Complex geometry

lecture 2: Cauchy formula

Misha Verbitsky

HSE, room 306, 16:20,

September 26, 2020

The Grassmann algebra

DEFINITION: Let V be a vector space. Denote by $\Lambda^i V$ the space of antisymmetric polylinear *i*-forms on V^* , and let $\Lambda^* V := \bigoplus \Lambda^i V$. Denote by $T^{\otimes i}V$ the algebra of all polylinear *i*-forms on V^* ("tensor algebra"), and let Alt : $T^{\otimes i}V \longrightarrow \Lambda^i V$ be the antisymmetrization,

$$\mathsf{Alt}(\eta)(x_1,...,x_i) := \frac{1}{i!} \sum_{\sigma \in \Sigma_i} (-1)^{\tilde{\sigma}} \eta(x_{\sigma_1},...,x_{\sigma_i})$$

where Σ_i is the group of permutations, and $\tilde{\sigma} = 1$ for odd permutations, and 0 for even. Consider the multiplicative operation ("wedge-product") on Λ^*V , denoted by $\eta \wedge \nu := \operatorname{Alt}(\eta \otimes \nu)$. The space Λ^*V with this operation is called **the Grassmann algebra**.

REMARK: It is an algebra of anti-commutative polynomials.

Properties of Grassmann algebra:

1. dim
$$\Lambda^i V := \binom{\dim V}{i}$$
, dim $\Lambda^* V = 2^{\dim V}$.

2. $\Lambda^*(V \oplus W) = \Lambda^*(V) \otimes \Lambda^*(W)$.

The Hodge decomposition in linear algebra

DEFINITION: Let (V, I) be a space equipped with a complex structure. **The Hodge decomposition** $V \otimes_{\mathbb{R}} \mathbb{C} := V^{1,0} \oplus V^{0,1}$ is defined in such a way that $V^{1,0}$ is a $\sqrt{-1}$ -eigenspace of I, and $V^{0,1}$ a $-\sqrt{-1}$ -eigenspace.

REMARK: Let $V_{\mathbb{C}} := V \otimes_{\mathbb{R}} \mathbb{C}$. The Grassmann algebra of skew-symmetric forms $\Lambda^n V_{\mathbb{C}} := \Lambda^n_{\mathbb{R}} V \otimes_{\mathbb{R}} C$ admits a decomposition

$$\Lambda^n V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^p V^{1,0} \otimes \Lambda^q V^{0,1}$$

We denote $\Lambda^{p}V^{1,0} \otimes \Lambda^{q}V^{0,1}$ by $\Lambda^{p,q}V$. The resulting decomposition $\Lambda^{n}V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^{p,q}V$ is called **the Hodge decomposition of the Grassmann al**gebra.

REMARK: The operator I induces U(1)-action on V by the formula $\rho(t)(v) = \cos t \cdot v + \sin t \cdot I(v)$. We extend this action on the tensor spaces by muptiplicativity.

U(1)-representations and the weight decomposition

REMARK: Any complex representation W of U(1) is written as a sum of 1-dimensional representations $W_i(p)$, with U(1) acting on each $W_i(p)$ as $\rho(t)(v) = e^{\sqrt{-1}pt}(v)$. The 1-dimensional representations are called weight p representations of U(1).

DEFINITION: A weight decomposition of a U(1)-representation W is a decomposition $W = \bigoplus W^p$, where each $W^p = \bigoplus_i W_i(p)$ is a sum of 1-dimensional representations of weight p.

REMARK: The Hodge decomposition $\Lambda^n V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^{p,q} V$ is a weight decomposition, with $\Lambda^{p,q} V$ being a weight p - q-component of $\Lambda^n V_{\mathbb{C}}$.

REMARK: $V^{p,p}$ is the space of U(1)-invariant vectors in $\Lambda^{2p}V$.

Further on, TM is the tangent bundle on a manifold, and $\Lambda^i M$ the space of differential *i*-forms. It is a Grassmann algebra on TM.

M. Verbitsky

Vector fields

DEFINITION: Let X be the vector field on a manifold M, and f a function. Denote by $\text{Lie}_X f$ the derivative of f along X.

DEFINITION: A derivation on a commutative ring is a map $R \xrightarrow{d} R$ satisfying the Leibniz identity d(xy) = d(x)y + xd(y).

