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REMINDER: Holomorphic vector bundles

DEFINITION: A 9-operator on a smooth bundle is a map V. -2» ASL (M) ®
V, satisfying 0(fb) = o(f) @ b+ fo(b) for all f € C°M,bec V.

REMARK: A 0-operator on B can be extended to
9: AN (M)eV — ATl gV,
using d(n ®b) =0(n) @b+ (=1)"y A J(b), where b e V and n € A9 (M).

DEFINITION: A holomorphic vector bundle on a complex manifold (M, I)
is a vector bundle equipped with a 9-operator which satisfies 52 = 0. In this
case, O is called a holomorphic structure operator.

EXERCISE: Consider the Dolbeault differential 8 : APO(M) — AP L(M) =
APO(M) @ADL (M). Prove that it is a holomorphic structure operator on
AP:O(M).

DEFINITION: The corresponding holomorphic vector bundle (APO(M1),d) is
called the bundle of holomorphic p-forms, denoted by QP(M).
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REMINDER: Chern connection

DEFINITION: Let (B,V) be a smooth bundle with connection and a holo-
morphic structure & B— A% (M) ® B. Consider a Hodge decomposition of
V, V= VO,l + Vl,O,

Vol v A%t ey, viO v AP e V.

We say that V is compatible with the holomorphic structure if V91 = 3.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth
complex vector bundle equipped with a Hermitian metric and a holomorphic
structure operator 0.

DEFINITION: A Chern connection on a holomorphic Hermitian vector
bundle is a connection compatible with the holomorphic structure and pre-
serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-
nection exists, and is unique.
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REMINDER: Curvature of a connection

DEFINITION: LetV: B— B®/\1M be a connection on a smooth budnle.
Extend it to an operator on B-valued forms

B Y AlWMyeB Y A2(M)eB 5 A3(M)eB s ...

using V(n ® b) = dn + (=1)7n A Vb. The operator V2 : B— B® A2(M) is
called the curvature of V.

REMARK: The algebra of End(B)-valued forms naturally acts on A*M ® B.
The curvature satisfies V2(fb) = d2fb+df AVNb—df AVb+ fV2b = fV2b, hence
it is C*°M-linear. We consider it as an End(B)-valued 2-form on M.

PROPOSITION: (Bianchi identity) Clearly, [V, V2] = [V2,V]+ [V, V2] = 0,
hence [V, V2] = 0. This gives Bianchi identity: V(©g) = 0, where © is con-
sidered as a section of A2(M)®End(B), and V: A2(M)®End(B) — A3(M)®
End(B). the operator defined above
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REMINDER: Curvature of a holomorphic line bundle

REMARK: If B is a line bundle, End B is trivial, and the curvature ©p of
B is a closed 2-form.

DEFINITION: Let V be a unitary connection in a line bundle. The coho-
mology class ¢1(B) := —V2_7T1[@B] € H2(M) is called the real first Chern class
of a line bunlde B.

An exercise: Check that ¢1(B) is independent from a choice of V.

REMARK: When speaking of a *‘‘curvature of a holomorphic bundle’,
one usually means the curvature of a Chern connection.

REMARK: Let B be a holomorphic Hermitian line bundle, and b its non-
degenerate holomorphic section. Denote by n a (1,0)-form which satisfies
V90 = n®b. Then d|b|? = Reg(V10,b) = Ren|p|?. This gives V1:0p =

2
%b — 29 10g |bb.

REMARK: Then ©5(b) = 20d10g |blb, that is, © 5 = —209 1049 |b|.

COROLLARY: If ¢ = e2/g — two metrics on a holomorphic line bundle,
©, ©' their curvatures, one has ©' — © = —290f

5



Hodge theory, lecture 23 M. Verbitsky

do-lemma

THEOREM: (“d0-lemma”)
Let M be a compact Kaehler manifold, and nAP9(M) an exact form. Then
n = 80a, for some a € AP~La=1(pp).

Its proof uses Hodge theory.

COROLLARY: Let (L,h) be a holomorphic line bundle on a compact com-
plex manifold, © its curvature, and n a (1,1)-form in the same cohomology
class as [®]. Then there exists a Hermitian metric A’ on L such that its
curvature is equal to 7.

