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The Grassmann algebra

DEFINITION: Let V be a vector space. Denote by ΛiV the space of an-

tisymmetric polylinear i-forms on V ∗, and let Λ∗V :=
⊕

ΛiV . Denote by

T⊗iV the algebra of all polylinear i-forms on V ∗ (“tensor algebra”), and let

Alt : T⊗iV −→ ΛiV be the antisymmetrization,

Alt(η)(x1, ..., xi) :=
1

i!

∑
σ∈Σi

(−1)σ̃η(xσ1, ..., xσi)

where Σi is the group of permutations, and σ̃ = 1 for odd permutations, and

0 for even. Consider the multiplicative operation (“wedge-product”) on Λ∗V ,

denoted by η ∧ ν := Alt(η ⊗ ν). The space Λ∗V with this operation is called

the Grassmann algebra.

REMARK: It is an algebra of anti-commutative polynomials.

Properties of Grassmann algebra:

1. dim ΛiV :=
(

dimV
i

)
, dim Λ∗V = 2dimV .

2. Λ∗(V ⊕W ) = Λ∗(V )⊗ Λ∗(W ).
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The Hodge decomposition in linear algebra

DEFINITION: Let (V, I) be a space equipped with a complex structure.

The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1 is defined in such a way

that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a −

√
−1 -eigenspace.

REMARK: Let VC := V ⊗R C. The Grassmann algebra of skew-symmetric

forms ΛnVC := ΛnRV ⊗R C admits a decomposition

ΛnVC =
⊕

p+q=n

ΛpV 1,0 ⊗ ΛqV 0,1

We denote ΛpV 1,0 ⊗ ΛqV 0,1 by Λp,qV . The resulting decomposition ΛnVC =⊕
p+q=nΛp,qV is called the Hodge decomposition of the Grassmann al-

gebra.

REMARK: The operator I induces U(1)-action on V by the formula ρ(t)(v) =

cos t · v + sin t · I(v). We extend this action on the tensor spaces by mupti-

plicativity.
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U(1)-representations and the weight decomposition

REMARK: Any complex representation W of U(1) is written as a sum

of 1-dimensional representations Wi(p), with U(1) acting on each Wi(p)

as ρ(t)(v) = e
√
−1 pt(v). The 1-dimensional representations are called weight

p representations of U(1).

DEFINITION: A weight decomposition of a U(1)-representation W is a de-

composition W = ⊕W p, where each W p = ⊕iWi(p) is a sum of 1-dimensional

representations of weight p.

REMARK: The Hodge decomposition ΛnVC =
⊕
p+q=nΛp,qV is a weight

decomposition, with Λp,qV being a weight p− q-component of ΛnVC.

REMARK: V p,p is the space of U(1)-invariant vectors in Λ2pV .

Further on, TM is the tangent bundle on a manifold, and ΛiM the space

of differential i-forms. It is a Grassmann algebra on TM .
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Vector fields

DEFINITION: Let X be the vector field on a manifold M , and f a function.
Denote by LieX f the derivatiive of f along X.

DEFINITION: A derivation on a commutative ring is a map R
d−→ R

satisfying the Leibniz identity d(xy) = d(x)y + xd(y).

THEOREM: Each derivation of the ring C∞M of smooth functions on M is
given by a vector field X; this correspondence is bijective.

REMARK: This can be used as a definition of a vector field.

EXERCISE: Prove that a commutator of two derivations is again a
derivation.

REMARK: Vector fields are the same as derivations of C∞M . This allows
us to define the commutator of two vector fields as the commutator of
the corresponding derivations.

DEFINITION: Denote by TM the bundle of vector fields, and by Λ1M or
T ∗ the dual bundle, called the bundle of 1-forms. For any f ∈ C∞M , the
operation X −→ LieX f is linear as a function of X, hence it defines a section
of T ∗M . We denote this section df , and call it the differential of f .
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De Rham algebra

DEFINITION: Let Λ∗M denote the vector bundle with the fiber Λ∗T ∗xM
at x ∈ M (Λ∗T ∗M is the Grassman algebra of the cotangent space T ∗xM).
The sections of ΛiM are called differential i-forms. The algebraic operation
“wedge product” defined on differential forms is C∞M-linear; the space Λ∗M
of all differential forms is called the de Rham algebra.