THEOREM: Each derivation of the ring $C^{\infty}M$ of smooth functions on M is given by a vector field X; this correspondence is bijective.

REMARK: This can be used as a definition of a vector field.

EXERCISE: Prove that a commutator of two derivations is again a derivation.

REMARK: Vector fields are the same as derivations of $C^{\infty}M$. This allows us to define the commutator of two vector fields as the commutator of the corresponding derivations.

DEFINITION: Denote by TM the bundle of vector fields, and by $\Lambda^1 M$ or T^* the dual bundle, called **the bundle of 1-forms**. For any $f \in C^{\infty}M$, the operation $X \longrightarrow \text{Lie}_X f$ is linear as a function of X, hence it defines a section of T^*M . We denote this section df, and call it **the differential** of f.

De Rham algebra

DEFINITION: Let Λ^*M denote the vector bundle with the fiber $\Lambda^*T_x^*M$ at $x \in M$ (Λ^*T^*M is the Grassman algebra of the cotangent space T_x^*M). The sections of $\Lambda^i M$ are called **differential** *i*-forms. The algebraic operation "wedge product" defined on differential forms is $C^{\infty}M$ -linear; the space Λ^*M of all differential forms is called **the de Rham algebra**.

REMARK: $\Lambda^0 M = C^{\infty} M$.

THEOREM: There exists a unique operator $C^{\infty}M \xrightarrow{d} \wedge^{1}M \xrightarrow{d} \wedge^{2}M \xrightarrow{d} \wedge^{3}M \xrightarrow{d} \dots$ satisfying the following properties

1. On functions, d is equal to the differential.

2. $d^2 = 0$

3. $d(\eta \wedge \xi) = d(\eta) \wedge \xi + (-1)^{\tilde{\eta}} \eta \wedge d(\xi)$, where $\tilde{\eta} = 0$ where $\eta \in \lambda^{2i}M$ is an even form, and $\eta \in \lambda^{2i+1}M$ is odd.

DEFINITION: The operator *d* is called **de Rham differential**.

EXERCISE: Prove it.

DEFINITION: A form η is called **closed** if $d\eta = 0$, **exact** if $\eta \in \text{im } d$. The group $\frac{\ker d}{\operatorname{im } d}$ is called **de Rham cohomology** of M.

Cauchy formula in dimension 1 (statement)

DEFINITION: Let $U \subset \mathbb{C}^n$ be an open subset, and $f : U \longrightarrow \mathbb{C}$ a function of class C^1 (differentiable at least once). We say that f is **holomorphic** if the differential $df : T_x U \longrightarrow \mathbb{C}$ is complex linear at each $x \in U$.

REMARK: Clearly, f is holomorphic if and only if $df \in \Lambda^{1,0}(U)$, where $\Lambda^{1,0}(U)$ is the Hodge (1,0)-component of the de Rham algebra.

Taylor series decomposition for holomorphic functions in 1 variable is implied by the Cauchy formula: for any folomorphic function f in disk $\Delta \subset \mathbb{C}$,

$$\int_{\partial\Delta} \frac{f(z)dz}{z-a} = 2\pi\sqrt{-1} f(a),$$

where $a \in \Delta$ any point, and z coordinate on \mathbb{C} . Indeed, in this case,

$$2\pi\sqrt{-1} f(a) = \sum_{i \ge 0} a^i \int_{\partial \Delta} f(z) (z^{-1})^{i+1},$$

because $\frac{1}{z-a} = z^{-1} \sum_{i \ge 0} (az^{-1})^i$.

Cauchy formula in dimension 1 (proof)

Let's prove Cauchy formula, using Stokes' theorem. Since the space $\Lambda^{1,0}\mathbb{C}$ is 1-dimensional, $df \wedge dz = 0$ for any holomorphic function on \mathbb{C} . This gives

CLAIM: A function on a disk $\Delta \subset \mathbb{C}$ is holomorphic if and only if the form $\eta := f dz$ is closed (that is, satisfies $d\eta = 0$).

