Hodge theory

Lecture 23: Calabi-Yau theorem

NRU HSE, Moscow

Misha Verbitsky, May 16, 2018

REMINDER: Holomorphic vector bundles

DEFINITION: A $\overline{\partial}$ -operator on a smooth bundle is a map $V \xrightarrow{\overline{\partial}} \Lambda^{0,1}(M) \otimes V$, satisfying $\overline{\partial}(fb) = \overline{\partial}(f) \otimes b + f\overline{\partial}(b)$ for all $f \in C^{\infty}M, b \in V$.

REMARK: A $\overline{\partial}$ -operator on *B* can be extended to

 $\overline{\partial}: \Lambda^{0,i}(M) \otimes V \longrightarrow \Lambda^{0,i+1}(M) \otimes V,$

using $\overline{\partial}(\eta \otimes b) = \overline{\partial}(\eta) \otimes b + (-1)^{\tilde{\eta}} \eta \wedge \overline{\partial}(b)$, where $b \in V$ and $\eta \in \Lambda^{0,i}(M)$.

DEFINITION: A holomorphic vector bundle on a complex manifold (M, I) is a vector bundle equipped with a $\overline{\partial}$ -operator which satisfies $\overline{\partial}^2 = 0$. In this case, $\overline{\partial}$ is called a holomorphic structure operator.

EXERCISE: Consider the Dolbeault differential $\overline{\partial}$: $\Lambda^{p,0}(M) \longrightarrow \Lambda^{p,1}(M) = \Lambda^{p,0}(M) \otimes \Lambda^{0,1}(M)$. **Prove that it is a holomorphic structure operator on** $\Lambda^{p,0}(M)$.

DEFINITION: The corresponding holomorphic vector bundle $(\Lambda^{p,0}(M), \overline{\partial})$ is called **the bundle of holomorphic** *p*-forms, denoted by $\Omega^p(M)$.

REMINDER: Chern connection

DEFINITION: Let (B, ∇) be a smooth bundle with connection and a holomorphic structure $\overline{\partial} B \longrightarrow \Lambda^{0,1}(M) \otimes B$. Consider a Hodge decomposition of $\nabla, \nabla = \nabla^{0,1} + \nabla^{1,0}$,

$$\nabla^{0,1}: V \longrightarrow \Lambda^{0,1}(M) \otimes V, \quad \nabla^{1,0}: V \longrightarrow \Lambda^{1,0}(M) \otimes V.$$

We say that ∇ is compatible with the holomorphic structure if $\nabla^{0,1} = \overline{\partial}$.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth complex vector bundle equipped with a Hermitian metric and a holomorphic structure operator $\overline{\partial}$.

DEFINITION: A Chern connection on a holomorphic Hermitian vector bundle is a connection compatible with the holomorphic structure and preserving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, **the Chern connection exists, and is unique.**

REMINDER: Curvature of a connection

DEFINITION: Let ∇ : $B \longrightarrow B \otimes \Lambda^1 M$ be a connection on a smooth budnle. Extend it to an operator on *B*-valued forms

$$B \xrightarrow{\nabla} \Lambda^{1}(M) \otimes B \xrightarrow{\nabla} \Lambda^{2}(M) \otimes B \xrightarrow{\nabla} \Lambda^{3}(M) \otimes B \xrightarrow{\nabla} \dots$$

using $\nabla(\eta \otimes b) = d\eta + (-1)^{\tilde{\eta}} \eta \wedge \nabla b$. The operator $\nabla^2 : B \longrightarrow B \otimes \Lambda^2(M)$ is called **the curvature** of ∇ .

REMARK: The algebra of End(*B*)-valued forms naturally acts on $\Lambda^* M \otimes B$. The curvature satisfies $\nabla^2(fb) = d^2fb + df \wedge \nabla b - df \wedge \nabla b + f\nabla^2 b = f\nabla^2 b$, hence it is $C^{\infty}M$ -linear. We consider it as an End(*B*)-valued 2-form on *M*.

