Complex geometry

lecture 3: Frobenius theorem

Misha Verbitsky

HSE, room 306, 16:20,

September 30, 2020

Distributions (reminder)

DEFINITION: Distribution on a manifold is a sub-bundle $B \subset TM$

REMARK: Let Π : $TM \longrightarrow TM/B$ be the projection, and $x, y \in B$ some vector fields. Then $[fx, y] = f[x, y] - D_y(f)x$. This implies that $\Pi([x, y])$ is $C^{\infty}(M)$ -linear as a function of x and y.

DEFINITION: The map $[B, B] \rightarrow TM/B$ we have constructed is called **Frobenius bracket** (or **Frobenius form**); it is a skew-symmetric $C^{\infty}(M)$ linear form on B with values in TM/B.

DEFINITION: A distribution is called **integrable**, or **holonomic**, or **involutive**, if its Frobenius form vanishes.

M. Verbitsky

Smooth submersions

DEFINITION: Let $\pi : M \longrightarrow M'$ be a smooth map of manifolds. This map is called **submersion** if at each point of M the differential $D\pi$ is surjective, and **immersion** if it is injective.

CLAIM: Let $\pi : M \longrightarrow M'$ be a submersion. Then each $m \in M$ has a neighbourhood $U \cong V \times W$, where V, W are smooth and $\pi|_U$ is a projection of $V \times W = U \subset M$ to $W \subset M'$ along V.

EXERCISE: Deduce this result from the inverse function theorem.

EXERCISE: ("Ehresmann's fibration theorem")

Let $\pi: M \longrightarrow M'$ be a smooth submersion of compact manifolds. Prove that π is a locally trivial fibration.

DEFINITION: Vertical tangent space $T_{\pi}M \subset TM$ of a submersion π : $M \longrightarrow M'$ is the kernel of $D\pi$.

CLAIM: Let $\pi : M \longrightarrow M'$ be a submersion and $T_{\pi}M \subset TM$ the vertical tangent space. Then $T_{\pi}M$ is an involutive subbundle.

Proof:
$$D_{\pi}([X,Y]) = [D_{\pi}(X), D_{\pi}(Y)] = 0$$
 for any $X, Y \in \ker D_{\pi}$.

Frobenius theorem (statement)

Frobenius Theorem: Let $B \subset TM$ be a sub-bundle. Then B is involutive if and only if each point $x \in M$ has a neighbourhood $U \ni x$ and a smooth submersion $U \xrightarrow{\pi} V$ such that B is its vertical tangent space: $B = T_{\pi}M$.

REMARK: The implication " $B = T_{\pi}M$ " \Rightarrow "Frobenius form vanishes" was proven above.

DEFINITION: The fibers of π are called **leaves**, or **integral submanifolds** of the distribution *B*. Globally on *M*, **a leaf of** *B* is a maximal connected manifold $Z \hookrightarrow M$ which is immersed to *M* and tangent to *B* at each point. A distribution for which Frobenius theorem holds is called **integrable**. If *B* is integrable, the set of its leaves is called **a foliation**. The leaves are manifolds which are immersed to *M*, but not necessarily closed.

Frobenius theorem: existence of integral submanifolds

REMARK: To prove the Frobenius theorem for $B \subset TM$, it suffices to show that each point is contained in an interal submanifold. In this case, the smooth submersion $U \xrightarrow{\pi} V$ is a projection to the leaf space of the distribution.

REMARK: When *B* is 1-dimensional (in this case one says that *B* has rank 1, denoted $\operatorname{rk} B = 1$), Frobenius theorem follows from existence of the diffeomorphism flow associated with a vector field. Indeed, locally we may assume that *B* admits a non-degenerate section *v*. Let $V_t : M \times \mathbb{R} \longrightarrow M$ be the corresponding flow of diffeomorphisms. Then $Z_m := V_t(\{m\} \times \mathbb{R} \text{ is}$ tangent to *v* everywhere, hence it is a 1-dimensional manifold immersed in *M*. Clearly, Z_m is a leaf this distribution. Since *B* is a tangent to a foliation, it is integrable.

Further on we shall need the following exercise.

