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The Grassmann algebra

DEFINITION: Let V be a vector space. Denote by A'V the space of an-
tisymmetric polylinear i-forms on V*, and let A*V = @A'WV. Denote by
T®W the algebra of all polylinear i-forms on V* (“tensor algebra’), and let
Alt : T®V — A'W be the antisymmetrization,

1 ~
AL @1, ) = = 3 (1), )
v oE>;

where 2, is the group of permutations, and ¢ = 1 for odd permutations, and
O for even. Consider the multiplicative operation ( “wedge-product”) on A*V,
denoted by n Av := Alt(n® v). The space A*V with this operation is called
the Grassmann algebra.

REMARK: It is an algebra of anti-commutative polynomials.
Properties of Grassmann algebra:

1. dim AW = (dir?v), dim A*V = 2dimV

2. AH(Va W) = A (V) @ A*(W).



Complex geometry, lecture 2 M. Verbitsky

The Hodge decomposition in linear algebra

DEFINITION: Let (V,I) be a space equipped with a complex structure.
The Hodge decomposition V @p C := V1.0 ¢ V0.1 is defined in such a way
that V1.0 is a /=1 -eigenspace of I, and V%1 a —/—1 -eigenspace.

REMARK: Let Vg := V Qr C. The Grassmann algebra of skew-symmetric
forms A"Vp := AgV ®gr C' admits a decomposition

NVe= @ NvEOgatyol
ptq=n
We denote APV1.0 @ AIVOL by APV . The resulting decomposition A"V =
Dptg=n NP9V is called the Hodge decomposition of the Grassmann al-
gebra.

REMARK: The operator I induces U(1)-action on V by the formula p(t)(v) =
cost-v 4 sint-I(v). We extend this action on the tensor spaces by mupti-
plicativity.
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U(1)-representations and the weight decomposition

REMARK: Any complex representation W of U(1) is written as a sum
of 1-dimensional representations W;(p), with U(1) acting on each W;(p)
as p(t)(v) = eV~1Pl(v). The 1-dimensional representations are called weight

p representations of U(1).

DEFINITION: A weight decomposition of a U(1)-representation W is a de-
composition W = WP, where each WP = ¢,W;(p) is a sum of 1-dimensional
representations of weight p.

REMARK: The Hodge decomposition A"Vg = @, 4 =, APV is a weight
decomposition, with A9V being a weight p — g-component of A"*V.

REMARK: VPP is the space of U(1)-invariant vectors in A2PV.

Further on, TM is the tangent bundle on a manifold, and A*M the space
of differential -forms. It is a Grassmann algebra on T'M.
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Vector fields

DEFINITION: Let X be the vector field on a manifold M, and f a function.
Denote by Lieyx f the derivatiive of f along X.

DEFINITION: A derivation on a commutative ring is a map R i> R
satisfying the Leibniz identity d(zy) = d(z)y + zd(y).

THEOREM: Each derivation of the ring C°°M of smooth functions on M is
given by a vector field X; this correspondence is bijective.

REMARK: This can be used as a definition of a vector field.

EXERCISE: Prove that a commutator of two derivations is again a
derivation.

REMARK: Vector fields are the same as derivations of C®°M. This allows
us to define the commutator of two vector fields as the commutator of
the corresponding derivations.

DEFINITION: Denote by T'M the bundle of vector fields, and by ALM or
T* the dual bundle, called the bundle of 1-forms. For any f € C°°M, the
operation X — Liex f is linear as a function of X, hence it defines a section
of T*M. We denote this section df, and call it the differential of f.
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De Rham algebra

DEFINITION: Let A*M denote the vector bundle with the fiber A*T ;M
at x € M (AN*T*M is the Grassman algebra of the cotangent space T;M).
The sections of A*M are called differential i-forms. The algebraic operation
“wedge product” defined on differential forms is C°°M-linear; the space AN*M
of all differential forms is called the de Rham algebra.

REMARK: ANOM = C°M.

THEOdREM: There exists a unique operator C°M -4 A1y -4 A2y -4
A3M -2 ... satisfying the following properties

1. On functions, d is equal to the differential.

2. d°=0

3. dinAnE) =dm) ANE+ (=1 Ad(€), where 77 = 0 where n € A% M is an even
form, and n € \2t1\f is odd.

DEFINITION: The operator d is called de Rham differential.
EXERCISE: Prove it.

DEFINITION: A form n is called closed if dnp = 0, exact if n € imd. The

group X4 is called de Rham cohomology of M.
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Cauchy formula in dimension 1 (statement)

DEFINITION: Let U C C" be an open subset, and f: U — C a function of
class C1 (differentiable at least once). We say that f is holomorphic if the
differential df : T, U — C is complex linear at each x € U.

