Complex geometry handout 7: Stone-Weierstrass approximation theorem

7.1 Weierstrass approximation theorem

Definition 7.1. Let M be a topological space, and $||f|| := \sup_M |f|$ the sup-norm on functions. C^0 -topology on the space $C^0(M)$ of continuous functions is topology defined by the sup-norm.

Exercise 7.1. Prove that C^0M with the metric defined by the sup-norm is a complete metric space.

Exercise 7.2. ("Dini's theorem")

Let $\{f_i\}$ be a sequence of bounded continuous functions on a compact space M, and suppose that $f_i(t) \ge f_{i-1}(t)$ for all t and i. Suppose that $\lim_i f_i(t) = f(t)$ for some continuous function f. Prove that the sequence $\{f_i(t)\}$ converges to f(t) uniformly.

Exercise 7.3. Consider the sequence P_i , i = 0, 1, 2, ... of polynomials on [0, 1] determined recursively as follows: $P_0(t) = 0$, and $P_i(t) = P_{i-1}(t) + \frac{1}{2}(t - P_{i-1}(t)^2)$. For all $t \in [0, 1]$ and all i = 1, 2, ..., prove the following.

- a. Prove that $0 \leq P_i(t) \leq \sqrt{t}$.
- b. Prove that $P_i(t) \ge P_{i-1}(t)$.
- c. Prove that $\{P_i(t)\}$ converges pointwisely to \sqrt{t} on [0, 1].
- d. Prove that $\{P_i(t)\}$ converges uniformly to \sqrt{t} on [0, 1]
- e. Prove that $Q_i(t) := P_i(t^2)$ converges uniformly to |t| on [-1, 1].

Exercise 7.4. Let F(t) be a piecewise linear, continuous function on $[a, b] \subset \mathbb{R}$. Prove that F(t) can be expressed as a sum $\sum_{i=0}^{n} \alpha_i |x - c_i|$ for some α_i, c_i .

Exercise 7.5. Prove that any piecewise linear, continuous function on $[a, b] \subset \mathbb{R}$ can be obtained as a uniform limit of polynomials.

Exercise 7.6. (Weierstrass approximation theorem)

Prove that any continuous function on $[a, b] \subset \mathbb{R}$ admits a uniform approximation by polynomials.

Remark 7.1. This particular proof of Weierstrass approximation is due to Lebesgue.

7.2 Stone-Weierstrass approximation theorem

From now on we assume that M is compact, Hausdorff topological space.

Definition 7.2. Let $A \subset C^0 M$ be a subspace in the space of continuous functions. We say that A separates the points of M if for all distinct points $x, y \in M$, there exists $f \in A$ such that $f(x) \neq f(y)$. **Exercise 7.7.** Let $A \subset C^0 M$ be a subring, and \overline{A} its closure in C^0 -topology.

- a. Prove that for any $a \in A$, the function |a| belongs to \overline{A} .
- b. Prove that for any $a, b \in A$, the function $\min(a, b)$ belongs to \overline{A} .

Hint. Use Exercise 7.3.

Exercise 7.8. Let $A \subset C^0 M$ be a subring separating points, \overline{A} its closure, and $U \ni x$ a neighbourhood of $x \in M$. Prove that for any $\varepsilon > 0$ there exists $a \in \overline{A}$ taking values in [0, 1] such that a(x) = 1 and $a\Big|_{M \setminus U} < \varepsilon$.

Hint. Find a finite covering of the compact $M \setminus U$ by open sets U_i and functions $f_i \in \overline{A}$ such that $f_i(x) = 1$ and $f_i|_{U_i} < \varepsilon$, and put $a := \min_i(f_i)$.

Exercise 7.9. Let $A \subset C^0 M$ be a subring separating points, \overline{A} its closure, and $f \in C^0(M)$ any function. Prove that for all $x \in M$ there exists a function $f_x \in \overline{A}$ such that $f_x \leq f$ and $f_x(x) > f(x) - \varepsilon$.

Hint. Use the previous exercise.

Exercise 7.10. (Stone-Weierstrass theorem)

Let $A \subset C^0 M$ be a subring separating points, and \overline{A} its closure. Prove that $\overline{A} = C^0 M$.

Hint. Use the previous exercise and find a neighbourhood U_x and a function $f_x \leq f$ such that $(f_x + \varepsilon)\Big|_{U_x} > f\Big|_{U_x}$. Find a finite covering $\{U_{x_i}\}$ by such U_x , such that $f \geq \max_i f_{x_i} > f - \varepsilon$.