EXERCISE: Let $V_t = e^{tv}$ be a diffeomorphism flow on M, and $F \subset TM$ a vector bundle. Assume that $[v, F] \subset F$. **Prove that** V_t **preserves** $F \subset TM$.

Flow of diffeomorphisms

DEFINITION: Let $f : M \times [a, b] \longrightarrow M$ be a smooth map such that for all $t \in [a, b]$ the restriction $f_t := f|_{M \times \{t\}} : M \longrightarrow M$ is a diffeomorphism. Then f is called a flow of diffeomorphisms.

CLAIM: Let V_t be a flow of diffeomorphisms, $f \in C^{\infty}M$, and $V_t^*(f)(x) := f(V_t(x))$. Consider the map $\frac{d}{dt}V_t|_{t=c}$: $C^{\infty}M \longrightarrow C^{\infty}M$, with $\frac{d}{dt}V_t|_{t=c}(f) = (V_c^{-1})^*\frac{dV_t}{dt}|_{t=c}f$. Then $f \longrightarrow (V_t^{-1})^*\frac{d}{dt}V_t^*f$ is a derivation (that is, a vector field).

Proof:
$$\frac{d}{dt}V_t^*(fg) = V_t^*(f)\frac{d}{dt}V_t^*g + \frac{d}{dt}V_t^*fV_t^*(g)$$
 by the Leignitz rule, giving $(V_t^{-1})^*\frac{d}{dt}V_t^*(fg) = f(V_t^{-1})^*\frac{d}{dt}V_t^*g + g(V_t^{-1})^*\frac{d}{dt}V_t^*f.$

DEFINITION: The vector field $\frac{d}{dt}V_t|_{t=c}$ is called **the vector field tangent** to a flow of diffeomorphisms V_t at t = c.

CLAIM: Let V_t be a flow of diffeomorphisms and X_t the corresponding vector field. Then for any $\eta \in \Lambda^* M$, one has $\frac{d}{dt}V_t^*(\eta) = \text{Lie}_{X_t}(\eta)$.

Proof: The operators $\frac{d}{dt}V_t^*$ and Lie_{X_t} are equal on functions, satisfy the Leibitz identity and commute with d.

Flow of diffeomorphisms obtained from vector fields

EXERCISE: Let M be a compact manifold, and $\Psi : C^{\infty}M \longrightarrow C^{\infty}M$ is a ring automorphism. Prove that Ψ is induced by an action of a diffeomorphism of M.

THEOREM: Let M be a compact manifold, and $X_t \in TM$ a family of vector fields smoothly depending on $t \in [0, a]$. Then there exists a unique diffeomorphism flow V_t , $t \in [0, a]$, such that $V_0 = \text{Id}$ and $\frac{d}{dt}V_t^* = X_t$.

Proof. Step 1: Given $f \in C^{\infty}M$, we can solve an equation $\frac{d}{dt}W_t(f) = \text{Lie}_{X_t}(f)$ (here $\text{Lie}_{X_t}(f)$ denotes the derivative along the vector field). The solution $W_t(f)$ exists for all $t \in [0, x]$ and is unique by Peano theorem on existence and uniqueness of solutions of ODE.

Step 2: Since

$$\frac{d}{dt}W_t(fg) = \operatorname{Lie}_{X_t}(f)g + \operatorname{Lie}_{X_t}(g)f = \frac{d}{dt}(W_t(f)W_t(g)),$$

 W_t is multiplicative. Also, it is invertible. Applying the previous exercise, we obtain that W_t is a diffeomorphism.

REMARK: If the vector field $X_t = X$ is independent from t, the corresponding diffeomorphism flow is often denoted as e^{tX} .

Distributions preserved by a vector field

EXERCISE: Let v, v' be commuting vector fields. Then the corresponding diffeomorphism flows e^{tv} and $e^{tv'}$ commute.

CLAIM: Let $V_t = e^{tv}$ be a diffeomorphism flow on M, and $F \subset TM$ a vector bundle. Assume that $[v_t, F] \subset F$. Then V_t preserves $F \subset TM$.

Proof. Step 1: Since a non-degenerate vector fields can be linearized, we can always assume that the vector field v_t is a coordinate vector field, $v_t = x_1$. Since the statement is local, we can always assume that M is an open subset in \mathbb{R}^n with coordinates $x_1, ..., x_n$.

