Complex geometry

lecture 1: complex manifolds

Misha Verbitsky

HSE, room 306, 16:20,

September 23, 2020

Complex structure on a vector space

DEFINITION: Let V be a vector space over \mathbb{R} , and $I : V \longrightarrow V$ an automorphism which satisfies $I^2 = -\operatorname{Id}_V$. Such an automorphism is called a complex structure operator on V.

We extend the action of I on the tensor spaces $V \otimes V \otimes ... \otimes V \otimes V^* \otimes V^* \otimes ... \otimes V^*$ by multiplicativity: $I(v_1 \otimes ... \otimes w_1 \otimes ... \otimes w_n) = I(v_1) \otimes ... \otimes I(w_1) \otimes ... \otimes I(w_n)$.

Trivial observations:

- 1. The eigenvalues α_i of I are $\pm \sqrt{-1}$. Indeed, $\alpha_i^2 = -1$.
- 2. *V* admits an *I*-invariant, positive definite scalar product ("metric") *g*. Take any metric g_0 , and let $g := g_0 + I(g_0)$.
- 3. *I* is orthogonal for such *g*. Indeed, $g(Ix, Iy) = g_0(x, y) + g_0(Ix, Iy) = g(x, y)$.
- 4. I diagonalizable over \mathbb{C} . Indeed, any orthogonal matrix is diagonalizable.
- 5. There are as many $\sqrt{-1}$ -eigenvalues as there are $-\sqrt{-1}$ -eigenvalues.

Complex structure operator in coordinates

This implies that in an appropriate basis in $V \otimes_{\mathbb{R}} \mathbb{C}$, the complex structure operator is diagonal, as follows:

We also obtain its normal form in a real basis:

Hodge decomposition

DEFINITION: Let (V, I) be a space equipped with a complex structure. **The Hodge decomposition** $V \otimes_{\mathbb{R}} \mathbb{C} := V^{1,0} \oplus V^{0,1}$ is defined in such a way that $V^{1,0}$ is a $\sqrt{-1}$ -eigenspace of I, and $V^{0,1}$ a $-\sqrt{-1}$ -eigenspace.

REMARK: In the same way one defines the Hodge decomposition on the dual space V^* .

Remark 1: The space $V^{1,0} \subset V \otimes_{\mathbb{R}} \mathbb{C}$ uniquely determines the operator *I*. Indeed, $I = \sqrt{-1}$ on $V^{1,0}$ and $I = -\sqrt{-1}$ on $V^{0,1}$. This gives a bijection between the set of complex structures on *V* and the set of subspaces $W \subset V \otimes_{\mathbb{R}} \mathbb{C}$ such that $\dim_{\mathbb{C}} W = \frac{1}{2} \dim_{\mathbb{R}} V$ and $W \cap \overline{W} = 0$.

Hermitian structures

DEFINITION: Let (V, I) be a space equipped with a complex structure. **The Hodge decomposition** $V \otimes_{\mathbb{R}} \mathbb{C} := V^{1,0} \oplus V^{0,1}$ is defined in such a way that $V^{1,0}$ is a $\sqrt{-1}$ -eigenspace of I, and $V^{0,1}$ a $-\sqrt{-1}$ -eigenspace.

DEFINITION: An *I*-invariant positive definite scalar product on (V, I) is called **an Hermitian metric**, and (V, I, g) – an Hermitian space.

REMARK: Let *I* be a complex structure operator on a real vector space *V*, and *g* – a Hermitian metric. Then **the bilinear form** $\omega(x,y) := g(x,Iy)$ is skew-symmetric. Indeed, $\omega(x,y) = g(x,Iy) = g(Ix,I^2y) = -g(Ix,y) = -\omega(y,x)$.

DEFINITION: A skew-symmetric form $\omega(x, y)$ is called **an Hermitian form** on (V, I).

REMARK: In the triple I, g, ω , each element can recovered from the other two.

Holomorphic functions

DEFINITION: Let $I: TM \longrightarrow TM$ be an endomorphism of a tangent bundle satisfying $I^2 = -$ Id. Then I is called **almost complex structure operator**, and the pair (M, I) **an almost complex manifold**.

EXAMPLE: $M = \mathbb{C}^n$, with complex coordinates $z_i = x_i + \sqrt{-1} y_i$, and $I(d/dx_i) = d/dy_i$, $I(d/dy_i) = -d/dx_i$.

EXAMPLE: In complex dimension 1, almost complex structure is the same as conformal structure with orientation (prove it).