Proof: Let ©’ be the curvature of the Chern connection associated with A’.
Then ©' —© = —288f, wgere f = log(h’h™1). Then ® -0 =n—0 = —299f
has a solution f by dd-lemma, because n — © is exact. m
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Calabi-Yau manifolds

REMARK: Let B be a line bundle on a manifold. Using the long exact
sequence of cohomology associated with the exponential sequence

0—Zy — C°M — (C*°M)* — 0,
we obtain 0 — H1(M, (C>®°M)*) — H2(M,Z) — 0.

DEFINITION: Let B be a complex line bundle, and &g its defining element
in H1(M, (C*®°M)*). Its image in H2(M,Z) is called the integer first Chern
class of B, denoted by ¢1(B,Z) or ¢1(B).

REMARK: A complex line bundle B is (topologically) trivial if and only
if c1(B,7Z) = 0.

THEOREM: (Gauss-Bonnet) A real Chern class of a vector bundle is an
image of the integer Chern class c¢q(B,Z) under the natural homomorphism
H?2(M,Z) — H?(M,R).

DEFINITION: A first Chern class of a complex n-manifold is ¢1 (A™9(M)).

DEFINITION:.:
A Calabi-Yau manifold is a compact Kaehler manifold with ¢q(M,Z) = 0.

-



Hodge theory, lecture 23 M. Verbitsky

Ricci form of a Kahler manifold

THEOREM: (Bogomolov) Let M be a compact Kahler n-manifold with
c1(M,Z) = 0. Then the canonical bundle K,; := Q" (M) is trivial.

Proof: Follows from the Calabi-Yau theorem (later today). =

In other words, a manifold is Calabi-Yau if and only if its canonical bundle is
trivial.

DEFINITION: Let (M,w) be a Kahler manifold. The metric on K,; can be

written as |Q|? = QﬁnQ. The Ricci form on M is the curvature of the Chern

connection on K,;. The manifold M is Ricci-flat if its Ricci form vanishes.

REMARK: Since a canonical bundle K,; of a Calabi-Yau manifold is trivial, it
admits a metric with trivial connection. Calabi conjectured that this metric
on Kj,; is induced by a Kahler metric w on M and proved that such a
metric is unique for any cohomology class [w] € HL:1(M,R). Yau proved that
it always exists.

DEFINITION: A Ricci-flat Kahler metric is called Calabi-Yau metric.
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Calabi-Yau theorem and Monge-Ampere equation

REMARK: Let (M,w) be a Kdahler n-fold, and €2 a non-degenerate section
of K(M), Then |22 = S22 1f wy is a new Kaehler metric on (M, I), h,hq

w
the associated metrics on K(M), then hh = 21
1 w

REMARK: For two metrics wi,w in the same Kahler class, one has wy —w =
dd¢p, for some function ¢ (dd°-lemma).

COROLLARY: A metric w; = w + 80¢ is Ricci-flat if and only if (w +
dd¢p)™ = w"e/, where —200f = O, (such f exists by 99-lemma).

Proof. Step 1: For such f, ¢, one has Iogh—h1 — —Iogef = —f. AS
shown above, the corresponding curvatures are related as ©g ,,, — Ok =
—2001og(h/h1). This gives

@K,wl = @KW — 285Iog(h/h1) = @KW — 265]3
Proof. Step 2: Therefore, w; is Ricci-flat if and only if ©y , —200f. m

To find a Ricci-flat metric it remains to solve an equation (w 4+ ddp)™
w"el for a given 7.
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The complex Monge-Ampere equation

To find a Ricci-flat metric it remains to solve an equation (w + ddp)™ =
w"el for a given 7.

THEOREM: (Calabi-Yau) Let (M,w) be a compact Kaehler n-manifold,
and f any smooth function. Then there exists a unique up to a constant
function ¢ such that (w++v/—=180p)" = Aefw”, where A is a positive constant
obtained from the formula [, Ae/w™ = [, w™.

DEFINITION.:
(W~ V=1 00p)" = Aelw™,

is called the Monge-Ampere equation.
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Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi) A complex Monge-Ampere equation has at
most one solution, up to a constant.

Proof. Step 1: Let wi,wp be solutions of Monge-Ampere equation. Then
wy = w5. By construction, one has wy = wj ++v—1 00vy. We need to show
Y = const.

Step 2: wo = wy +V/—1 09y gives

n—1 '
0= (w1 +V—-190¢)" —w} =+v—-190¢% A Z wi A wg_l_z.

1=0

Step 3: Let P = Z?f:_é w /\wg_l_i. This is a positive (n — 1,n — 1)-form.
There exists a Hermitian form w3 on M such that w3_1 = P.