Step 2: Let $R_1, ..., R_r$ be a basis in F. We write $R_i = \sum f_{ij} \frac{d}{dx_j}$; then $[v_t, R_i] = \sum \frac{df_{ij}}{dx_i} \frac{d}{dx_j}$. In these terms $[v_t, F] \subset F$ is written as $\frac{dR_i}{dx_1} = \sum a_{ij}R_j$, where a_{ij} are appropriate functions on M.

M. Verbitsky

Distributions preserved by a vector field (2)

CLAIM: Let $V_t = e^{tv}$ be a diffeomorphism flow on M, and $F \subset TM$ a vector bundle. Assume that $[v_t, F] \subset F$. Then V_t preserves $F \subset TM$. **Step 2:** Let $R_1, ..., R_r$ be a basis in F. We write $R_i = \sum f_{ij} \frac{d}{dx_j}$; then $[v_t, R_i] = \sum \frac{df_{ij}}{dx_1} \frac{d}{dx_j}$. In these terms $[v_t, F] \subset F$ is written as $\frac{dR_i}{dx_1} = \sum a_{ij}R_j$, where a_{ij} are appropriate functions on M. **Step 3:** Let $F_i(t) := V_t(R_i) \in TM$. By definition, $V_t = e^{td/dx_1}$, hence $\frac{d}{dt}V_t(R_i) = [d/dx_1, V_t(R_i)]$. Then, $F_i(t)$ is a solution of a vector-valued differential equation

$$\frac{d}{dt}F_i(t) = [d/dx_1, F_i(t)], \quad (*)$$

with initial values $F_i(t) = R_i$. The solution can be found as $F_i(t) = \sum_{j=1}^r b_{ij}(t)R_j$ because

$$\left[\frac{d}{dx_1}, \sum_{j=1}^r b_{ij}(t)R_j \right] = \sum_{j=1}^r b_{ij}(t) \sum_{k=1}^r a_{jk}R_k + \frac{b_{ij}}{dx_1}R_j.$$

Then $F_i(t) = \sum_{j=1}^r b_{ij}(t)R_j$ is a solution of (*) if for all i, j = 1, ..., r, we have

$$\frac{db_{ij}(t)}{dt} = \frac{db_{ij}}{dx_1} + \sum_{i=1}^r \sum_{k=1}^r b_{ik} a_{kj}.$$

This differential equation has a unique solution with a given initial value.

```
Basic sub-bundles (1)
```

DEFINITION: Let $B \subset TM$ be an involutive sub-bundle. A sub-bundle $F \subset TM$ is called **basic** for B if $F \supset B$ and for all $b \in B, b' \in F$, one has $[b, b'] \in F$.

LEMMA: Let $B \subset TM$ be an integrable distribution, $\pi : M \longrightarrow M_1$ projection to the leaf space of B, and $F \supset B$ a sub-bundle of TM containing B. Then the following conditions are equivalent: (a) F is basic for B. (b) There exists a sub-bundle $F_1 \subset TM_1$ such that $\pi^{-1}(F_1) = F$.

Proof: Next slide.

Basic sub-bundles (2)

LEMMA: Let $B \subset TM$ be an integrable distribution, $\pi : M \longrightarrow M_1$ projection to the leaf space of B, and $F \supset B$ a sub-bundle of TM containing B. Then the following conditions are equivalent: (a) F is basic for B. (b) There exists a sub-bundle $F_1 \subset TM_1$ such that $\pi^{-1}F_1 = F$.

Proof. Step 1: Consider coordinates $x_1, ..., x_n$ on M such that $x_{k+1} = \pi^*(x'_{k+1}, ..., x_n = \pi^*(x_n))$, where $x'_i, i = k+1, k+2, ..., n$ are coordinates on M_1 , and $\frac{d}{dx_1}, ..., \frac{d}{dx_k}$ generate B. Locally such coordinates always exist, because B is integrable. Denote by G a subgroup of Diff(M) obtained by exponents of $\frac{d}{dx_1}, ..., \frac{d}{dx_k}$. Since $[B, F] \subset F$, the corresponding diffeomorphisms preserve F. Therefore, F is a G-invariant sub-bundle of TM.