DEFINITION: A function $f : M \longrightarrow \mathbb{C}$ on an almost complex manifold is called **holomorphic** if $df \in \Lambda^{1,0}(M)$.

REMARK: For some almost complex manifolds, **there are no holomorphic functions at all**, even locally.

Example: S^6 with the unique G_2 -invariant almost complex structure.

Holomorphic functions on \mathbb{C}^n

THEOREM: Let $f: M \to \mathbb{C}$ be a differentiable function on an open subset $M \subset \mathbb{C}^n$, with almost complex structure as above. **Then TFAE:** (1) f **is holomorphic**. (2) The differential $df: TM \to \mathbb{C}$, considered as a form on the vector space $T_xM = T_x\mathbb{C}^n = \mathbb{C}^n$ is \mathbb{C} -linear. (3) For any complex affine line $L \in \mathbb{C}^n$, the restriction $f|_L = \mathbb{C}$ is holomorphic

(complex analytic) as a function of one complex variable.

(4) f is expressed as a sum of Taylor series around any point $(z_1, ..., z_n) \in M$.

Proof: (1) and (2) are tautologically equivalent. Equivalence of (1) and (3) is also clear, because a restriction of $\theta \in \Lambda^{1,0}(M)$ to a line is a (1,0)-form on a line, and, conversely, if df is of type (1,0) on each complex line, it is of type (1,0) on TM, which is implied by the following linear-algebraic observation.

LEMMA: Let $\eta \in V^* \otimes \mathbb{C}$ be a complex-valued linear form on a vector space (V, I) equipped with a complex structure. Then $\eta \in \Lambda^{1,0}(V)$ if and only if its restriction to any *I*-invariant 2-dimensional subspace *L* belongs to $\Lambda^{1,0}(L)$.

EXERCISE: Prove it.

(4) clearly implies (2). (1) implies (4) by Cauchy formula.

Sheaves

DEFINITION: A presheaf of functions on a topological space M is a collection of subrings $\mathcal{F}(U) \subset C(U)$ in the ring C(U) of all functions on U, for each open subset $U \subset M$, such that the restriction of every $\gamma \in \mathcal{F}(U)$ to an open subset $U_1 \subset U$ belongs to $\mathcal{F}(U_1)$.

DEFINITION: A presheaf of functions \mathcal{F} is called a sheaf of functions if these subrings satisfy the following condition. Let $\{U_i\}$ be a cover of an open subset $U \subset M$ (possibly infinite) and $f_i \in \mathcal{F}(U_i)$ a family of functions defined on the open sets of the cover and compatible on the pairwise intersections:

$$f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$$

for every pair of members of the cover. Then there exists $f \in \mathcal{F}(U)$ such that f_i is the restriction of f to U_i for all i.

Sheaves and exact sequences

REMARK: A presheaf of functions is a collection of subrings of functions on open subsets, compatible with restrictions. **A sheaf of fuctions is a presheaf allowing "gluing"** a function on a bigger open set if its restrictions to smaller open sets are compatible.

DEFINITION: A sequence $A_1 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow ...$ of homomorphisms of abelian groups or vector spaces is called **exact** if the image of each map is the kernel of the next one.

CLAIM: A presheaf \mathcal{F} is a sheaf if and only if for every cover $\{U_i\}$ of an open subset $U \subset M$, the sequence of restriction maps

 $0 \to \mathcal{F}(U) \to \prod_i \mathcal{F}(U_i) \to \prod_{i \neq j} \mathcal{F}(U_i \cap U_j)$ is exact, with $\eta \in \mathcal{F}(U_i)$ mapped to $\eta |_{U_i \cap U_j}$ and $-\eta |_{U_j \cap U_i}$.

Sheaves and presheaves: examples

Examples of sheaves:

- * Space of continuous functions
- * Space of smooth functions, any differentiability class
- * Space of real analytic functions

Examples of presheaves which are not sheaves:

- * Space of constant functions (why?)
- * Space of bounded functions (why?)

Ringed spaces

A ringed space (M, \mathcal{F}) is a topological space equipped with a sheaf of functions. A morphism $(M, \mathcal{F}) \xrightarrow{\Psi} (N, \mathcal{F}')$ of ringed spaces is a continuous map $M \xrightarrow{\Psi} N$ such that, for every open subset $U \subset N$ and every function $f \in \mathcal{F}'(U)$, the function $\psi^* f := f \circ \Psi$ belongs to the ring $\mathcal{F}(\Psi^{-1}(U))$. An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ^{-1} are morphisms of ringed spaces.