Now, let S_{ε} be a radius ε circle around a point $a \in \Delta$, Δ_{ε} its interior, and $\Delta_0 := \Delta \setminus \Delta_{\varepsilon}$. Stokes' theorem gives

$$0 = \int_{\Delta_0} d\left(\frac{f(z)dz}{z-a}\right) = -\int_{S_{\varepsilon}} \frac{f(z)dz}{z-a} + \int_{\partial\Delta} \frac{f(z)dz}{z-a},$$

hence Cauchy formula would follow if we show that $\lim_{\varepsilon \to 0} \int_{S_{\varepsilon}} \frac{f(z)dz}{z-a} = 2\pi \sqrt{-1} f(a)$. Assuming for simplicity a = 0 and parametrizing the circle S_{ε} by $\varepsilon e^{\sqrt{-1}t}$, we obtain

$$\int_{S_{\varepsilon}} \frac{f(z)dz}{z} = \int_{0}^{2\pi} \frac{f(\varepsilon e^{\sqrt{-1}t})}{\varepsilon e^{\sqrt{-1}t}} d(\varepsilon e^{\sqrt{-1}t}) =$$
$$= \int_{0}^{2\pi} \frac{f(\varepsilon e^{\sqrt{-1}t})}{\varepsilon e^{\sqrt{-1}t}} \sqrt{-1} \varepsilon e^{\sqrt{-1}t} dt = \int_{0}^{2\pi} f(\varepsilon e^{\sqrt{-1}t}) \sqrt{-1} dt$$

as ε tends to 0, $f(\varepsilon e^{\sqrt{-1}t})$ tends to f(0), and this integral goes to $2\pi\sqrt{-1}f(0)$. 8

Holomorphic functions on \mathbb{C}^n (reminder)

THEOREM: Let $f: U \longrightarrow \mathbb{C}$ be a differentiable function on an open subset $U \subset \mathbb{C}^n$. Then the following are equivalent. (1) f is holomorphic. (2) For any complex affine line $L \in \mathbb{C}^n$, the restriction $f|_L = \mathbb{C}$ is holomorphic as a function of one complex variable. (3) f is expressed as a sum of Taylor series around any point $(z_1, ..., z_n) \in U$: for all sufficiently small $t_1, ..., t_n$, one has $f(z_1 + t_1, z_2 + t_2, ..., z_n + t_n) = \sum_{i_1,...,i_n} a_{i_1,...,i_n} t_1^{i_1} t_2^{i_2} ... t_n^{i_n}$.

Proof: Equivalence of (1) and (2) is clear, because a restriction of $\theta \in \Lambda^{1,0}(M)$ to a line is a (1,0)-form on a line, and, conversely, if df is of type (1,0) on each complex line, it is of type (1,0) on TM, which is implied by the following linear-algebraic observation.

LEMMA: Let $\eta \in V^* \otimes \mathbb{C}$ be a complex-valued linear form on a real vector space (V, I) equipped with a complex structure I. Then $\eta \in \Lambda^{1,0}(V)$ if and only if its restriction to any I-invariant 2-dimensional subspace L belongs to $\Lambda^{1,0}(L)$. **EXERCISE:** Prove it.

(3) clearly implies (1). (1) implies (3) by Cauchy formula (many variables), proven below.

Cauchy formula (many variables)

REMARK: Let $U \subset \mathbb{C}^n$ be an open subset, and $z_1, ..., z_n$ complex coordinates. Holomorphicity of $f: U \longrightarrow \mathbb{C}$ is equivalent to $df \in \Lambda^{1,0}(M)$, which is equivalent to $df \wedge dz_1 \wedge dz_1 \wedge ... \wedge dz_n = 0$. Denote the form $dz_1 \wedge dz_1 \wedge ... \wedge dz_n$ by Φ . We obtain that f is holomorphic if and only if the form $f\Phi$ is closed

THEOREM: (Cauchy formula in dimension *n*)

Let $\Delta \subset \mathbb{C}^n$ be a polydisk (product of disks) of radius 1, and $\alpha_1, ..., \alpha_n \in \Delta$ complex numbers. Denote by $S \subset \mathbb{C}^n$ the product of circles of radius 1 in variables $z_1, ..., z_n$:, $S = S_1(z_1) \times S_1(z_2) \times ... \times S_1(z_n)$. Let f be a holomorphic function in a polydisk. Then $\int_S V = (2\pi\sqrt{-1})^n f(\alpha_1, ..., \alpha_n)$, where

$$V = \frac{f\Phi}{(z_1 - \alpha_1)(z_2 - \alpha_2) \times \dots \times (z_n - \alpha_n)}.$$