Step 4: Since v/—190y A P = 0, this gives ¥00y A P = 0. Stokes’ formula
implies

0=/M¢/\85¢/\P= —/Mazp/\gw/\P= —/M|a¢|§w§.

where |- |3 is the metric associated to w3. Therefore 9y = 0. =
11
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Levi-Civita connection and Kahler geometry

DEFINITION: Let (M,g) be a Riemannian manifold. A connection V is
called orthogonal if V(g) = 0. It is called Levi-Civita if it is torsion-free.

THEOREM: (“the main theorem of differential geometry’)
For any Riemannian manifold, the Levi-Civita connection exists,

and it Is unique.

THEOREM: Let (M,1I,g) be an almost complex Hermitian manifold. Then
the following conditions are equivalent.

(i) (M, 1I,q) is Kahler

(ii) One has V(I) = 0, where V is the Levi-Civita connection.
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Holonomy group

DEFINITION: (Cartan, 1923) Let (B, V) be a vector bundle with connec-
tion over M. For each loop v based in x € M, let V, ¢ : Bz — B|x be
the corresponding parallel transport along the connection. The holonomy
group of (B,V) is a group generated by V, v, for all loops ~v. If one takes
all contractible loops instead, V%v generates the local holonomy, or the
restricted holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its
restricted holonomy vanishes.

REMARK: If V(¢) = 0 for some tensor ¢ € B®¥" g (B*)®J, the holonomy
group preserves o.

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its
evi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in O(T;:M, g|z) = O(n).
EXAMPLE: Holonomy of a Kahler manifold lies in U(TxM, glz, I|z) = U(n).

REMARK: The holonomy group does not depend on the choice of a
point = € M.

13



Hodge theory, lecture 23 M. Verbitsky
The Berger’s list

THEOREM: (de Rham) A complete, simply connected Riemannian manifold
with non-irreducible holonomy splits as a Riemannian product.

THEOREM: (Berger's theorem, 1955) Let GG be an irreducible holonomy
group of a Riemannian manifold which is not locally symmetric. Then G
belongs to the Berger’s list:

Berger’s list
Holonomy Geometry
SO(n) acting on R" Riemannian manifolds
U(n) acting on R=" Kahler manifolds
SU(n) acting on R%"?, n > 2 | Calabi-Yau manifolds
Sp(n) acting on R*" hyperkdhler manifolds
Sp(n) x Sp(1)/{£1} quaternionic-Kahler
acting on R4, n > 1 manifolds
G acting on R’ G>-manifolds
Spin(7) acting on R® Spin(7)-manifolds
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Chern connection

DEFINITION: Let B be a holomorphic vector bundle on a complex manifold,
and 0 : Bpoo — Booo @ A1 (M) an operator mapping b® f to b® 8f, where
b € B is a holomorphic section, and f a smooth function. This operator is
called a holomorphic structure operator on B. It is correctly defined,
because 9 is O, -linear.

REMARK: A section b € B is holomorphic iff 9(b) =0

DEFINITION: Let (B,V) be a smooth bundle with connection and a holo-
morphic structure 8 : B — A%1 (M) ® B. Consider the Hodge decomposition
of V, V=vV014v510 wWe say that V is compatible with the holomorphic
structure if V91 = 3.

DEFINITION: An Hermitian holomorphic vector bundle is a complex
vector bundle equipped with a Hermitian metric and a holomorphic structure.

DEFINITION: A Chern connection on a holomorphic Hermitian vector
bundle is a connection compatible with the holomorphic structure and pre-
serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-
nection exists, and is unique.

15



Hodge theory, lecture 23 M. Verbitsky

Calabi-Yau manifolds

DEFINITION:
A Calabi-Yau manifold is a compact Kaehler manifold with ¢y (M,Z) = 0.

DEFINITION: Let (M,I,w) be a Kaehler n-manifold, and K(M) := A%0(M)
its canonical bundle. We consider K(M) as a holomorphic line bundle,
K(M) = Q"M. The natural Hermitian metric on K(M) is written as

aNa
(a, ) — :

wn
Denote by ©j the curvature of the Chern connection on K(M). The Ricci
curvature Ric of M is a symmetric 2-form Ric(z,y) = O (x, Iy).

DEFINITION: A Kahler manifold is called Ricci-flat if its Ricci curvature
vanishes.

THEOREM: (Calabi-Yau)
Let (M, I,g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat
Kaehler metric in any given Kaehler class.