PROPOSITION: (Bianchi identity) Clearly, $[\nabla, \nabla^2] = [\nabla^2, \nabla] + [\nabla, \nabla^2] = 0$, hence $[\nabla, \nabla^2] = 0$. This gives **Bianchi identity:** $\nabla(\Theta_B) = 0$, where Θ is considered as a section of $\Lambda^2(M) \otimes \text{End}(B)$, and $\nabla : \Lambda^2(M) \otimes \text{End}(B) \longrightarrow \Lambda^3(M) \otimes$ End(*B*). the operator defined above

REMINDER: Curvature of a holomorphic line bundle

REMARK: If *B* is a line bundle, End *B* is trivial, and the curvature Θ_B of *B* is a closed 2-form.

DEFINITION: Let ∇ be a unitary connection in a line bundle. The cohomology class $c_1(B) := \frac{\sqrt{-1}}{2\pi} [\Theta_B] \in H^2(M)$ is called **the real first Chern class** of a line bundle *B*.

An exercise: Check that $c_1(B)$ is independent from a choice of ∇ .

REMARK: When speaking of a "curvature of a holomorphic bundle", one usually means the curvature of a Chern connection.

REMARK: Let *B* be a holomorphic Hermitian line bundle, and *b* its nondegenerate holomorphic section. Denote by η a (1,0)-form which satisfies $\nabla^{1,0}b = \eta \otimes b$. Then $d|b|^2 = \operatorname{Re} g(\nabla^{1,0}b, b) = \operatorname{Re} \eta |b|^2$. This gives $\nabla^{1,0}b = \frac{\partial |b|^2}{|b|^2}b = 2\partial \log |b|b$.

REMARK: Then $\Theta_B(b) = 2\overline{\partial}\partial \log |b|b$, that is, $\Theta_B = -2\partial\overline{\partial} \log |b|$.

COROLLARY: If $g' = e^{2f}g - two$ metrics on a holomorphic line bundle, Θ, Θ' their curvatures, one has $\Theta' - \Theta = -2\partial\overline{\partial}f$

$\partial \overline{\partial}$ -lemma

THEOREM: (" $\partial \overline{\partial}$ -lemma")

Let M be a compact Kaehler manifold, and $\eta \Lambda^{p,q}(M)$ an exact form. Then $\eta = \partial \overline{\partial} \alpha$, for some $\alpha \in \Lambda^{p-1,q-1}(M)$.

Its proof uses Hodge theory.

COROLLARY: Let (L, h) be a holomorphic line bundle on a compact complex manifold, Θ its curvature, and η a (1,1)-form in the same cohomology class as $[\Theta]$. Then there exists a Hermitian metric h' on L such that its curvature is equal to η .

Proof: Let Θ' be the curvature of the Chern connection associated with h'. Then $\Theta' - \Theta = -2\partial \overline{\partial} f$, wgere $f = \log(h'h^{-1})$. Then $\Theta' - \Theta = \eta - \Theta = -2\partial \overline{\partial} f$ has a solution f by $\partial \overline{\partial}$ -lemma, because $\eta - \Theta$ is exact.

Calabi-Yau manifolds

REMARK: Let *B* be a line bundle on a manifold. Using the long exact sequence of cohomology associated with the exponential sequence

$$0 \longrightarrow \mathbb{Z}_M \longrightarrow C^{\infty}M \longrightarrow (C^{\infty}M)^* \longrightarrow 0,$$

we obtain $0 \longrightarrow H^1(M, (C^{\infty}M)^*) \longrightarrow H^2(M, \mathbb{Z}) \longrightarrow 0$.

DEFINITION: Let *B* be a complex line bundle, and ξ_B its defining element in $H^1(M, (C^{\infty}M)^*)$. Its image in $H^2(M, \mathbb{Z})$ is called **the integer first Chern class** of *B*, denoted by $c_1(B, \mathbb{Z})$ or $c_1(B)$.

REMARK: A complex line bundle *B* is (topologically) trivial if and only if $c_1(B,\mathbb{Z}) = 0$.

THEOREM: (Gauss-Bonnet) A real Chern class of a vector bundle is an image of the integer Chern class $c_1(B,\mathbb{Z})$ under the natural homomorphism $H^2(M,\mathbb{Z}) \longrightarrow H^2(M,\mathbb{R})$.

DEFINITION: A first Chern class of a complex *n*-manifold is $c_1(\Lambda^{n,0}(M))$.