Step 2: Any *G*-invariant sub-bundle $F \supset B$ is obtained as $\pi^{-1}(F_1)$ for some sub-bundle $F_1 \subset TM_1 = M/G$. Indeed, since the action of G_1 is free, the bundle *F* is generated over $C^{\infty}M$ by *G*-invariant sections. However, any *G*-invariant bundle *F* containing *B* is generated by *G*-invariant sections, which can be lifted from M/G (check this).

Step 3: Conversely, if *F* is lifted from $M_1 = M/G$, it is *G*-invariant, hence $e^{tb}(b') \subset F$, and this gives $[b, b'] \subset F$ (check this).

Frobenius theorem (proof)

Frobenius Theorem: Let $B \subset TM$ be a sub-bundle. Then B is involutive if and only if each point $x \in M$ has a neighbourhood $U \ni x$ and a smooth submersion $U \xrightarrow{\pi} V$ such that B is its vertical tangent space: $B = T_{\pi}M$.

Proof. Step 1: Consider a rank 1 sub-bundle $B_1 \subset B$. Using the diffeomorphism flow as above, we prove that B_1 is integrable. Since $[B_1, B] \subset B$, the bundle B is basic with respect to B_1 . Therefore, $B = \pi^{-1}(B')$ for some $B' \subset TM_1$, where M_1 is the leaf space of B_1 .

Step 2: Let $\pi : M \longrightarrow M_1$ be the projection to the leaf space. Then $B = \pi^{-1}(B')$, where $\operatorname{rk} B' = \operatorname{rk} B - 1$. Using induction in $\operatorname{rk} B$, we can assume that B' is integrable. Let $\pi_0 : M_1 \longrightarrow M_0$ be the projection to the leaf space of B', defined locally in M. Then $\pi \circ \pi_0 : M \longrightarrow M_0$ is the projection to the leaf space of B.

Complex manifolds (reminder)

DEFINITION: A holomorphic function on \mathbb{C}^n is a function $f : \mathbb{C}^n \longrightarrow \mathbb{C}$ such that df is complex linear, that is $df \in \Lambda^{1,0}(M)$.

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally isomorphic to an open ball in \mathbb{C}^n with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to \mathbb{C}^n and transition functions (being coordinate functions for one ball considered in other coordinate system) are holomorphic.

Integrability of almost complex structures (reminder)

DEFINITION: An almost complex structure I on a manifold is called **integrable** if any point of M has a neighbourhood U diffeomorphic to an open subset of \mathbb{C}^n , in such a way that the almost complex structure I is induced by the standard one on $U \subset \mathbb{C}^n$.

CLAIM: Complex structure on a manifold *M* uniquely determines an integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of holomorphic functions \mathcal{O}_M , and \mathcal{O}_M is determined by I as explained above. Therefore, an integrable almost complex structure defines a complex structure. Conversely, every complex structure gives a sub-bundle in $\Lambda^{1,0}(M) = d\mathcal{O}_M \subset \Lambda^1(M,\mathbb{C})$, and such a sub-bundle defines an almost complex structure ture by Remark 1.

Frobenius form (reminder)

CLAIM: Let $B \subset TM$ be a sub-bundle of a tangent bundle of a smooth manifold. Given vector fiels $X, Y \in B$, consider their commutator [X, Y], and lets $\Psi(X, Y) \in TM/B$ be the projection of [X, Y] to TM/B. Then $\Psi(X, Y)$ is $C^{\infty}(M)$ -linear in X, Y:

$$\Psi(fX,Y) = \Psi(X,fY) = f\Psi(X,Y).$$

Proof: Leibnitz identity gives [X, fY] = f[X, Y] + X(f)Y, and the second term belongs to B, hence does not influence the projection to TM/B.

DEFINITION: This form is called **the Frobenius form** of the sub-bundle $B \subset TM$. This bundle is called **involutive**, or **integrable**, or **holonomic** if $\Psi = 0$.

EXERCISE: Give an example of a non-integrable sub-bundle.

M. Verbitsky

Formal integrability (reminder)

DEFINITION: An almost complex structure I on (M, I) is called **formally integrable** if $[T^{1,0}M, T^{1,0}] \subset T^{1,0}$, that is, if $T^{1,0}M$ is involutive.