Proof. Step 1: Denote by Z the set $\bigcup_{i=1}^{n} \{(z_1, ..., z_n) \mid z_i = \alpha_i\}$. The complement of Z is the set of definition of the closed differential form V. Let S_{ε} be the product of circles of radius ε with center in $\alpha_1, ..., \alpha_n$. Then $S, S_{\varepsilon} \subset \mathbb{C}^n \setminus Z$, and the tori S, S_{ε} are homotopy equivalent in the domain $\mathbb{C}^n \setminus Z$, where V is closed. It remains to show that $\lim_{\varepsilon \to 0} \int_{S_{\varepsilon}} V = (2\pi\sqrt{-1})^n f(\alpha_1, ..., \alpha_n)$.

Cauchy formula (many variables), part 2

THEOREM: (Cauchy formula in dimension *n*)

Let $\Delta \subset \mathbb{C}^n$ be a polydisk (product of disks) of radius 1, and $\alpha_1, ..., \alpha_n \in \Delta$ complex numbers. Denote by $S \subset \mathbb{C}^n$ the product of circles of radius 1 in variables $z_1, ..., z_n$; $S = S_1(z_1) \times S_1(z_2) \times ... \times S_1(z_n)$. Let f be a holomorphic function in a polydisk. Then $\int_S V = (2\pi\sqrt{-1})^n f(\alpha_1, ..., \alpha_n)$, where

$$V = \frac{f\Phi}{(z_1 - \alpha_1)(z_2 - \alpha_2)...(z_n - \alpha_n)}$$

Proof. Step 1: Let S_{ε} be a product of circles of radius ε with center in $\alpha_1, ..., \alpha_n$. It remains to show that $\lim_{\varepsilon \to 0} \int_{S_{\varepsilon}} V = (2\pi\sqrt{-1})^n f(\alpha_1, ..., \alpha_n)$.

Step 2: To simplify notation we set $\alpha_i = 0$. Parametrize S_{ε} by the cube $[0, 2\pi]^n$ using the map $t_1, ..., t_n \longrightarrow \varepsilon e^{\sqrt{-1} t_1}, ..., \varepsilon e^{\sqrt{-1} t_n}$. This gives

$$\int_{S_{\varepsilon}} V = \int_{S_{\varepsilon}} f(z) \frac{dz_{1}}{z_{1}} \wedge \dots \wedge \frac{dz_{n}}{z_{n}} = \int_{0}^{2\pi} \dots \int_{0}^{2\pi} \frac{f(\varepsilon e^{\sqrt{-1} t_{1}}, \varepsilon e^{\sqrt{-1} t_{2}}, \dots, \varepsilon e^{\sqrt{-1} t_{n}})}{\varepsilon e^{\sqrt{-1} t_{1}} \varepsilon e^{\sqrt{-1} t_{2}} \dots \varepsilon e^{\sqrt{-1} t_{n}}} \varepsilon^{n} d\left(e^{\sqrt{-1} t_{1}}\right) d\left(e^{\sqrt{-1} t_{2}}\right) \dots d\left(e^{\sqrt{-1} t_{n}}\right) = \left(\sqrt{-1}\right)^{n} \int_{0}^{2\pi} \dots \int_{0}^{2\pi} f(\varepsilon e^{\sqrt{-1} t_{1}}, \dots, \varepsilon e^{\sqrt{-1} t_{n}}) dt_{1} dt_{2} \dots dt_{n},$$

which converges to $(2\pi\sqrt{-1})^n f(0,...,0)$.

Cauchy formula and Taylor expansion

REMARK: Cauchy formula implies that **holomorphic functions defined in a polydisk have Taylor expansion in this polydisk**. Indeed,

$$f(\alpha_1, \dots, \alpha_n) = \frac{1}{(2\pi\sqrt{-1})^n} \int_S \frac{fdz_1 \wedge \dots \wedge dz_n}{(z_1 - \alpha_1)(z_2 - \alpha_2) \times \dots \times (z_n - \alpha_n)}$$

Take the Taylor expansion of $(z_i - \alpha_i)^{-1}$ using

$$\frac{1}{(z_i - \alpha_i)} = \frac{z_i^{-1}}{(1 - \alpha_i z_i^{-1})} = \sum_{l=0}^{\infty} \alpha_i^l z_i^{-l-1}.$$