DEFINITION:

A Calabi-Yau manifold is a compact Kaehler manifold with $c_1(M,\mathbb{Z}) = 0$.

M. Verbitsky

Ricci form of a Kähler manifold

THEOREM: (Bogomolov) Let M be a compact Kähler n-manifold with $c_1(M,\mathbb{Z}) = 0$. Then the canonical bundle $K_M := \Omega^n(M)$ is trivial.

Proof: Follows from the Calabi-Yau theorem (later today). ■

In other words, a manifold is Calabi-Yau if and only if its canonical bundle is trivial.

DEFINITION: Let (M, ω) be a Kähler manifold. The metric on K_M can be written as $|\Omega|^2 = \frac{\Omega \wedge \overline{\Omega}}{\omega^n}$. The **Ricci form** on M is the curvature of the Chern connection on K_M . The manifold M is **Ricci-flat** if its Ricci form vanishes.

REMARK: Since a canonical bundle K_M of a Calabi-Yau manifold is trivial, it admits a metric with trivial connection. Calabi conjectured that **this metric** on K_M is induced by a Kähler metric ω on M and proved that such a metric is unique for any cohomology class $[\omega] \in H^{1,1}(M, \mathbb{R})$. Yau proved that it always exists.

DEFINITION: A Ricci-flat Kähler metric is called **Calabi-Yau metric**.

Calabi-Yau theorem and Monge-Ampère equation

REMARK: Let (M, ω) be a Kähler *n*-fold, and Ω a non-degenerate section of K(M), Then $|\Omega|^2 = \frac{\Omega \wedge \overline{\Omega}}{\omega^n}$. If ω_1 is a new Kaehler metric on (M, I), h, h_1 the associated metrics on K(M), then $\frac{h}{h_1} = \frac{\omega_1^n}{\omega^n}$.

REMARK: For two metrics ω_1, ω in the same Kähler class, one has $\omega_1 - \omega = dd^c \varphi$, for some function φ (dd^c -lemma).

COROLLARY: A metric $\omega_1 = \omega + \partial \overline{\partial} \varphi$ is Ricci-flat if and only if $(\omega + dd^c \varphi)^n = \omega^n e^f$, where $-2\partial \overline{\partial} f = \Theta_{K,\omega}$ (such f exists by $\partial \overline{\partial}$ -lemma).

Proof. Step 1: For such f, φ , one has $\log \frac{h}{h_1} = -\log e^f = -f$. As shown above, the corresponding curvatures are related as $\Theta_{K,\omega_1} - \Theta_{K,\omega} = -2\partial \overline{\partial} \log(h/h_1)$. This gives

$$\Theta_{K,\omega_1} = \Theta_{K,\omega} - 2\partial\overline{\partial}\log(h/h_1) = \Theta_{K,\omega} - 2\partial\overline{\partial}f.$$

Proof. Step 2: Therefore, ω_1 is Ricci-flat if and only if $\Theta_{K,\omega} - 2\partial \overline{\partial} f$.

To find a Ricci-flat metric it remains to solve an equation $(\omega + dd^c \varphi)^n = \omega^n e^f$ for a given f.

The complex Monge-Ampère equation

To find a Ricci-flat metric it remains to solve an equation $(\omega + dd^c \varphi)^n = \omega^n e^f$ for a given f.

THEOREM: (Calabi-Yau) Let (M, ω) be a compact Kaehler *n*-manifold, and *f* any smooth function. Then there exists a unique up to a constant function φ such that $(\omega + \sqrt{-1}\partial\overline{\partial}\varphi)^n = Ae^f\omega^n$, where *A* is a positive constant obtained from the formula $\int_M Ae^f\omega^n = \int_M \omega^n$.

DEFINITION:

$$(\omega + \sqrt{-1}\,\partial\overline{\partial}\varphi)^n = Ae^f \omega^n,$$

is called the Monge-Ampere equation.

Hodge theory, lecture 23

M. Verbitsky

Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi) **A complex Monge-Ampere equation has at most one solution,** up to a constant.

Proof. Step 1: Let ω_1, ω_2 be solutions of Monge-Ampere equation. Then $\omega_1^n = \omega_2^n$. By construction, one has $\omega_2 = \omega_1 + \sqrt{-1} \partial \overline{\partial} \psi$. We need to show $\psi = const$.