REMARK: Clearly, f is holomorphic if and only if df € ALO(U), where ALO(D)
is the Hodge (1,0)-component of the de Rham algebra.

Taylor series decomposition for holomorphic functions in 1 variable is
implied by the Cauchy formula: for any folomorphic function f in disk
A\ CC,

f(2)dz _
oA z—a QW\/_—lf(a)’

where a € A any point, and z coordinate on C. Indeed, in this case,

2m/=1f(a) = Yd [ f)HT

120

because -1 = 2715 g(az1)"
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Cauchy formula in dimension 1 (proof)

Let's prove Cauchy formula, using Stokes' theorem. Since the space ALOC is
1-dimensional, df AN dz = 0 for any holomorphic function on C. This gives

CLAIM: A function on a disk A C C is holomorphic if and only if the form
n := fdz is closed (that is, satisfies dn =0). =

Now, let Sz be a radius e circle around a point a € A, A¢ its interior, and
Ag ;= A\Ac. Stokes' theorem gives
o= [ a (f(z)dz> _ [ Gz f(2)dz
Ag Se

zZ—aQ oA zZ — a

y
<z — Qa

hence Cauchy formula would follow if we show that lim s, L) — on /=T f(a).
E—>

Assuming for simplicity a = 0 and parametrizing the circle S: by ceV—1t we

obtain

T V-1t
; f(zz)dz:/OQ f(;:\/_ )d(f-:e\/_—lt):

m f(eeV 1t T
_/2 (“;__1 ) /T eV Ttgs = /02 FeeV— 10/ dt

as e tends to 0, f(eeV~11) tends to f(0), and this integral goes to 2m/—1 f(0).
3
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Holomorphic functions on C" (reminder)

THEOREM: Let f: U — C be a differentiable function on an open subset
U C C". Then the following are equivalent.

(1) f is holomorphic.

(2) For any complex affine line L € C™, the restriction f|;, = C is holomorphic
as a function of one complex variable.

(3) f is expressed as a sum of Taylor series around any point (z1,...,2n) €
U:. for all sufficiently small tq,...,tn, One has f(z1 +t1,20 +to,...,2n + tn) =

. . . 401,412 in
27’17"'72’)1 a’zl,...,'l,ntl t2 ---tn .

Proof: Equivalence of (1) and (2) is clear, because a restriction of 8 € AL.O(M)
to a line is a (1,0)-form on a line, and, conversely, if df is of type (1,0) on
each complex line, it is of type (1,0) on T'M, which is implied by the following
linear-algebraic observation.

LEMMA: Let n € V*® C be a complex-valued linear form on a real vector
space (V,I) equipped with a complex structure I. Then n € ALO(V) if
and only if its restriction to any /-invariant 2-dimensional subspace L
belongs to ALO(L).

EXERCISE: Prove it.

(3) clearly implies (1). (1) implies (3) by Cauchy formula (many variables),
proven below.
9
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Cauchy formula (many variables)

REMARK: Let U C C™ be an open subset, and z1, ..., zn, complex coordinates.
Holomorphicity of f: U —» C is equivalent to df € ALO(M), which is equiva-
lent to df Adzqy Ndz1 A ... Ndzp, = 0. Denote the form dzqy Adzq A ... ANdzp by P.
We obtain that f is holomorphic if and only if the form f® is closed

THEOREM: (Cauchy formula in dimension n)
Let A C C"™ be a polydisk (product of disks) of radius 1, and aq,...,an € A
complex numbers. Denote by S C C" the product of circles of radius 1 in
variables z1,...,zn:, S = 51(2z1) x S1(22) X ... x S1(zn). Let f be a holomorphic
function in a polydisk. Then [¢V = (27v/—1)"f(a1,...an), Where

fo
(21 — 1) (22 —a2) X ... X (zn — an)
Proof. Step 1: Denote by Z the set U 1{(z1,...,2n) | 2z = a;}. The comple-
ment of Z is the set of definition of the closed differential form V. Let S¢ be
the product of circles of radius € with center in aq,...,an. Then S, S, C C"*\Z,

and the tori S, S: are homotopy equivalent in the domain C"\Z, where
V is closed. It remains to show that lim._,q [¢ V = (27V—-1)"f(a1,...an).