Then

$$f(\alpha_1, \dots, \alpha_n) = \sum_{i_1=0}^{\infty} \dots \sum_{i_n=0}^{\infty} \alpha_1^{i_1} \dots \alpha_{i_n}^{i_n} \int_S f(z_1, \dots, z_n) z_1^{-i_1-1} \dots z_n^{-i_n-1} dz_1 \wedge \dots \wedge dz_n.$$

Complex manifolds (reminder)

DEFINITION: A holomorphic function on \mathbb{C}^n is a function $f : \mathbb{C}^n \longrightarrow \mathbb{C}$ such that df is complex linear, that is $df \in \Lambda^{1,0}(M)$.

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally isomorphic to an open ball in \mathbb{C}^n with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to \mathbb{C}^n and transition functions (being coordinate functions for one ball considered in other coordinate system) are holomorphic.

Complex manifolds (reminder)

DEFINITION: A holomorphic function on \mathbb{C}^n is a function $f : \mathbb{C}^n \longrightarrow \mathbb{C}$ such that df is complex linear, that is $df \in \Lambda^{1,0}(M)$.

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally isomorphic to an open ball in \mathbb{C}^n with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to \mathbb{C}^n and transition functions (being coordinate functions for one ball considered in other coordinate system) are holomorphic.

Integrability of almost complex structures

DEFINITION: An almost complex structure I on a manifold is called **integrable** if any point of M has a neighbourhood U diffeomorphic to an open subset of \mathbb{C}^n , in such a way that the almost complex structure I is induced by the standard one on $U \subset \mathbb{C}^n$.

CLAIM: Complex structure on a manifold *M* uniquely determines an integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of holomorphic functions \mathcal{O}_M , and \mathcal{O}_M is determined by I as explained above. Therefore, an integrable almost complex structure defines a complex structure. Conversely, every complex structure gives a sub-bundle in $\Lambda^{1,0}(M) = d\mathcal{O}_M \subset \Lambda^1(M,\mathbb{C})$, and such a sub-bundle defines an almost complex structure ture by Remark 1.

Frobenius form

CLAIM: Let $B \subset TM$ be a sub-bundle of a tangent bundle of a smooth manifold. Given vector fiels $X, Y \in B$, consider their commutator [X, Y], and lets $\Psi(X, Y) \in TM/B$ be the projection of [X, Y] to TM/B. Then $\Psi(X, Y)$ is $C^{\infty}(M)$ -linear in X, Y:

$$\Psi(fX,Y) = \Psi(X,fY) = f\Psi(X,Y).$$

Proof: Leibnitz identity gives [X, fY] = f[X, Y] + X(f)Y, and the second term belongs to B, hence does not influence the projection to TM/B.

DEFINITION: This form is called **the Frobenius form** of the sub-bundle $B \subset TM$. This bundle is called **involutive**, or **integrable**, or **holonomic** if $\Psi = 0$.

EXERCISE: Give an example of a non-integrable sub-bundle.

M. Verbitsky

Formal integrability

DEFINITION: An almost complex structure I on (M, I) is called **formally integrable** if $[T^{1,0}M, T^{1,0}] \subset T^{1,0}$, that is, if $T^{1,0}M$ is involutive.

DEFINITION: The Frobenius form $\Psi \in \Lambda^2(\Lambda^{1,0}M) \otimes T^{0,1}M$ is called **the** Nijenhuis tensor.

CLAIM: If a complex structure I on M is integrable, it is formally integrable.

Proof: Locally, the bundle $T^{1,0}(M)$ is generated by d/dz_i , where z_i are complex coordinates. These vector fields commute, hence satisfy $[d/dz_i, d/dz_j] \in T^{1,0}(M)$. This means that the Frobenius form vanishes.

THEOREM: (Newlander-Nirenberg) A complex structure I on M is integrable if and only if it is formally integrable.

Proof: (real analytic case) next lecture, probably.

REMARK: In dimension 1, formal integrability is automatic. Indeed, $T^{1,0}M$ is 1-dimensional, hence all skew-symmetric 2-forms on $T^{1,0}M$ vanish.

Possible topics for the next lectures

- 1. Proof of Frobenius theorem.
- 2. Newlander-Nirenberg theorem for real analytic almost complex manifolds.