Step 2: $\omega_2 = \omega_1 + \sqrt{-1} \, \partial \overline{\partial} \psi$ gives

$$0 = (\omega_1 + \sqrt{-1} \,\partial \overline{\partial} \psi)^n - \omega_1^n = \sqrt{-1} \,\partial \overline{\partial} \psi \wedge \sum_{i=0}^{n-1} \omega_1^i \wedge \omega_2^{n-1-i}.$$

Step 3: Let $P := \sum_{i=0}^{n-1} \omega_1^i \wedge \omega_2^{n-1-i}$. This is a positive (n-1, n-1)-form. There exists a Hermitian form ω_3 on M such that $\omega_3^{n-1} = P$.

Step 4: Since $\sqrt{-1} \partial \overline{\partial} \psi \wedge P = 0$, this gives $\psi \partial \overline{\partial} \psi \wedge P = 0$. Stokes' formula implies

$$0 = \int_{M} \psi \wedge \partial \overline{\partial} \psi \wedge P = -\int_{M} \partial \psi \wedge \overline{\partial} \psi \wedge P = -\int_{M} |\partial \psi|_{3}^{2} \omega_{3}^{n}.$$

where $|\cdot|_3$ is the metric associated to ω_3 . Therefore $\overline{\partial}\psi = 0$.

Levi-Civita connection and Kähler geometry

DEFINITION: Let (M,g) be a Riemannian manifold. A connection ∇ is called **orthogonal** if $\nabla(g) = 0$. It is called **Levi-Civita** if it is torsion-free.

THEOREM: ("the main theorem of differential geometry") **For any Riemannian manifold, the Levi-Civita connection exists, and it is unique**.

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then the following conditions are equivalent.

(i) (M, I, g) is Kähler

(ii) One has $\nabla(I) = 0$, where ∇ is the Levi-Civita connection.

Holonomy group

DEFINITION: (Cartan, 1923) Let (B, ∇) be a vector bundle with connection over M. For each loop γ based in $x \in M$, let $V_{\gamma,\nabla} : B|_x \longrightarrow B|_x$ be the corresponding parallel transport along the connection. The holonomy group of (B, ∇) is a group generated by $V_{\gamma,\nabla}$, for all loops γ . If one takes all contractible loops instead, $V_{\gamma,\nabla}$ generates the local holonomy, or the restricted holonomy group.

REMARK: A bundle is **flat** (has vanishing curvature) **if and only if its restricted holonomy vanishes.**

REMARK: If $\nabla(\varphi) = 0$ for some tensor $\varphi \in B^{\otimes i} \otimes (B^*)^{\otimes j}$, the holonomy group preserves φ .

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its Levi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in $O(T_x M, g|_x) = O(n)$.

EXAMPLE: Holonomy of a Kähler manifold lies in $U(T_xM, g|_x, I|_x) = U(n)$.

REMARK: The holonomy group does not depend on the choice of a point $x \in M$.

The Berger's list

THEOREM: (de Rham) A complete, simply connected Riemannian manifold with non-irreducible holonomy **splits as a Riemannian product**.

THEOREM: (Berger's theorem, 1955) Let G be an irreducible holonomy group of a Riemannian manifold which is not locally symmetric. Then G belongs to the Berger's list:

Berger's list	
Holonomy	Geometry
$SO(n)$ acting on \mathbb{R}^n	Riemannian manifolds
$U(n)$ acting on \mathbb{R}^{2n}	Kähler manifolds
$SU(n)$ acting on \mathbb{R}^{2n} , $n>2$	Calabi-Yau manifolds
$Sp(n)$ acting on \mathbb{R}^{4n}	hyperkähler manifolds
$Sp(n) \times Sp(1)/\{\pm 1\}$	quaternionic-Kähler
acting on \mathbb{R}^{4n} , $n>1$	manifolds
G_2 acting on \mathbb{R}^7	G ₂ -manifolds
Spin(7) acting on \mathbb{R}^8	Spin(7)-manifolds

Chern connection

DEFINITION: Let *B* be a holomorphic vector bundle on a complex manifold, and $\overline{\partial}$: $B_{C^{\infty}} \longrightarrow B_{C^{\infty}} \otimes \Lambda^{0,1}(M)$ an operator mapping $b \otimes f$ to $b \otimes \overline{\partial} f$, where $b \in B$ is a holomorphic section, and *f* a smooth function. This operator is called **a holomorphic structure operator** on *B*. It is correctly defined, because $\overline{\partial}$ is \mathcal{O}_M -linear.

