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Complex structure on a vector space

DEFINITION: Let V be a vector space over R, and I : V −→ V an automor-

phism which satisfies I2 = − IdV . Such an automorphism is called a complex

structure operator on V .

We extend the action of I on the tensor spaces V ⊗V ⊗...⊗V ⊗V ∗⊗V ∗⊗...⊗
V ∗ by multiplicativity: I(v1⊗...⊗w1⊗...⊗wn) = I(v1)⊗...⊗I(w1)⊗...⊗I(wn).

Trivial observations:

1. The eigenvalues αi of I are ±
√
−1 . Indeed, α2

i = −1.

2. V admits an I-invariant, positive definite scalar product (“metric”)

g. Take any metric g0, and let g := g0 + I(g0).

3. I is orthogonal for such g.

Indeed, g(Ix, Iy) = g0(x, y) + g0(Ix, Iy) = g(x, y).

4. I diagonalizable over C. Indeed, any orthogonal matrix is diagonalizable.

5. There are as many
√
−1-eigenvalues as there are −

√
−1-eigenvalues.
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Complex structure operator in coordinates

This implies that in an appropriate basis in V ⊗R C, the complex structure
operator is diagonal, as follows:



√
−1 √

−1
.. . √

−1

0

0

−
√
−1

−
√
−1

.. .
−
√
−1


We also obtain its normal form in a real basis:

0 −1
1 0

0 −1
1 0

.. .
. . .

0 −1
1 0


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Hodge decomposition

DEFINITION: Let (V, I) be a space equipped with a complex structure.

The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1 is defined in such a way

that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a −

√
−1 -eigenspace.

REMARK: In the same way one defines the Hodge decomposition on the

dual space V ∗.

Remark 1: The space V 1,0 ⊂ V ⊗R C uniquely determines the operator I.

Indeed, I =
√
−1 on V 1,0 and I = −

√
−1 on V 0,1. This gives a bijection

between the set of complex structures on V and the set of subspaces

W ⊂ V ⊗R C such that dimCW = 1
2 dimR V and W ∩W = 0.
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Hermitian structures

DEFINITION: Let (V, I) be a space equipped with a complex structure.

The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1 is defined in such a way

that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a −

√
−1 -eigenspace.

DEFINITION: An I-invariant positive definite scalar product on (V, I) is

called an Hermitian metric, and (V, I, g) – an Hermitian space.

REMARK: Let I be a complex structure operator on a real vector space

V , and g – a Hermitian metric. Then the bilinear form ω(x, y) := g(x, Iy)

is skew-symmetric. Indeed, ω(x, y) = g(x, Iy) = g(Ix, I2y) = −g(Ix, y) =

−ω(y, x).

DEFINITION: A skew-symmetric form ω(x, y) is called an Hermitian form

on (V, I).

REMARK: In the triple I, g, ω, each element can recovered from the

other two.
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Holomorphic functions

DEFINITION: Let I : TM −→ TM be an endomorphism of a tangent bundle

satisfying I2 = − Id. Then I is called almost complex structure operator,

and the pair (M, I) an almost complex manifold.

EXAMPLE: M = Cn, with complex coordinates zi = xi +
√
−1 yi, and

I(d/dxi) = d/dyi, I(d/dyi) = −d/dxi.

EXAMPLE: In complex dimension 1, almost complex structure is the

same as conformal structure with orientation (prove it).

DEFINITION: A function f : M −→ C on an almost complex manifold is

called holomorphic if df ∈ Λ1,0(M).

REMARK: For some almost complex manifolds, there are no holomorphic

functions at all, even locally.

Example: S6 with the unique G2-invariant almost complex structure.
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Holomorphic functions on Cn

THEOREM: Let f : M −→ C be a differentiable function on an open subset
M ⊂ Cn, with almost complex structure as above. Then TFAE:
(1) f is holomorphic.
(2) The differential df : TM −→ C, considered as a form on the vector space
TxM = TxCn = Cn is C-linear.
(3) For any complex affine line L ∈ Cn, the restriction f |L = C is holomorphic
(complex analytic) as a function of one complex variable.
(4) f is expressed as a sum of Taylor series around any point (z1, ..., zn) ∈M .

Proof: (1) and (2) are tautologically equivalent. Equivalence of (1) and (3)
is also clear, because a restriction of θ ∈ Λ1,0(M) to a line is a (1,0)-form on
a line, and, conversely, if df is of type (1,0) on each complex line, it is of type
(1,0) on TM , which is implied by the following linear-algebraic observation.

LEMMA: Let η ∈ V ∗ ⊗ C be a complex-valued linear form on a vector space
(V, I) equipped with a complex structure. Then η ∈ Λ1,0(V ) if and only if
its restriction to any I-invariant 2-dimensional subspace L belongs to
Λ1,0(L).

EXERCISE: Prove it.

(4) clearly implies (2). (1) implies (4) by Cauchy formula.
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Sheaves

DEFINITION: A presheaf of functions on a topological space M is a

collection of subrings F(U) ⊂ C(U) in the ring C(U) of all functions on U , for

each open subset U ⊂ M , such that the restriction of every γ ∈ F(U) to an

open subset U1 ⊂ U belongs to F(U1).