REMARK: Converse is also true: any Ricci-flat Kahler manifold has a
finite covering which is Calabi-Yau. This is due to Bogomolov.

16
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Bochner’s vanishing

THEOREM: (Bochner vanishing theorem) On a compact Ricci-flat Calabi-
Yau manifold, any holomorphic p-form n is parallel with respect to the
Levi-Civita connection: V(n) = 0.

REMARK: Its proof is based on spinors: n gives a harmonic spinor, and on
a Ricci-flat Riemannian spin manifold, any harmonic spinor is parallel.

DEFINITION: A holomorphic symplectic manifold is a manifold admitting
a non-degenerate, holomorphic symplectic form.

REMARK: A holomorphic symplectic manifold is Calabi-Yau. The top ex-

terior power of a holomorphic symplectic form is a non-degenerate section
of canonical bundle.
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Hyperkahler manifold

REMARK: Due to Bochner’s vanishing, holonomy of Ricci-flat Calabi-
Yau manifold lies in SU(n), and holonomy of Ricci-flat holomorphically
symplectic manifold lies in Sp(n) (a group of complex unitary matrices
preserving a complex-linear symplectic form).

DEFINITION: A holomorphically symplectic Kahler manifold with holonomy
in Sp(n) is called hyperkahler.

REMARK: Since Sp(n) = SU(H, n), a hyperkahler manifold admits quater-
nionic action in its tangent bundle.

18
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EXAMPLES.

EXAMPLE: An even-dimensional complex vector space.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: T*CP"™ (Calabi).

REMARK: T*CP! is a resolution of a singularity Cz/il.

REMARK: Let M be a 2-dimensional complex manifold with holomorphic
symplectic form outside of singularities, which are all of form (CQ/il. Then
iIts resolution is also holomorphically symplectic.

EXAMPLE: Take a 2-dimensional complex torus T, then all the singularities

of T'/41 are of this form. Its resolution T/4+1 is called a Kummer surface.
It is holomorphically symplectic.

REMARK: Take a symmetric square SmeT, with a natural action of T', and
let T[2] be a blow-up of a singular divisor. Then Tl2] is naturally isomorphic
to the Kummer surface 7'/+1.
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K3 surfaces
DEFINITION: A K3-surface is a deformation of a Kummer surface.

“K3: Kummer, Kahler, Kodaira” (a name is due to A. Weil).

“Faichan Kangri (K3) is the 12th highest mountain on Earth.”

THEOREM: Any complex compact surface with ¢;(M) =1 and HY(M) =0
Is iIsomorphic to K3. Moreover, it is hyperkahler.
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Hilbert schemes
REMARK: A complex surface is a 2-dimensional complex manifold.

DEFINITION: A Hilbert scheme M of a complex surface M is a clas-
sifying space of all ideal sheaves I C O,; for which the quotient O,;/I has
dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities
of the symmetric power Sym™ M .

THEOREM: (Fujiki, Beauville) A Hilbert scheme of a hyperkahler sur-
face is hyperkahler.

EXAMPLE: A Hilbert scheme of K3.

EXAMPLE: Let T is a torus. Then it acts on its Hilbert scheme freely
and properly by translations. For n = 2, the quotient T[”]/T IS a Kummer
K3-surface. For n > 2, it is called a generalized Kummer variety.

REMARK: There are 2 more ‘sporadic’” examples of compact hyperkahler
manifolds, constructed by K. O'Grady. All known compact hyperkaehler
manifolds are these 2 and the three series: tori, Hilbert schemes of K3,
and generalized Kummer.
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Bogomolov’s decomposition theorem

THEOREM: (Cheeger-Gromoll) Let M be a compact Ricci-flat Rieman-
nian manifold with w1 (M) infinite. Then a universal covering of M is a
product of R and a Ricci-flat manifold.

COROLLARY: A fundamental group of a compact Ricci-flat Riemannian
manifold is “virtually polycyclic”’: it is projected to a free abelian sub-
group with finite kernel.

REMARK: This is equivalent to any compact Ricci-flat manifold having a
finite covering which has free abelian fundamental group.

REMARK: This statement contains the Bieberbach's solution of Hilbert's
18-th problem on classification of crystallographic groups.