REMARK: A section $b \in B$ is holomorphic iff $\overline{\partial}(b) = 0$

DEFINITION: Let (B, ∇) be a smooth bundle with connection and a holomorphic structure $\overline{\partial}$: $B \longrightarrow \Lambda^{0,1}(M) \otimes B$. Consider the Hodge decomposition of ∇ , $\nabla = \nabla^{0,1} + \nabla^{1,0}$. We say that ∇ is **compatible with the holomorphic structure** if $\nabla^{0,1} = \overline{\partial}$.

DEFINITION: An Hermitian holomorphic vector bundle is a complex vector bundle equipped with a Hermitian metric and a holomorphic structure.

DEFINITION: A Chern connection on a holomorphic Hermitian vector bundle is a connection compatible with the holomorphic structure and preserving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, **the Chern connection exists, and is unique.**

Calabi-Yau manifolds

DEFINITION:

A Calabi-Yau manifold is a compact Kaehler manifold with $c_1(M,\mathbb{Z}) = 0$.

DEFINITION: Let (M, I, ω) be a Kaehler *n*-manifold, and $K(M) := \Lambda^{n,0}(M)$ its **canonical bundle**. We consider K(M) as a holomorphic line bundle, $K(M) = \Omega^n M$. The natural Hermitian metric on K(M) is written as

$$(\alpha, \alpha') \longrightarrow \frac{\alpha \wedge \overline{\alpha}'}{\omega^n}.$$

Denote by Θ_K the curvature of the Chern connection on K(M). The **Ricci** curvature Ric of M is a symmetric 2-form $\operatorname{Ric}(x, y) = \Theta_K(x, Iy)$.

DEFINITION: A Kähler manifold is called **Ricci-flat** if its Ricci curvature vanishes.

THEOREM: (Calabi-Yau)

Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat Kaehler metric in any given Kaehler class.

REMARK: Converse is also true: any Ricci-flat Kähler manifold has a finite covering which is Calabi-Yau. This is due to Bogomolov.

Bochner's vanishing

THEOREM: (Bochner vanishing theorem) On a compact Ricci-flat Calabi-Yau manifold, **any holomorphic** *p*-form η is parallel with respect to the Levi-Civita connection: $\nabla(\eta) = 0$.

REMARK: Its proof is based on spinors: η gives a harmonic spinor, and on a Ricci-flat Riemannian spin manifold, any harmonic spinor is parallel.

DEFINITION: A holomorphic symplectic manifold is a manifold admitting a non-degenerate, holomorphic symplectic form.

REMARK: A holomorphic symplectic manifold is Calabi-Yau. The top exterior power of a holomorphic symplectic form **is a non-degenerate section of canonical bundle.**

Hyperkähler manifold

REMARK: Due to Bochner's vanishing, holonomy of Ricci-flat Calabi-Yau manifold lies in SU(n), and holonomy of Ricci-flat holomorphically symplectic manifold lies in Sp(n) (a group of complex unitary matrices preserving a complex-linear symplectic form).

DEFINITION: A holomorphically symplectic Kähler manifold with holonomy in Sp(n) is called hyperkähler.

REMARK: Since $Sp(n) = SU(\mathbb{H}, n)$, a hyperkähler manifold admits quaternionic action in its tangent bundle.

EXAMPLES.

EXAMPLE: An even-dimensional complex vector space.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: $T^*\mathbb{C}P^n$ (Calabi).

REMARK: $T^* \mathbb{C}P^1$ is a resolution of a singularity $\mathbb{C}^2/\pm 1$.

REMARK: Let *M* be a 2-dimensional complex manifold with holomorphic symplectic form outside of singularities, which are all of form $\mathbb{C}^2/\pm 1$. Then **its resolution is also holomorphically symplectic.**

EXAMPLE: Take a 2-dimensional complex torus T, then all the singularities of $T/\pm 1$ are of this form. Its resolution $T/\pm 1$ is called a Kummer surface. It is holomorphically symplectic.