DEFINITION: The Frobenius form $\Psi \in \Lambda^2(\Lambda^{1,0}M) \otimes T^{0,1}M$ is called **the** Nijenhuis tensor.

CLAIM: If a complex structure I on M is integrable, it is formally integrable.

Proof: Locally, the bundle $T^{1,0}(M)$ is generated by d/dz_i , where z_i are complex coordinates. These vector fields commute, hence satisfy $[d/dz_i, d/dz_j] \in T^{1,0}(M)$. This means that the Frobenius form vanishes.

THEOREM: (Newlander-Nirenberg) A complex structure I on M is integrable if and only if it is formally integrable.

Proof: (real analytic case) next lecture, probably.

REMARK: In dimension 1, formal integrability is automatic. Indeed, $T^{1,0}M$ is 1-dimensional, hence all skew-symmetric 2-forms on $T^{1,0}M$ vanish.

Real analytic manifolds

DEFINITION: A real analytic function on an open set $U \subset \mathbb{R}^n$ is a function which admits a Taylor expansion near each point $x \in U$:

$$f(z_1 + t_1, z_2 + t_2, ..., z_n + t_n) = \sum_{i_1, ..., i_n} a_{i_1, ..., i_n} t_1^{i_1} t_2^{i_2} ... t_n^{i_n}.$$

(here we assume that the real numbers t_i satisfy $|t_i| < \varepsilon$, where ε depends on f and M).

REMARK: Clearly, real analytic functions constitute a sheaf.

DEFINITION: A real analytic manifold is a ringed space which is locally isomorphic to an open ball $B \subset \mathbb{R}^n$ with the sheaf of of real analytic functions.

M. Verbitsky

Involutions

DEFINITION: An involution is a map $\iota : M \longrightarrow M$ such that $\iota^2 = \mathrm{Id}_M$.

EXERCISE: Prove that any linear involution on a real vector space V is diagonalizable, with eigenvalues ± 1 .

Theorem 1: Let M be a smooth manifold, and $\iota : M \longrightarrow M$ an involutiin. **Then the fixed point set** N of ι is a smooth submanifold.

Proof. Step 1: Inverse function theorem. Let $m \in M$ be a point on a smooth k-dimensional manifold and $f_1, ..., f_k$ functions on M such that their differentials $df_1, ..., df_k$ are linearly independent in m. Then $f_1, ..., f_k$ define a coordinate system in a neighbourhood of a, giving a diffeomorphism of this neighbourhood to an open ball.

Step 2: Assume that $d\iota$ has k eigenvalues 1 on T_mM , and n - k eigenvalues -1. Choose a coordinate system $x_1, ..., x_n$ on M around a point $m \in N$ such that $dx_1|_m, ..., dx_k|_m$ are ι -invariant and $dx_{k+1}|_m, ..., dx_n|_m$ are ι -anti-invariant. Let $y_1 = x_1 + \iota^* x_1$, $y_2 = x_2 + \iota^* x_2$, ... $y_k = x_k + \iota^* x_k$, and $y_{k+1} = x_{k+1} - \iota^* x_{k+1}$, $y_{k+2} = x_{k+2} - \iota^* x_{k+2}$, ... $y_n = x_n - \iota^* x_n$. Since $dx_i|_m = xy_i|_m$, these differentials are linearly independent in m. By Step 1, functions y_i define an ι -invariant coordinate system on an open neighbourhood of m, with N given by equations $y_{k+1} = y_{k+2} = ... = y_n = 0$.

Real structures

DEFINITION: An involution is a map $\iota : M \longrightarrow M$ such that $\iota^2 = \mathrm{Id}_M$. A real structure on a complex vector space $V = \mathbb{C}^n$ is an \mathbb{R} -linear involution $\iota : V \longrightarrow V$ such that $\iota(\lambda x) = \overline{\lambda}\iota(x)$ for any $\lambda \in \mathbb{C}$.

DEFINITION: A map Ψ : $M \rightarrow M$ on an almost complex manifold (M, I) is called **antiholomorphic** if $d\Psi(I) = -I$. A function f is called **antiholo-morphic** if \overline{f} is holomorphic.

EXERCISE: Prove that antiholomorphic function on M defines an antiholomorphic map from M to \mathbb{C} .

