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Distributions (reminder)
DEFINITION: Distribution on a manifold is a sub-bundle BC TM

REMARK: Let I : TM — TM/B be the projection, and z,y € B some
vector fields. Then [fz,y] = flz,y] — Dy(f)x. This implies that M([z,y]) is
C*°(M)-linear as a function of z and y.

DEFINITION: The map [B,B]— TM/B we have constructed is called
Frobenius bracket (or Frobenius form); it is a skew-symmetric C°°(M )-
linear form on B with values in TM/B.

DEFINITION: A distribution is called integrable, or holonomic, or involu-
tive, if its Frobenius form vanishes.
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Smooth submersions

DEFINITION: Let 7 : M — M’ be a smooth map of manifolds. This map
is called submersion if at each point of M the differential Dm is surjective,
and immersion if it is injective.

CLAIM: Let # : M — M’ be a submersion. Then each m € M has a
neighbourhood U =V x W, where V,W are smooth and x|y is a projection
of VxW=UcCM to W c M along V.

EXERCISE: Deduce this result from the inverse function theorem.

EXERCISE: (“Ehresmann’s fibration theorem”)
Let 7: M — M’ be a smooth submersion of compact manifolds. Prove that
7 is a locally trivial fibration.

DEFINITION: Vertical tangent space 1M C TM of a submersion = :
M — M’ is the kernel of Dr.

CLAIM: Let 71 : M — M’ be a submersion and T,M C TM the vertical
tangent space. Then T;M is an involutive subbundle.

Proof: D;([X,Y]) = [Dx(X),Dr(Y)] =0 for any X, Y € kerD,. =
3
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Frobenius theorem (statement)

Frobenius Theorem: Let B C T'M be a sub-bundle. Then B is involutive
if and only if each point x € M has a neighbourhood U > x and a smooth
submersion U -~ V such that B is its vertical tangent space: B = T, M.

REMARK: The implication “B = T:M" = “Frobenius form vanishes”
was proven above.

DEFINITION: The fibers of m are called leaves, or integral submanifolds
of the distribution B. Globally on M, a leaf of B is a maximal connected
manifold Z — M which is immersed to M and tangent to B at each point.
A distribution for which Frobenius theorem holds is called integrable. If B is
integrable, the set of its leaves is called a foliation. The leaves are manifolds
which are immersed to M, but not necessarily closed.
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Frobenius theorem: existence of integral submanifolds

REMARK: To prove the Frobenius theorem for B C TM, it suffices to
show that each point is contained in an interal submanifold. In this
case, the smooth submersion U —=s V is a projection to the leaf space of the
distribution.

REMARK: When B is 1-dimensional (in this case one says that B has rank
1, denoted rk B = 1), Frobenius theorem follows from existence of the
diffeomorphism flow associated with a vector field. Indeed, locally we
may assume that B admits a non-degenerate section v. Let V; : M XR— M
be the corresponding flow of diffeomorphisms. Then Z,, := Vi({m} x R is
tangent to v everywhere, hence it is a 1-dimensional manifold immersed in
M. Clearly, Z,, is a leaf this distribution. Since B is a tangent to a foliation,
it is integrable.

Further on we shall need the following exercise.

EXERCISE: Let V; = ¢t be a diffeomorphism flow on M, and F C TM a
vector bundle. Assume that [v, F] C F'. Prove that V; preserves F' C T'M.
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Flow of diffeomorphisms

DEFINITION: Let f: M X [a,b] — M be a smooth map such that for all
t € [a,b] the restriction f; ;.= f Mx{ty i M — M is a diffeomorphism. Then f
is called a flow of diffeomorphisms.

CLAIM: Let V; be a flow of dlffeomorphlsms f e C*®M, and Vt (f)(x) :
f(Vi(x)). Consider the map dt\/ﬂt c . C®°M — C°°M, with dtv;;\t <(f)

(Vc_l)*dvt| —.f. Then f— (V 1)* V7 f is a derivation (that is, a vector
field).

Proof: 4V *(fg) = Vi#(f)4Virg + LV fVi*(g) by the Leignitz rule, giving

— >|<d * — *d % — *d *
(v, b _Vi(fa) = f(V, 1 Vi +9(V; 1 Vi
[ |

DEFINITION: The vector field %V;;—. is called the vector field tangent
to a flow of diffeomorphisms V; at t = c.

CLAIM: Let V; be a flow of diffeomorphisms and X; the corresponding vector
field. Then for any n € A*M, one has 4V;*(n) = Liex,(n).

Proof: The operators %V;* and Liex, are equal on functions, satisfy the
Leibitz identity and commute with d. =
6
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Flow of diffeomorphisms obtained from vector fields

EXERCISE: Let M be a compact manifold, and W : C°°M — C°M is a ring
automorphism. Prove that W is induced by an action of a diffeomorphism
of M.

THEOREM: Let M be a compact manifold, and X; € TM a family of
vector fields smoothly depending on t € [0,a]. Then there exists a unique
diffeomorphism flow V;, t € [0,a], such that V5 =1d and 4V} = X;.

