbb{Z}}(L)$ is the Euler characteristic of L, and $[\Theta_L] = \sqrt{-1}\pi c_1^{\mathbb{Z}}(L)$ is the usual Gauss-Bonnet formula on a 2-sphere, which can be obtained by computing the volume of S^2 .

Real structures on a complex vector space

DEFINITION: Real structure on a complex vector space is anticomplex involution.

EXERCISE: For any complex vector space V and a real structure ι , denote by $V_{\mathbb{R}}$ the fixed point set of ι . **Prove that** $V = V_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$.

EXAMPLE: Let V be a Hermitian vector space, and $\operatorname{End}_{\mathbb{C}} V$ its endomorphism space. Consider the real structure $\varphi \xrightarrow{\iota} -\varphi^*$, where φ^* denotes the Hermitian conjugate. Prove that the fixed point set of ι is the space of anti-Hermitian matrices $\mathfrak{u}(V)$.

Curvature of the Chern connection

PROPOSITION: Curvaure Θ_B of a Chern connection on *B* is a (1,1)-form: $\Theta_B \in \Lambda^{1,1}(M) \otimes \text{End}(B)$.

Proof. Step 1: Let *B* be a Hermitan bundle. Consider the operator $\varphi \stackrel{\iota}{\longrightarrow} -\varphi^*$ acting on End(*B*), where $\varphi \longrightarrow \varphi^*$ denotes the Hermitian conjugation. Since $\iota^2 = \text{Id}$, and this is an anticomplex operator, it defines the real structure, and its fixed point set is \mathfrak{u}_B .

Step 2: Since the Chern connection preserves the Hermitian structure g, one has $\nabla(g) = 0$, which gives $\nabla^2(g) = 0$. This means that $\Theta_B \in \Lambda^2 M \otimes \mathfrak{u}_B$, and this for is real with respect to the real structure defined by ι .

Step 3: The (0,2)-part of the curvature vanishes, because $\overline{\partial}^2 = 0$. The (2,0)-part of the curvature vanishes, because $\iota(\Theta_B) = \Theta_B$, and **any real** structure on End(*B*) exchanges $\Lambda^{2,0}(M) \otimes \text{End}(B)$ and $\Lambda^{0,2}(M) \otimes \text{End}(B)$.

COROLLARY: For the Chern connection $\nabla = \overline{\partial} + \nabla^{1,0}$ on *B*, one has $\Theta_B = \{\nabla^{1,0}, \overline{\partial}\}.$

COROLLARY: A curvature of a holomorphic Hermitian line bundle is a closed (1,1)-form.

Curvature of the Chern connection on a line bundle

REMARK: Let *B* he a Hermitian holomorphic line bundle, and $b \in \Gamma(B)$ a nowhere vanishing holomorphic section. Then

$$d|b|^{2} = (\nabla^{1,0}b, b) + (b, \nabla^{1,0}b) = 2\operatorname{Re}(\nabla^{1,0}b, b),$$

which gives

$$\nabla^{1,0}b = \frac{\partial|b|^2}{|b|^2}b = 2\partial \log|b|b.$$

We obtain that $\Theta_B(b) = 2\overline{\partial}\partial \log |b|b$, hence $\Theta_B = -2\partial\overline{\partial} \log |b|$.

Corollary 1: Let $g' = e^{2f}g$ be Hermitian metrics on a holomorphic line bundle, and Θ, Θ' the corresponding curvatures. Then $\Theta' - \Theta = -2\partial\overline{\partial}f$.

DEFINITION: Tensor multiplication defines the structure of abelian group on the set Pic(M) of equivalence classes of holomorphic line bundles on a complex manifod M. This group is called the Picard group of M.

dd^c-lemma (reminder)

THEOREM: Let η be a form on a compact Kähler manifold, satisfying one of the following conditions.

(1). η is an exact (p,q)-form. (2). η is *d*-exact, *d^c*-closed.

(3). η is ∂ -exact, $\overline{\partial}$ -closed.

Then $\eta \in \operatorname{im} dd^c = \operatorname{im} \partial\overline{\partial}$.

Proof: Notice immediately that in all three cases η is closed and orthogonal to the kernel of Δ , hence its cohomology class vanishes.

Since η is exact, it lies in the image of Δ . Operator $G_{\Delta} := \Delta^{-1}$ is defined on im $\Delta = \ker \Delta^{\perp}$ and commutes with d, d^c .

In case (1), η is *d*-exact, and $I(\eta) = \overline{\eta}$ is *d*-closed, hence η is *d*-exact, *d^c*-closed like in (2).

Then $\eta = d\alpha$, where $\alpha := G_{\Delta}d^*\eta$. Since G_{Δ} and d^* commute with d^c , the form α is d^c -closed; since it belongs to im $\Delta = \operatorname{im} G_{\Delta}$, it is d^c -exact, $\alpha = d^c\beta$ which gives $\eta = dd^c\beta$.

In case (3), we have $\eta = \partial \alpha$, where $\alpha := G_{\Delta} \partial^* \eta$. Since G_{Δ} and ∂^* commute with $\overline{\partial}$, the form α is $\overline{\partial}$ -closed; since it belongs to im Δ , it is $\overline{\partial}$ -exact, $\alpha = \overline{\partial}\beta$ which gives $\eta = \partial \overline{\partial} \beta$.

Forms realized as a curvature of a line bundle

COROLLARY: Let ω be an integer (1,1)-form with integer cohomology class on a compact Kähler manifold. Then ω is a curvature of a holomorphic line bundle.

Proof. Step 1: Exponential exact sequence $0 \longrightarrow \mathbb{Z}_M \longrightarrow \mathcal{O}_M \longrightarrow \mathcal{O}_M^* \longrightarrow 0$ gives

$$H^1(\mathcal{O}_M^*) \xrightarrow{c} H^2(M,\mathbb{Z}) \xrightarrow{p} H^2(M,\mathcal{O}_M),$$

where $H^1(\mathcal{O}_M^*) = \operatorname{Pic}(M)$ is the group of holomorphic line bundles, c maps a bundle to its first Chern class, and p projects $H^2(M)$ to its Hodge component $H^2(M, \mathcal{O}_M) = H^{0,2}(M)$. Then for any integer class $[\omega] \in H^{1,1}(M) \cap$ $H^2(M, \mathbb{Z})$, there exists a line bundle L such that $[\omega] = c_1(L)$.

Step 2: Take any metric h on L. Its curvature ω_h is a closed (1,1)-form, cohomologous to ω . By dd^c -lemma, $\omega_h - \omega = -2\partial\overline{\partial}f$ for some $f \in C^{\infty}M$. **By Corollary 1, curvature of** $h' := e^{2f}h$ **satisfies** $\omega_h - \omega_{h'} = -2\partial\overline{\partial}f$, giving $\omega_{h'} = \omega$.