THEOREM: (Bogomolov’'s decomposition) Let M be a compact, Ricci-
flat Kaehler manifold. Then there exists a finite covering M of M which
IS a product of Kaehler manifolds of the following form:

M=Tx M x..xMxKyx..xKj

with all M;, K; simply connected, T a torus, and Hol(M;) = Sp(n;), Hol(kK;) =
SU(mp)
22
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Harmonic forms

Let V be a vector space. A metric g on V induces a natural metric
on each of its tensor spaces: g(z1 ® T2 ® ... ® T, 2] ® 5 Q ... ® x),) =

9(z1,27)g9(22,25)...9(zk, 77,).-

This gives a natural positive definite scalar product on differential forms
over a Riemannian manifold (M, g): g(a,B8) := [3; 9(e, B) VOl,. The topol-
ogy induced by this metric is called L2—topology.

DEFINITION: Let d be the de Rham differential and d* denote the adjoint
operator. The Laplace operator is defined as A := dd* + d*d. A form is
called harmonic if it lies in ker A.

THEOREM: The image of A is closed in L2-topology on differential
forms.

REMARK: This is a very difficult theorem!

REMARK: On a compact manifold, the form »n is harmonic iff dn = d*n = 0.
Indeed, (Ax,z) = (dz,dx) + (d*z,d*x).

COROLLARY: This defines a map H*(M) — H*(M) from harmonic forms
to cohomology.
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Hodge theory

THEOREM: (Hodge theory for Riemannian manifolds) |
On a compact Riemannian manifold, the map H* (M) — H'(M) to co-
homology is an isomorphism.

Proof. Step 1: kerd L imd* and imd L kerd*. Therefore, a harmonic
form is orthogonal to imd. This implies that 7 is injective.

Step 2: nLim A if and only if n is harmonic. Indeed, (n, Az) = (Azx,x).

Step 3: Since imA is closed, every closed form 7 is decomposed as
n =mn, + 7', where n, is harmonic, and ' = Aa.

Step 4: When 7 is closed, n’ is also closed. Then 0 = (dn,da) = (n,d*da) =
(Aa,d*da) = (dd*a,d*da) + (d*da,d*da). The term (dd*«,d*da) vanishes,
because d2 = 0, hence (d*da, d*da) = 0. This gives d*da = 0, and (d*da, o) =
(da,da) = 0. We have shown that for any closed n decomposing as
n=mn,+1n, with ' = Aa, o is closed

Step 5: This gives n’ = dd*«, hence n is a sum of an exact form and a

harmonic form. m

REMARK: This gives a way of obtaining the Poincare duality via PDE.
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Hodge decomposition on cohomology

THEOREM: (this theorem will be proven in the next lecture)

On a compact Kaehler manifold M, the Hodge decomposition is compati-
ble with the Laplace operator. This gives a decomposition of cohomology,
H'(M) = @ptq=; HPI(M), with HPI(M) = HIP(M).

COROLLARY: HP(M) is even-dimensional for odd p.

The Hodge diamond:

Hmn
Hn,n—l Hn—l,n
Hn,n—2 Hn—l,n—l Hn—2,n
H?20 H11 H0:2
Hl,O HO,l
HO’O

REMARK: HPO(M) is the space of holomorphic p-forms. Indeed, dd* +
d*d = 2(80" + 8°9), hence a holomorphic form on a compact Kahler

manifold is closed.
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Holomorphic Euler characteristic

DEFINITION: A holomorphic Euler characteristic x (M) of a Kdahler man-
ifold is a sum Y (—1)Pdim HP.O(M).

THEOREM: (Riemann-Roch-Hirzebruch) For an n-fold, x(M) can be ex-

pressed as a polynomial expressions of the Chern classes, xy(M) = td,
where td,, is an n-th component of the Todd polynomial,

1 1 1 1
td(M) =1+ 501 + E(C% + ) + 2—40102 + ﬁo(—czlL + 40502 + cic3 + 3032 —ca) + ...

REMARK: The Chern classes are obtained as polynomial expression of the
curvature (Gauss-Bonnet). Therefore x(M) = pxy(M) for any unramified
p-fold covering M — M.

REMARK: Bochner's vanishing and the classical invariants theory imply:

1. When Hol(M) = SU(n), we have dim HPO(M) =1 for p = 1,n, and O
otherwise. In this case, x(M) = 2 for even n and 0 for odd.

2. When Hol(M) = Sp(n),we have dim HP.O(M) = 1 for even p 0 < p < 2n,
and 0 otherwise. In this case, x(M) =n+ 1.

COROLLARY: m (M) = 0 if Hol(M) = Sp(n), or Hol(M) = SU(2n). If
Hol(M) = SU(2n+ 1), m1(M) is finite.
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