Proof. Step 1: Given f € C*°M, we can solve an equation %Wt(f) = Liex,(f)
(here Liex,(f) denotes the derivative along the vector field). The solution
Wi (f) exists for all ¢t € [0,z] and is unique by Peano theorem on existence and
uniqueness of solutions of ODE.

Step 2: Since

d

EWif9) = Liex,(f)g + Liex,(9)f = & (Wi Wil9)).

Wy is multiplicative. Also, it is invertible. Applying the previous exercise, we
obtain that W, is a diffeomorphism. m

REMARK: If the vector field Xy = X isindependent from t, the corresponding
diffeomorphism flow is often denoted as ¢tX.
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Distributions preserved by a vector field

EXERCISE: Let v,v' be commuting vector fields. Then the corresponding
diffeomorphism flows ¢!V and ¥ commute.

CLAIM: Let V} = etV be a diffeomorphism flow on M, and FF C TM a vector
bundle. Assume that [v, F] C F. Then V; preserves F C T M.

Proof. Step 1: Since a non-degenerate vector fields can be linearized, we
can always assume that the vector field v; is a coordinate vector field,
vy = x1. Since the statement is local, we can always assume that M is an
open subset in R™ with coordinates z, ..., zn.

Step 2: Let Rq,..., R, be a basis in F'. We write R; = Zfijdi' then [vs, R;] =
i‘%%. In these terms [v¢, F] C F is written as d diy = > a;;R;, where qa;; are
appropriate functions on M.
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Distributions preserved by a vector field (2)

CLAIM: Let V; = €' be a diffeomorphism flow on M, and F C TM a vector
bundle. Assume that [v, F] C F. Then V; preserves F C T M.
Step 2: Let Ri,...Ry be a basis in F. We write R; = ¥ fijz%; then

[ve, R;] = ZZQJ o—- In these terms [v;, FF] C F is written as gfl’& = Y a;; R,

where a;; are Appropriate functions on M.

Step 3: Let Fi(t) := Vi(R;,) € TM. By definition, V; = ¢e4/d%1  hence
%Vt(Ri) = [d/dx1,V:(R;)]. Then, F;(t) is a solution of a vector-valued dif-
ferential equation

d

—Fi(t) = ld/dwy, (1)), (%)
with initial values F;(t) = R;. The solution can be found as F;(t) = j 1 bi; () R;
because

.
{d/diﬁ, > bR, | = Z b;j (1) Z a;
=1 1=1 k=1

Then F;(t) = 3" _4 b;;(t)R; is a solution of (*) if for all 4,5 = 1,...,r, we have

db;;(t)  db;

Zt Z] + Z Z bikak;-

1=1k=1
This differential equation has a unique solution with a given initial value. m
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Basic sub-bundles (1)

DEFINITION: Let B C T'M be an involutive sub-bundle. A sub-bundle
F Cc TM is called basic for B if F D B and for all b € B, € F, one has
[b, V] € F.

LEMMA: Let B CTM be an integrable distribution, m : M — My projection
to the leaf space of B, and F D B a sub-bundle of T'M containing B. Then
the following conditions are equivalent: (a) F' is basic for B.

(b) There exists a sub-bundle F; ¢ TMy such that =~ 1(Fy) = F.

Proof: Next slide.
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Basic sub-bundles (2)

LEMMA: Let B CTM be an integrable distribution, = : M — My projection
to the leaf space of B, and F D B a sub-bundle of T'M containing B. Then
the following conditions are equivalent: (a) F' is basic for B.

(b) There exists a sub-bundle F; ¢ TM; such that =—1F; = F.

Proof. Step 1: Consider coordinates zq,...,zn Oon M such that zp4q1 =
w*(x;{;_l_l, ey Tn = 7" (xn), Where zl,i = k4 1,k+2,...,n are coordinates on M,

and %1, ...,%k generate B. Locally such coordinates always exist, because B
is integrable. Denote by G a subgroup of Diff(M) obtained by exponents of
%,...,%k. Since [B, F] C F, the corresponding diffeomorphisms preserve F.
Therefore, F'is a G-invariant sub-bundle of T'M.

Step 2: Any G-invariant sub-bundle F O B is obtained as =~ 1(Fy) for
some sub-bundle Fy C TTM1 = M/G. Indeed, since the action of G is free,
the bundle F' is generated over C°°M by G-invariant sections. However, any
G-invariant bundle F' containing B is generated by G-invariant sections, which
can be lifted from M/G (check this).

Step 3: Conversely, if F is lifted from M, = M/G, it is G-invariant, hence
et’(b') C F, and this gives [b,b] C F (check this). =
11
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Frobenius theorem (proof)

Frobenius Theorem: Let B C T'M be a sub-bundle. Then B is involutive
if and only if each point x € M has a neighbourhood U > x and a smooth
submersion U =+ V such that B is its vertical tangent space: B = T, M.

Proof. Step 1: Consider a rank 1 sub-bundle By C B. Using the diffeomor-
phism flow as above, we prove that B;j is integrable. Since [By, B] C B, the
bundle B is basic with respect to B;. Therefore, B = =~ 1(B’) for some
B’ ¢ TMy, where M; is the leaf space of Bj.