EXAMPLE: Let M be a manifold of class C^i and let $C^i(U)$ be the space of functions of this class. Then C^i is a sheaf of functions, and (M, C^i) is a ringed space.

REMARK: Let $f: X \longrightarrow Y$ be a smooth map of smooth manifolds. Since a pullback $f^*\mu$ of a smooth function $\mu \in C^{\infty}(M)$ is smooth, a smooth map of smooth manifolds defines a morphism of ringed spaces.

Converse is also true:

Ringed spaces and smooth maps

CLAIM: Let (M, C^i) and (N, C^i) be manifolds of class C^i . Then there is a bijection between smooth maps $f : M \longrightarrow N$ and the morphisms of corresponding ringed spaces.

Proof: Any smooth map induces a morphism of ringed spaces. Indeed, a composition of smooth functions is smooth, hence a pullback is also smooth.

Conversely, let $U_i \longrightarrow V_i$ be a restriction of f to some charts; to show that f is smooth, it would suffice to show that $U_i \longrightarrow V_i$ is smooth. However, we know that a pullback of any smooth function is smooth. Therefore, Claim is implied by the following lemma.

LEMMA: Let M, N be open subsets in \mathbb{R}^n and let $f : M \to N$ map such that a pullback of any function of class C^i belongs to C^i . Then f is of class C^i .

Proof: Apply f to coordinate functions.

Smooth manifolds defined through sheaves

As we have just shown, this definition is equivalent to the previous one.

DEFINITION: Let (M, \mathcal{F}) be a topological manifold equipped with a sheaf of functions. It is said to be a **smooth manifold of class** C^{∞} or C^i if every point in (M, \mathcal{F}) has an open neighborhood isomorphic to the ringed space $(\mathbb{R}^n, \mathcal{F}')$, where \mathcal{F}' is a ring of functions on \mathbb{R}^n of this class.

DEFINITION: A chart, or a coordinate system on an open subset U of a manifold (M, \mathcal{F}) is an isomorphism between (U, \mathcal{F}) and an open subset in $(\mathbb{R}^n, \mathcal{F}')$, where \mathcal{F}' are functions of the same class on \mathbb{R}^n .

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism φ which induces an isomorphim of ringed spaces, that is, φ and φ^{-1} map (locally defined) smooth functions to smooth functions.

Complex manifolds

DEFINITION: A holomorphic function on \mathbb{C}^n is a function $f : \mathbb{C}^n \longrightarrow \mathbb{C}$ such that df is complex linear, that is $df \in \Lambda^{1,0}(M)$.

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally isomorphic to an open ball in \mathbb{C}^n with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to \mathbb{C}^n and transition functions (being coordinate functions for one ball considered in other coordinate system) are holomorphic.

Complex manifolds and almost complex manifolds

DEFINITION: Standard almost complex structure is $I(d/dx_i) = d/dy_i$, $I(d/dy_i) = -d/dx_i$ on \mathbb{C}^n with complex coordinates $z_i = x_i + \sqrt{-1} y_i$.

DEFINITION: A map Ψ : $(M, I) \longrightarrow (N, J)$ from an almost complex manifold to an almost complex manifold is called **holomorphic** if $\Psi^*(\Lambda^{1,0}(N)) \subset \Lambda^{1,0}(M)$.

REMARK: This is the same as $d\Psi$ being complex linear; for standard almost complex structures, **this is the same as the coordinate components of** Ψ **being holomorphic functions.**

Another definition: A complex manifold is a manifold equipped with an atlas with charts identified with open subsets of \mathbb{C}^n and transition functions holomorphic.

EXERCISE: Prove that this definition is equivalent to the one with sheaves.

Integrability of almost complex structures

DEFINITION: An almost complex structure I on a manifold is called **integrable** if any point of M has a neighbourhood U diffeomorphic to an open subset of \mathbb{C}^n , in such a way that the almost complex structure I is induced by the standard one on $U \subset \mathbb{C}^n$.

CLAIM: Complex structure on a manifold *M* uniquely determines an integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of holomorphic functions \mathcal{O}_M , and \mathcal{O}_M is determined by I as explained above. Therefore, an integrable almost complex structure defines a complex structure. Conversely, every complex structure gives a sub-bundle in $\Lambda^{1,0}(M) = d\mathcal{O}_M \subset \Lambda^1(M,\mathbb{C})$, and such a sub-bundle defines an almost complex structure ture by Remark 1.