REMARK: Λ0M = C∞M .

THEOREM: There exists a unique operator C∞M d−→ Λ1M
d−→ Λ2M

d−→
Λ3M

d−→ ... satisfying the following properties

1. On functions, d is equal to the differential.
2. d2 = 0
3. d(η ∧ ξ) = d(η)∧ ξ+ (−1)η̃η ∧ d(ξ), where η̃ = 0 where η ∈ λ2iM is an even
form, and η ∈ λ2i+1M is odd.

DEFINITION: The operator d is called de Rham differential.

EXERCISE: Prove it.

DEFINITION: A form η is called closed if dη = 0, exact if η ∈ im d. The
group ker d

im d is called de Rham cohomology of M .
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Cauchy formula in dimension 1 (statement)

DEFINITION: Let U ⊂ Cn be an open subset, and f : U −→ C a function of

class C1 (differentiable at least once). We say that f is holomorphic if the

differential df : TxU −→ C is complex linear at each x ∈ U .

REMARK: Clearly, f is holomorphic if and only if df ∈ Λ1,0(U), where Λ1,0(U)

is the Hodge (1,0)-component of the de Rham algebra.

Taylor series decomposition for holomorphic functions in 1 variable is

implied by the Cauchy formula: for any folomorphic function f in disk

∆ ⊂ C, ∫
∂∆

f(z)dz

z − a
= 2π

√
−1 f(a),

where a ∈∆ any point, and z coordinate on C. Indeed, in this case,

2π
√
−1 f(a) =

∑
i>0

ai
∫
∂∆

f(z)(z−1)i+1,

because 1
z−a = z−1∑

i>0(az−1)i.
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Cauchy formula in dimension 1 (proof)

Let’s prove Cauchy formula, using Stokes’ theorem. Since the space Λ1,0C is
1-dimensional, df ∧ dz = 0 for any holomorphic function on C. This gives

CLAIM: A function on a disk ∆ ⊂ C is holomorphic if and only if the form
η := fdz is closed (that is, satisfies dη = 0).

Now, let Sε be a radius ε circle around a point a ∈ ∆, ∆ε its interior, and
∆0 := ∆\∆ε. Stokes’ theorem gives

0 =
∫

∆0

d

(
f(z)dz

z − a

)
= −

∫
Sε

f(z)dz

z − a
+
∫
∂∆

f(z)dz

z − a
,

hence Cauchy formula would follow if we show that lim
ε→0

∫
Sε

f(z)dz
z−a = 2π

√
−1f(a).

Assuming for simplicity a = 0 and parametrizing the circle Sε by εe
√
−1 t, we

obtain∫
Sε

f(z)dz

z
=
∫ 2π

0

f(εe
√
−1 t)

εe
√
−1 t

d(εe
√
−1 t) =

=
∫ 2π

0

f(εe
√
−1 t)

εe
√
−1 t

√
−1 εe

√
−1 tdt =

∫ 2π

0
f(εe

√
−1 t)

√
−1 dt

as ε tends to 0, f(εe
√
−1 t) tends to f(0), and this integral goes to 2π

√
−1f(0).
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Holomorphic functions on Cn (reminder)

THEOREM: Let f : U −→ C be a differentiable function on an open subset
U ⊂ Cn. Then the following are equivalent.
(1) f is holomorphic.
(2) For any complex affine line L ∈ Cn, the restriction f |L = C is holomorphic
as a function of one complex variable.
(3) f is expressed as a sum of Taylor series around any point (z1, ..., zn) ∈
U : for all sufficiently small t1, ..., tn, one has f(z1 + t1, z2 + t2, ..., zn + tn) =∑
i1,...,in ai1,...,int

i1
1 t

i2
2 ...t

in
n .