DEFINITION: A presheaf of functions F is called a sheaf of functions if

these subrings satisfy the following condition. Let {Ui} be a cover of an open

subset U ⊂ M (possibly infinite) and fi ∈ F(Ui) a family of functions defined

on the open sets of the cover and compatible on the pairwise intersections:

fi|Ui∩Uj = fj|Ui∩Uj
for every pair of members of the cover. Then there exists f ∈ F(U) such

that fi is the restriction of f to Ui for all i.
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Sheaves and exact sequences

REMARK: A presheaf of functions is a collection of subrings of functions

on open subsets, compatible with restrictions. A sheaf of fuctions is a

presheaf allowing “gluing” a function on a bigger open set if its restrictions

to smaller open sets are compatible.

DEFINITION: A sequence A1 −→A2 −→A3 −→ ... of homomorphisms of

abelian groups or vector spaces is called exact if the image of each map

is the kernel of the next one.

CLAIM: A presheaf F is a sheaf if and only if for every cover {Ui} of an open

subset U ⊂M , the sequence of restriction maps

0→ F(U)→
∏
i

F(Ui)→
∏
i 6=j

F(Ui ∩ Uj)

is exact, with η ∈ F(Ui) mapped to η
∣∣∣Ui∩Uj and −η

∣∣∣Uj∩Ui .
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Sheaves and presheaves: examples

Examples of sheaves:

* Space of continuous functions

* Space of smooth functions, any differentiability class

* Space of real analytic functions

Examples of presheaves which are not sheaves:

* Space of constant functions (why?)

* Space of bounded functions (why?)
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Ringed spaces

A ringed space (M,F) is a topological space equipped with a sheaf of func-

tions. A morphism (M,F)
Ψ−→ (N,F ′) of ringed spaces is a continuous map

M
Ψ−→ N such that, for every open subset U ⊂ N and every function f ∈ F ′(U),

the function ψ∗f := f ◦Ψ belongs to the ring F
(
Ψ−1(U)

)
. An isomorphism

of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ−1 are morphisms

of ringed spaces.

EXAMPLE: Let M be a manifold of class Ci and let Ci(U) be the space of

functions of this class. Then Ci is a sheaf of functions, and (M,Ci) is a

ringed space.

REMARK: Let f : X −→ Y be a smooth map of smooth manifolds. Since a

pullback f∗µ of a smooth function µ ∈ C∞(M) is smooth, a smooth map of

smooth manifolds defines a morphism of ringed spaces.

Converse is also true:
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Ringed spaces and smooth maps

CLAIM: Let (M,Ci) and (N,Ci) be manifolds of class Ci. Then there is

a bijection between smooth maps f : M −→N and the morphisms of

corresponding ringed spaces.

Proof: Any smooth map induces a morphism of ringed spaces. Indeed, a

composition of smooth functions is smooth, hence a pullback is also

smooth.

Conversely, let Ui −→ Vi be a restriction of f to some charts; to show that

f is smooth, it would suffice to show that Ui −→ Vi is smooth. However, we

know that a pullback of any smooth function is smooth. Therefore, Claim

is implied by the following lemma.

LEMMA: Let M,N be open subsets in Rn and let f : M → N map such that

a pullback of any function of class Ci belongs to Ci. Then f is of class Ci.

Proof: Apply f to coordinate functions.
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Smooth manifolds defined through sheaves

As we have just shown, this definition is equivalent to the previous one.

DEFINITION: Let (M,F) be a topological manifold equipped with a sheaf

of functions. It is said to be a smooth manifold of class C∞ or Ci if every

point in (M,F) has an open neighborhood isomorphic to the ringed space

(Rn,F ′), where F ′ is a ring of functions on Rn of this class.

DEFINITION: A chart, or a coordinate system on an open subset U of

a manifold (M,F) is an isomorphism between (U,F) and an open subset in

(Rn,F ′), where F ′ are functions of the same class on Rn.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism

ϕ which induces an isomorphim of ringed spaces, that is, ϕ and ϕ−1 map

(locally defined) smooth functions to smooth functions.
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Complex manifolds

DEFINITION: A holomorphic function on Cn is a function f : Cn −→ C
such that df is complex linear, that is df ∈ Λ1,0(M).

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally

isomorphic to an open ball in Cn with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to Cn

and transition functions (being coordinate functions for one ball considered

in other coordinate system) are holomorphic.
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Complex manifolds and almost complex manifolds

DEFINITION: Standard almost complex structure is I(d/dxi) = d/dyi,

I(d/dyi) = −d/dxi on Cn with complex coordinates zi = xi +
√
−1 yi.

DEFINITION: A map Ψ : (M, I)−→ (N, J) from an almost complex mani-

fold to an almost complex manifold is called holomorphic if Ψ∗(Λ1,0(N)) ⊂
Λ1,0(M).

REMARK: This is the same as dΨ being complex linear; for standard almost

complex structures, this is the same as the coordinate components of Ψ

being holomorphic functions.

Another definition: A complex manifold is a manifold equipped with an

atlas with charts identified with open subsets of Cn and transition functions

holomorphic.

EXERCISE: Prove that this definition is equivalent to the one with

sheaves.
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Integrability of almost complex structures

DEFINITION: An almost complex structure I on a manifold is called inte-

grable if any point of M has a neighbourhood U diffeomorphic to an open

subset of Cn, in such a way that the almost complex structure I is induced

by the standard one on U ⊂ Cn.

CLAIM: Complex structure on a manifold M uniquely determines an

integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of

holomorphic functions OM , and OM is determined by I as explained above.

Therefore, an integrable almost complex structure defines a complex struc-

ture. Conversely, every complex structure gives a sub-bundle in Λ1,0(M) =

dOM ⊂ Λ1(M,C), and such a sub-bundle defines an almost complex struc-

ture by Remark 1.
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