EXERCISE: Let ι be a smooth map from a complex manifold M to itself. Prove that ι is antiholomorphic if and only if $\iota^*(f)$ is antiholomorphic for any holomorphic function f on $U \subset M$.

DEFINITION: A real structure on a complex manifold M is an antiholomorphic involution $\tau: M \longrightarrow M$.

EXAMPLE: Complex conjugation defines a real structure on \mathbb{C}^n .

Real analytic manifolds and real structures

PROPOSITION: Let $M_{\mathbb{R}} \subset M_{\mathbb{C}}$ be a fixed point set of an antiholomorphic involution ι , U_i a complex analytic atlas, and Ψ_{ij} : $U_{ij} \longrightarrow U_{ij}$ the gluing functions. Then, for appropriate choice of coordinate systems all Ψ_{ij} are real analytic on $M_{\mathbb{R}}$, and define a real analytic atlas on the manifold $M_{\mathbb{R}}$.

Proof. Step 1: Let $z_1, ..., z_n$ be a holomorphic coordinate system on $M_{\mathbb{C}}$ in a neighbourhood of $m \in M_{\mathbb{R}}$ such that $\iota(dz_i) = d\overline{z}_i$ in T_m^*M . Such a coordinate system can be chosen by taking linear functions with prescribed differentials in m. Replacing z_i by $x_i := z_i + \iota^*(\overline{z}_i)$, we obtain another coordinate system x_i on M (compare with Theorem 1).

Step 2: This new coordinate system satisfies $\iota^* x_i = \overline{x}_i$, hence $M_{\mathbb{R}}$ in these coordinates is giving by equation $\operatorname{im} x_1 = \operatorname{im} x_2 = \ldots = \operatorname{im} x_n = 0$. All gluing functions from such coordinate system to another one of this type satisfy $\Psi_{ij}(\overline{z}_i) = \overline{\Psi_{ij}(\overline{z}_i)}$, hence they are real on $M_{\mathbb{R}}$.

Real analytic manifolds and real structures (2)

PROPOSITION: Any real analytic manifold can be obtained from this construction.

Proof. Step 1: Let $\{U_i\}$ be a locally finite atlas of a real analytic manifold M, and $\Psi_{ij} : U_{ij} \longrightarrow U_{ij}$ the gluing map. We realize U_i as an open ball with compact closure in $\text{Re}(\mathbb{C}^n) = \mathbb{R}^n$. By local finiteness, there are only finitely many such Ψ_{ij} for any given U_i . Denote by B_{ε} an open ball of radius ε in the *n*-dimensional real space im (\mathbb{C}^n) .

Step 2: Let $\varepsilon > 0$ be a sufficiently small real number such that all Ψ_{ij} can be extended to gluing functions $\tilde{\Psi}_{ij}$ on the open sets $\tilde{U}_i := U_i \times B_{\varepsilon} \subset \mathbb{C}^n$. **Then** (\tilde{U}_i, Ψ_{ij}) **is an atlas for a complex manifold** $M_{\mathbb{C}}$. Since all Ψ_{ij} are real, they are preserved by natural involution acting on B_{ε} as -1 and on U_i as identity. This involution defines a real structure on $M_{\mathbb{C}}$. Clearly, M is the set of its fixed points.

Complexification

DEFINITION: Let $M_{\mathbb{R}}$ be a real analytic manifold, and $M_{\mathbb{C}}$ a complex analytic manifold equipped with an antiholomorphic involution, such that $M_{\mathbb{R}}$ is the set of its fixed points. Then $M_{\mathbb{C}}$ is called **complexification** of $M_{\mathbb{R}}$.

DEFINITION: A tensor on a real analytic manifold is called **real analytic** if it is expressed locally by a sum of coordinate monomials with real analytic coefficients.

CLAIM: Let $M_{\mathbb{R}}$ be a real analytic manifold, $M_{\mathbb{C}}$ its complexification, and Φ a tensor on $M_{\mathbb{R}}$. Then Φ is real analytic if and only if Φ can be extended to a holomorpic tensor $\Phi_{\mathbb{C}}$ in some neighbourhood of $M_{\mathbb{R}}$ inside $M_{\mathbb{C}}$.