REMARK: Take a symmetric square Sym² T, with a natural action of T, and let $T^{[2]}$ be a blow-up of a singular divisor. Then $T^{[2]}$ is naturally isomorphic to the Kummer surface $T/\pm 1$.

M. Verbitsky

K3 surfaces

DEFINITION: A K3-surface is a deformation of a Kummer surface.

"K3: Kummer, Kähler, Kodaira" (a name is due to A. Weil).

"Faichan Kangri (K3) is the 12th highest mountain on Earth."

THEOREM: Any complex compact surface with $c_1(M) = 1$ and $H^1(M) = 0$ is isomorphic to K3. Moreover, it is hyperkähler.

Hilbert schemes

REMARK: A complex surface is a 2-dimensional complex manifold.

DEFINITION: A Hilbert scheme $M^{[n]}$ of a complex surface M is a classifying space of all ideal sheaves $I \subset \mathcal{O}_M$ for which the quotient \mathcal{O}_M/I has dimension n over \mathbb{C} .

REMARK: A Hilbert scheme is obtained as a resolution of singularities of the symmetric power $Sym^n M$.

THEOREM: (Fujiki, Beauville) **A Hilbert scheme of a hyperkähler surface is hyperkähler.**

EXAMPLE: A Hilbert scheme of K3.

EXAMPLE: Let T is a torus. Then it acts on its Hilbert scheme freely and properly by translations. For n = 2, the quotient $T^{[n]}/T$ is a Kummer K3-surface. For n > 2, it is called a generalized Kummer variety.

REMARK: There are 2 more "sporadic" examples of compact hyperkähler manifolds, constructed by K. O'Grady. **All known compact hyperkaehler manifolds are these 2 and the three series:** tori, Hilbert schemes of K3, and generalized Kummer.

M. Verbitsky

Bogomolov's decomposition theorem

THEOREM: (Cheeger-Gromoll) Let M be a compact Ricci-flat Riemannian manifold with $\pi_1(M)$ infinite. Then a universal covering of M is a product of \mathbb{R} and a Ricci-flat manifold.

COROLLARY: A fundamental group of a compact Ricci-flat Riemannian manifold is "virtually polycyclic": it is projected to a free abelian subgroup with finite kernel.

REMARK: This is equivalent to any compact Ricci-flat manifold having a finite covering which has free abelian fundamental group.

REMARK: This statement contains the Bieberbach's solution of Hilbert's 18-th problem on classification of crystallographic groups.

THEOREM: (Bogomolov's decomposition) Let M be a compact, Ricciflat Kaehler manifold. Then there exists a finite covering \tilde{M} of M which is a product of Kaehler manifolds of the following form:

$$\tilde{M} = T \times M_1 \times \dots \times M_i \times K_1 \times \dots \times K_j,$$

with all M_i , K_i simply connected, T a torus, and $Hol(M_l) = Sp(n_l)$, $Hol(K_l) = SU(m_l)$

Harmonic forms

Let V be a vector space. A metric g on V induces a natural metric on each of its tensor spaces: $g(x_1 \otimes x_2 \otimes ... \otimes x_k, x'_1 \otimes x'_2 \otimes ... \otimes x'_k) =$ $g(x_1, x'_1)g(x_2, x'_2)...g(x_k, x'_k).$

This gives a natural positive definite scalar product on differential forms over a Riemannian manifold (M,g): $g(\alpha,\beta) := \int_M g(\alpha,\beta) \operatorname{Vol}_M$. The topology induced by this metric is called L^2 -topology.

DEFINITION: Let *d* be the de Rham differential and d^* denote the adjoint operator. The Laplace operator is defined as $\Delta := dd^* + d^*d$. A form is called harmonic if it lies in ker Δ .

THEOREM: The image of \triangle is closed in L^2 -topology on differential forms.

REMARK: This is a very difficult theorem!

REMARK: On a compact manifold, the form η is **harmonic iff** $d\eta = d^*\eta = 0$. Indeed, $(\Delta x, x) = (dx, dx) + (d^*x, d^*x)$.