V =

10
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Cauchy formula (many variables), part 2

THEOREM: (Cauchy formula in dimension n)

Let A C C" be a polydisk (product of disks) of radius 1, and aq,...,an € A
complex numbers. Denote by S C C" the product of circles of radius 1 in
variables z1,...,zn:, S = 51(2z1) x S1(22) X ... x S1(zn). Let f be a holomorphic
function in a polydisk. Then [¢V = (27v/—1)"f(a1,...an), wWhere

fe

(21— a1)(z2 — a2)...(zn — an)’
Proof. Step 1: Let S: be a product of circles of radius € with center in
ai,...,an. It remains to show that lim._,o [¢ V = (27v/—1)"f(aq,...an).

v

Step 2: To simplify notation we set a; = 0. Parametrize S: by the cube
[0, 27]™ using the map tq,...,tn —> eV 1 . geV—1lin This gives

dzq dzn

/Evz TN AT =

zn

_ /2@“ /zwﬂeeﬂ MeeV1i2, . eeVlin) (6¢_—1t1> P (emtg) 4 (emtn) _
0 0 ceV—1ltigevV—1t2  ceV—1tn

2m 2m — —
= (v/—1 )n/o /O f(ee _1t1,...,€€ _1t”)dt1dt2...dtn,

which converges to (27v/—1)"f(0,...,0). =
11
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Cauchy formula and Taylor expansion

REMARK: Cauchy formula implies that holomorphic functions defined in
a polydisk have Taylor expansion in this polydisk. Indeed,

. 1 fdzq1 N ... Ndzp
27/ —=1)"J5 (21 —a1)(z0 —an) X ... X (zn — an)
Take the Taylor expansion of (z; — oz,-)_1 using

flaq,...an)

—1 00
1 Z;
= ¢ = abz =1
(2 —a;) (1— ozz-zz-_l) l; o
Then
00 00 _ , o ,
flag, can) = > ... ) O‘?“"O‘;Z Sf(zl,...,zn)zl_zl_ ez ey A A dan.
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Complex manifolds (reminder)

DEFINITION: A holomorphic function on C" is a function f: C"—C
such that df is complex linear, that is df € ALO(M).

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally
isomorphic to an open ball in C" with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to C"

and transition functions (being coordinate functions for one ball considered
in other coordinate system) are holomorphic.

13
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Complex manifolds (reminder)

DEFINITION: A holomorphic function on C" is a function f: C"—C
such that df is complex linear, that is df € ALO(M).

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally
isomorphic to an open ball in C" with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to C"

and transition functions (being coordinate functions for one ball considered
in other coordinate system) are holomorphic.
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Integrability of almost complex structures

DEFINITION: An almost complex structure I on a manifold is called inte-
grable if any point of M has a neighbourhood U diffeomorphic to an open
subset of C", in such a way that the almost complex structure I is induced
by the standard one on U C C™.

CLAIM: Complex structure on a manifold M uniquely determines an
integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of
holomorphic functions Oy, and Oy, is determined by I as explained above.
Therefore, an integrable almost complex structure defines a complex struc-
ture. Conversely, every complex structure gives a sub-bundle in /\1’O(M) —
dOy; € AL(M,C), and such a sub-bundle defines an almost complex struc-
ture by Remark 1. =

15
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Frobenius form

CLAIM: Let B C T M be a sub-bundle of a tangent bundle of a smooth
manifold. Given vector fiels X,Y € B, consider their commutator [X,Y], and
lets W(X,Y) € TM/B be the projection of [X,Y] to TM/B. Then V(X,Y)
iIs C*°(M)-linear in X, Y:

V(fX,Y)=W(X, fY) = fy(X,Y).

Proof: Leibnitz identity gives [X, fY] = f[X,Y] + X(f)Y, and the second
term belongs to B, hence does not influence the projection to TM/B. =

DEFINITION: This form is called the Frobenius form of the sub-bundle
B C T'M. This bundle is called involutive, or integrable, or holonomic if
W = 0.

EXERCISE: Give an example of a non-integrable sub-bundle.

16
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Formal integrability

DEFINITION: An almost complex structure I on (M,I) is called formally
integrable if [T1.0M, 71,01 ¢ 710, that is, if T1.O0M is involutive.

DEFINITION: The Frobenius form W € A2(ALOM) @ TO:1M is called the
Nijenhuis tensor.

CLAIM: If a complex structure I on M is integrable, it is formally
integrable.

Proof: Locally, the bundle T19(M) is generated by d/dz;, where z; are com-
plex coordinates. These vector fields commute, hence satisfy [d/dz;, d/dz;] €
T1.9(M). This means that the Frobenius form vanishes. m

THEOREM: (Newlander-Nirenberg)
A complex structure I on M is integrable if and only if it is formally
integrable.

Proof: (real analytic case) next lecture, probably.
REMARK: In dimension 1, formal integrability is automatic. Indeed,

71,907 is 1-dimensional, hence all skew-symmetric 2-forms on T1:9Mf vanish.
17
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Possible topics for the next lectures

1. Proof of Frobenius theorem.

2. Newlander-Nirenberg theorem for real analytic almost complex manifolds.
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