Proof: The "if" part is clear, because every complex analytic tensor on $M_{\mathbb{C}}$ is by definition real analytic on $M_{\mathbb{R}}$.

Conversely, suppose that Φ is expressed by a sum of coordinate monomials with real analytic coefficients f_i . Let $\{U_i\}$ be a cover of M, and $\tilde{U}_i := U_i \times B_{\varepsilon}$ the corresponding cover of a neighbourhood of $M_{\mathbb{R}}$ in $M_{\mathbb{C}}$ constructed above. Chosing ε sufficiently small, we can assume that the Taylor series giving coefficients of Φ converges on each \tilde{U}_i . We define $\Phi_{\mathbb{C}}$ as the sum of these series.

Extension of tensors to a complexification

Lemma 1: Let X be an open ball in \mathbb{C}^n equipped with the standard anticomplex involution, $X_{\mathbb{R}} = X \cap \mathbb{R}^n$ its fixed point set, and α a holomorphic tensor on X vanishing in $X_{\mathbb{R}}$. Then $\alpha = 0$.

Proof: Any holomorphic function which vanishes on \mathbb{R}^n has all its derivatives is equal zero. Therefore its Taylor series vanish. Such a function vanishes on \mathbb{C}^n by analytic continuation principle. This argument can be applied to all coefficients of α .

DEFINITION: An almost complex structure *I* on a real analytic manifold is **real analytic** if *I* is a real analytic tensor.

COROLLARY: Let (M, I) be a real analytic almost complex manifold, $M_{\mathbb{C}}$ its complexification, and $I_{\mathbb{C}}$: $TM_{\mathbb{C}} \longrightarrow TM_{\mathbb{C}}$ the holomorphic extension of I to $M_{\mathbb{C}}$. Then $I_{\mathbb{C}}^2 = -\operatorname{Id}$.

Proof: The tensor $I_{\mathbb{C}}^2$ + Id is holomorphic and vanishes on $M_{\mathbb{R}}$, hence the previous lemma can be applied.

Underlying real analytic manifold

REMARK: A complex analytic map $\Phi : \mathbb{C}^n \longrightarrow \mathbb{C}^n$ is real analytic as a map $\mathbb{R}^{2n} \longrightarrow \mathbb{R}^{2n}$. Indeed, the coefficients of Φ are real and imaginary parts of holomorphic functions, and real and imaginary parts of holomorphic functions can be expressed as Taylor series of the real variables.

DEFINITION: Let *M* be a complex manifold. The **underlying real analytic manifold** is the same manifold, with the same gluing functions, considered as real analytic maps.

DEFINITION: Let M be a complex manifold. The complex conjugate manifold is the same manifold with almost complex structure -I and anti-holomorphic functions on M holomorphic on \overline{M} .

CLAIM: Let M be an integrable almost complex manifold. Denote by $M_{\mathbb{R}}$ its underlying real analytic manifold. Then a complexification of $M_{\mathbb{R}}$ can be given as $M_{\mathbb{C}} := M \times \overline{M}$, with the anticomplex involution $\tau(x, y) = (y, x)$.

Proof: Clearly, the fixed point set of τ is the diagonal, identified with $M_{\mathbb{R}} = M$ as usual. Both holomorphic and antiholomorphic functions on $M_{\mathbb{R}}$ are obtained as restrictions of holomorphic functions from $M_{\mathbb{C}}$, hence the sheaf of real analytic functions on $M_{\mathbb{R}}$ is a real part of the sheaf $\mathcal{O}_{M_{\mathbb{C}}}$ of holomorphic functions on $M_{\mathbb{C}}$.

Holomorphic and antiholomorphic foliations

DEFINITION: Let $B \subset TM$ be a sub-bundle. The foliation associated with B is a family of submanifolds $X_t \subset U$, defined for each sufficiently small subset of M, called the leaves of the foliation, such that B is the bundle of vectors tangent to X_t . In this case, X_t are called the leaves of the foliation.

REMARK: The famous "Frobenius theorem" says that *B* is involutive if and only if it is tangent to a foliation.