Proof: Equivalence of (1) and (2) is clear, because a restriction of θ ∈ Λ1,0(M)
to a line is a (1,0)-form on a line, and, conversely, if df is of type (1,0) on
each complex line, it is of type (1,0) on TM , which is implied by the following
linear-algebraic observation.

LEMMA: Let η ∈ V ∗ ⊗ C be a complex-valued linear form on a real vector
space (V, I) equipped with a complex structure I. Then η ∈ Λ1,0(V ) if
and only if its restriction to any I-invariant 2-dimensional subspace L
belongs to Λ1,0(L).
EXERCISE: Prove it.

(3) clearly implies (1). (1) implies (3) by Cauchy formula (many variables),
proven below.
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Cauchy formula (many variables)

REMARK: Let U ⊂ Cn be an open subset, and z1, ..., zn complex coordinates.

Holomorphicity of f : U −→ C is equivalent to df ∈ Λ1,0(M), which is equiva-

lent to df ∧ dz1 ∧ dz1 ∧ ...∧ dzn = 0. Denote the form dz1 ∧ dz1 ∧ ...∧ dzn by Φ.

We obtain that f is holomorphic if and only if the form fΦ is closed

THEOREM: (Cauchy formula in dimension n)

Let ∆ ⊂ Cn be a polydisk (product of disks) of radius 1, and α1, ..., αn ∈ ∆

complex numbers. Denote by S ⊂ Cn the product of circles of radius 1 in

variables z1, ..., zn:, S = S1(z1)× S1(z2)× ...× S1(zn). Let f be a holomorphic

function in a polydisk. Then
∫
S V = (2π

√
−1 )nf(α1, ...αn), where

V =
fΦ

(z1 − α1)(z2 − α2)× ...× (zn − αn)
.

Proof. Step 1: Denote by Z the set
⋃n
i=1{(z1, ..., zn) | zi = αi}. The comple-

ment of Z is the set of definition of the closed differential form V . Let Sε be

the product of circles of radius ε with center in α1, ..., αn. Then S, Sε ⊂ Cn\Z,

and the tori S, Sε are homotopy equivalent in the domain Cn\Z, where

V is closed. It remains to show that limε→0
∫
Sε V = (2π

√
−1 )nf(α1, ...αn).
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Cauchy formula (many variables), part 2

THEOREM: (Cauchy formula in dimension n)
Let ∆ ⊂ Cn be a polydisk (product of disks) of radius 1, and α1, ..., αn ∈ ∆
complex numbers. Denote by S ⊂ Cn the product of circles of radius 1 in
variables z1, ..., zn:, S = S1(z1)× S1(z2)× ...× S1(zn). Let f be a holomorphic
function in a polydisk. Then

∫
S V = (2π

√
−1 )nf(α1, ...αn), where

V =
fΦ

(z1 − α1)(z2 − α2)...(zn − αn)
.

Proof. Step 1: Let Sε be a product of circles of radius ε with center in
α1, ..., αn. It remains to show that limε→0

∫
Sε V = (2π

√
−1 )nf(α1, ...αn).

Step 2: To simplify notation we set αi = 0. Parametrize Sε by the cube
[0,2π]n using the map t1, ..., tn −→ εe

√
−1 t1, ..., εe

√
−1 tn. This gives∫

Sε
V =

∫
Sε
f(z)

dz1

z1
∧ ... ∧

dzn

zn
=

=
∫ 2π

0
...
∫ 2π

0

f(εe
√
−1 t1, εe

√
−1 t2, ..., εe

√
−1 tn)

εe
√
−1 t1εe

√
−1 t2...εe

√
−1 tn

εnd

(
e
√
−1 t1

)
d

(
e
√
−1 t2

)
...d

(
e
√
−1 tn

)
=

= (
√
−1 )n

∫ 2π

0
...
∫ 2π

0
f(εe

√
−1 t1, ..., εe

√
−1 tn)dt1dt2...dtn,

which converges to (2π
√
−1 )nf(0, ...,0).
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Cauchy formula and Taylor expansion