COROLLARY: This defines a map $\mathcal{H}^i(M) \xrightarrow{\tau} H^i(M)$ from harmonic forms to cohomology.

Hodge theory

THEOREM: (Hodge theory for Riemannian manifolds) On a compact Riemannian manifold, the map $\mathcal{H}^i(M) \xrightarrow{\tau} H^i(M)$ to cohomology is an isomorphism.

Proof. Step 1: ker $d \perp \text{ im } d^*$ and im $d \perp \text{ ker } d^*$. Therefore, a harmonic form is orthogonal to im d. This implies that τ is injective.

Step 2: $\eta \perp \text{im } \Delta$ if and only if η is harmonic. Indeed, $(\eta, \Delta x) = (\Delta x, x)$.

Step 3: Since im Δ is closed, every closed form η is decomposed as $\eta = \eta_h + \eta'$, where η_h is harmonic, and $\eta' = \Delta \alpha$.

Step 4: When η is closed, η' is also closed. Then $0 = (d\eta, d\alpha) = (\eta, d^*d\alpha) = (\Delta \alpha, d^*d\alpha) = (dd^*\alpha, d^*d\alpha) + (d^*d\alpha, d^*d\alpha)$. The term $(dd^*\alpha, d^*d\alpha)$ vanishes, because $d^2 = 0$, hence $(d^*d\alpha, d^*d\alpha) = 0$. This gives $d^*d\alpha = 0$, and $(d^*d\alpha, \alpha) = (d\alpha, d\alpha) = 0$. We have shown that for any closed η decomposing as $\eta = \eta_h + \eta'$, with $\eta' = \Delta \alpha$, α is closed

Step 5: This gives $\eta' = dd^*\alpha$, hence η is a sum of an exact form and a harmonic form.

REMARK: This gives a way of obtaining the Poincare duality via PDE.

Hodge decomposition on cohomology

THEOREM: (this theorem will be proven in the next lecture) On a compact Kaehler manifold M, the Hodge decomposition is compatible with the Laplace operator. This gives a decomposition of cohomology, $H^i(M) = \bigoplus_{p+q=i} H^{p,q}(M)$, with $\overline{H^{p,q}(M)} = H^{q,p}(M)$.

COROLLARY: $H^p(M)$ is even-dimensional for odd p.

The Hodge diamond:

REMARK: $H^{p,0}(M)$ is the space of holomorphic *p*-forms. Indeed, $dd^* + d^*d = 2(\overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial})$, hence a holomorphic form on a compact Kähler manifold is closed.

M. Verbitsky

Holomorphic Euler characteristic

DEFINITION: A holomorphic Euler characteristic $\chi(M)$ of a Kähler manifold is a sum $\sum (-1)^p \dim H^{p,0}(M)$.

THEOREM: (Riemann-Roch-Hirzebruch) For an *n*-fold, $\chi(M)$ can be expressed as a polynomial expressions of the Chern classes, $\chi(M) = td_n$ where td_n is an *n*-th component of the Todd polynomial,

$$td(M) = 1 + \frac{1}{2}c_1 + \frac{1}{12}(c_1^2 + c_2) + \frac{1}{24}c_1c_2 + \frac{1}{720}(-c_1^4 + 4c_1^2c_2 + c_1c_3 + 3c_2^22 - c_4) + \dots$$

REMARK: The Chern classes are obtained as polynomial expression of the curvature (Gauss-Bonnet). Therefore $\chi(\tilde{M}) = p\chi(M)$ for any unramified *p*-fold covering $\tilde{M} \longrightarrow M$.

REMARK: Bochner's vanishing and the classical invariants theory imply:

1. When $\mathcal{H}ol(M) = SU(n)$, we have dim $H^{p,0}(M) = 1$ for p = 1, n, and 0 otherwise. In this case, $\chi(M) = 2$ for even n and 0 for odd.

2. When $\mathcal{H}ol(M) = Sp(n)$, we have dim $H^{p,0}(M) = 1$ for even $p \ 0 \le p \le 2n$, and 0 otherwise. In this case, $\chi(M) = n + 1$.

COROLLARY: $\pi_1(M) = 0$ if Hol(M) = Sp(n), or Hol(M) = SU(2n). If Hol(M) = SU(2n+1), $\pi_1(M)$ is finite.