REMARK: Let (M, I) be a real analytic almost complex manifold, and $M_{\mathbb{C}}$ its complexification. Replacing $M_{\mathbb{C}}$ by a smaller neighbourhood of M, we may assume that the tensor I is extended to an endomorphism $I: TM_{\mathbb{C}} \longrightarrow TM_{\mathbb{C}}$, $I^2 = -\text{Id}$. Since $TM_{\mathbb{C}}$ is a complex vector bundle, I acts there with the eigenvalues $\sqrt{-1}$ and $-\sqrt{-1}$, giving a decomposition $TM_{\mathbb{C}} = T^{1,0}M_{\mathbb{C}} \oplus T^{0,1}M_{\mathbb{C}}$

DEFINITION: Holomorphic foliation is a foliation tangent to $T^{1,0}M_{\mathbb{C}}$, antiholomorphic foliation is a foliation tangent to $T^{0,1}M_{\mathbb{C}}$.

Antiholomorphic foliation on $M_{\mathbb{C}} = M \times \overline{M}$.

CLAIM: Let (M, I) be a integrable almost complex manifold, $M_{\mathbb{C}} = M \times \overline{M}$ its complexification, and $\pi, \overline{\pi}$ projections of $M_{\mathbb{C}}$ to M and \overline{M} . Then the fibers of π is a holomorphic foliation, and the fibers of π is a holomorphic foliation.

Proof: Let $TM_{\mathbb{C}} = T' \oplus T''$ be a decomposition of $TM_{\mathbb{C}}$ onto part tangent to fibers of $\overline{\pi}$ and tangent to fibers of π . On $M_{\mathbb{R}}$ the decomposition $TM_{\mathbb{C}} = T' \oplus T''$ coincides with the decomposition $TM \otimes \mathbb{C} = T^{1,0}M \oplus T^{0,1}M$. By Lemma 1 the same is true everywhere on $M_{\mathbb{C}}$.

COROLLARY: Let (M, I) be a integrable almost complex manifold. Then *I* is a real analytic almost complex structure.

Proof: It was extended to $M_{\mathbb{C}}$ in the previous claim.

Corollary 1: Let (M, I) be a real analytic almost complex manifold. Then holomorphic functions on $M_{\mathbb{C}}$ which are constant on the leaves of antiholomoirphic foliation **restrict to holomorphic functions on** $(M, I) \subset M_{\mathbb{C}}$.

Proof: Such functions are constant in the (0, 1)-direction on $TM \otimes \mathbb{C}$.

Integrability of real analytic almost complex structure

THEOREM: ("linearization of a vector field") Let $v \in TM$ be a nowhere vanishing vector field on M. Then there exists a family of 1-dimensional submanifolds passing through each point of M such that v is tangent to these submanifolds at each point of M.

THEOREM: Let (M, I) be a real analytic almost complex manifold, dim_{\mathbb{R}} M = 2. Then M is integrable.

Proof. Step 1: Consider the complexification $M_{\mathbb{C}}$ of M, and let $TM_{\mathbb{C}} = T^{1,0}M_{\mathbb{C}} \oplus T^{0,1}M_{\mathbb{C}}$ be the decomposition defined above. By "linearization of a vector field" theorem, there exists a foliation tangent to $T^{0,1}M_{\mathbb{C}}$ and one tangent to $T^{1,0}M_{\mathbb{C}}$. Since the leaves of these foliations are transversal, locally $M_{\mathbb{C}}$ is a product of M' and M'' which are identified with the space of leaves of $T^{0,1}M_{\mathbb{C}}$ and $T^{1,0}M_{\mathbb{C}}$.

Step 2: Locally, functions on M' can be lifted to $M' \times M'' = M_{\mathbb{C}}$, giving functions which are constant on the leaves of the foliation tangent to $T^{0,1}M_{\mathbb{C}}$. By Corollary 1, such functions are holomorphic on (M, I). Choose a collection of $n = \frac{1}{2} \dim_{\mathbb{R}} M$ holomorphic functions $f_1, ..., f_n$ on $M_{\mathbb{C}}$ which are constant on the leaves of $T^{0,1}M_{\mathbb{C}}$ and have linearly independent differentials in $x \in M \subset M_{\mathbb{C}}$. By inverse function theorem, $f_1, ..., f_n$ holomorphic coordinate system in a neigbourhood of $x \in (M, I)$, and the transition functions between such coordinate systems are by construction holomorphic.