REMARK: Cauchy formula implies that holomorphic functions defined in

a polydisk have Taylor expansion in this polydisk. Indeed,

f(α1, ...αn) =
1

(2π
√
−1 )n

∫
S

fdz1 ∧ ... ∧ dzn
(z1 − α1)(z2 − α2)× ...× (zn − αn)

Take the Taylor expansion of (zi − αi)−1 using

1

(zi − αi)
=

z−1
i

(1− αiz−1
i )

=
∞∑
l=0

αliz
−l−1
i .

Then

f(α1, ...αn) =
∞∑

i1=0

...
∞∑

in=0

α
i1
1 ....α

in
in

∫
S
f(z1, ..., zn)z−i1−1

1 ...z−in−1
n dz1 ∧ ... ∧ dzn.

12



Complex geometry, lecture 2 M. Verbitsky

Complex manifolds (reminder)

DEFINITION: A holomorphic function on Cn is a function f : Cn −→ C
such that df is complex linear, that is df ∈ Λ1,0(M).

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally

isomorphic to an open ball in Cn with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to Cn

and transition functions (being coordinate functions for one ball considered

in other coordinate system) are holomorphic.
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Integrability of almost complex structures

DEFINITION: An almost complex structure I on a manifold is called inte-

grable if any point of M has a neighbourhood U diffeomorphic to an open

subset of Cn, in such a way that the almost complex structure I is induced

by the standard one on U ⊂ Cn.

CLAIM: Complex structure on a manifold M uniquely determines an

integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of

holomorphic functions OM , and OM is determined by I as explained above.

Therefore, an integrable almost complex structure defines a complex struc-

ture. Conversely, every complex structure gives a sub-bundle in Λ1,0(M) =

dOM ⊂ Λ1(M,C), and such a sub-bundle defines an almost complex struc-

ture by Remark 1.
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Frobenius form

CLAIM: Let B ⊂ TM be a sub-bundle of a tangent bundle of a smooth

manifold. Given vector fiels X,Y ∈ B, consider their commutator [X,Y ], and

lets Ψ(X,Y ) ∈ TM/B be the projection of [X,Y ] to TM/B. Then Ψ(X,Y )

is C∞(M)-linear in X, Y :

Ψ(fX, Y ) = Ψ(X, fY ) = fΨ(X,Y ).

Proof: Leibnitz identity gives [X, fY ] = f [X,Y ] + X(f)Y , and the second

term belongs to B, hence does not influence the projection to TM/B.

DEFINITION: This form is called the Frobenius form of the sub-bundle

B ⊂ TM . This bundle is called involutive, or integrable, or holonomic if

Ψ = 0.

EXERCISE: Give an example of a non-integrable sub-bundle.
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Formal integrability

DEFINITION: An almost complex structure I on (M, I) is called formally
integrable if [T1,0M,T1,0] ⊂ T1,0, that is, if T1,0M is involutive.

DEFINITION: The Frobenius form Ψ ∈ Λ2(Λ1,0M) ⊗ T0,1M is called the
Nijenhuis tensor.

CLAIM: If a complex structure I on M is integrable, it is formally
integrable.

Proof: Locally, the bundle T1,0(M) is generated by d/dzi, where zi are com-
plex coordinates. These vector fields commute, hence satisfy [d/dzi, d/dzj] ∈
T1,0(M). This means that the Frobenius form vanishes.

THEOREM: (Newlander-Nirenberg)
A complex structure I on M is integrable if and only if it is formally
integrable.

Proof: (real analytic case) next lecture, probably.

REMARK: In dimension 1, formal integrability is automatic. Indeed,
T1,0M is 1-dimensional, hence all skew-symmetric 2-forms on T1,0M vanish.
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Possible topics for the next lectures

1. Proof of Frobenius theorem.

2. Newlander-Nirenberg theorem for real analytic almost complex manifolds.
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