Step 2: Let 7 : M — My be the projection to the leaf space. Then B =
7~ 1(B"), where rk B'=rk B—1. Using induction in rk B, we can assume that
B’ is integrable. Let mg: M7 — Mgy be the projection to the leaf space of
B’, defined locally in M. Then womg: M — My is the projection to the
leaf space of B. m
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Complex manifolds (reminder)

DEFINITION: A holomorphic function on C" is a function f: C"—C
such that df is complex linear, that is df € ALO(M).

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally
isomorphic to an open ball in C" with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to C"

and transition functions (being coordinate functions for one ball considered
in other coordinate system) are holomorphic.

13
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Integrability of almost complex structures (reminder)

DEFINITION: An almost complex structure I on a manifold is called inte-
grable if any point of M has a neighbourhood U diffeomorphic to an open
subset of C", in such a way that the almost complex structure I is induced
by the standard one on U C C™.

CLAIM: Complex structure on a manifold M uniquely determines an
integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of
holomorphic functions Oy, and Oy, is determined by I as explained above.
Therefore, an integrable almost complex structure defines a complex struc-
ture. Conversely, every complex structure gives a sub-bundle in /\1’O(M) —
dOy; € AL(M,C), and such a sub-bundle defines an almost complex struc-
ture by Remark 1. =
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Frobenius form (reminder)

CLAIM: Let B C T M be a sub-bundle of a tangent bundle of a smooth
manifold. Given vector fiels X,Y € B, consider their commutator [X,Y], and
lets W(X,Y) € TM/B be the projection of [X,Y] to TM/B. Then V(X,Y)
iIs C*°(M)-linear in X, Y:

V(fX,Y)=W(X, fY) = fy(X,Y).

Proof: Leibnitz identity gives [X, fY] = f[X,Y] + X(f)Y, and the second
term belongs to B, hence does not influence the projection to TM/B. =

DEFINITION: This form is called the Frobenius form of the sub-bundle
B C T'M. This bundle is called involutive, or integrable, or holonomic if
W = 0.

EXERCISE: Give an example of a non-integrable sub-bundle.
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Formal integrability (reminder)

DEFINITION: An almost complex structure I on (M,I) is called formally
integrable if [T1.0M, 71,01 ¢ 710, that is, if T1.O0M is involutive.

DEFINITION: The Frobenius form W € A2(ALOM) @ TO:1M is called the
Nijenhuis tensor.

CLAIM: If a complex structure I on M is integrable, it is formally
integrable.

Proof: Locally, the bundle T19(M) is generated by d/dz;, where z; are com-
plex coordinates. These vector fields commute, hence satisfy [d/dz;, d/dz;] €
T1.9(M). This means that the Frobenius form vanishes. m

THEOREM: (Newlander-Nirenberg)
A complex structure I on M is integrable if and only if it is formally
integrable.

Proof: (real analytic case) next lecture, probably.
REMARK: In dimension 1, formal integrability is automatic. Indeed,

71,907 is 1-dimensional, hence all skew-symmetric 2-forms on T1:9Mf vanish.
16
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Real analytic manifolds

DEFINITION: A real analytic function on an open set U C R" is a function
which admits a Taylor expansion near each point z € U:

flz1+t1, 20+ t2, .20 +tn) = | Z Ay, it Sy

Zl,...,'ln
(here we assume that the real numbers t; satisfy |t;| < e, where € depends on
f and M).

REMARK: Clearly, real analytic functions constitute a sheaf.

DEFINITION: A real analytic manifold is a ringed space which is locally
isomorphic to an open ball B C R"™ with the sheaf of of real analytic functions.
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Involutions
DEFINITION: An involution is a map ¢ : M — M such that 2 =1Id,,.

EXERCISE: Prove that any linear involution on a real vector space V
IS diagonalizable, with eigenvalues +1.

Theorem 1: Let M be a smooth manifold, and ¢ : M — M an involutiin.
Then the fixed point set NV of . iIs a smooth submanifold.

Proof. Step 1: Inverse function theorem. Let m € M be a point on a
smooth k-dimensional manifold and fq,..., fr. functions on M such that their
differentials dfq, ..., df;. are linearly independent in m. Then fq,..., f; define a
coordinate system in a neighbourhood of a, giving a diffeomorphism of
this neighbourhood to an open ball.

Step 2: Assume that dv has k eigenvalues 1 on T, M, and n — k eigenvalues
-1. Choose a coordinate system =zx1,...,zp, On M around a point m € N such
that dz1|m, ..., dzg|m are -invariant and dzy41|m, ..., dzn|m are c-anti-invariant.
Let y1 = 21 + ™21, yo = 2+ 20, ... Yy = xp + 2k, ANd Ypy1 = Tpyq —
V'Tht 1, Ykt2 = T2 — L' T2, ... Yn = Tp — L"xn. Since dz;|m = zy;|m, these
differentials are linearly independent in m. By Step 1, functions y; define an
(-invariant coordinate system on an open neighbourhood of m, with N
given by equations y;,41 =yp4o0=.. =yn=0. =
18
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Real structures

DEFINITION: An involution is a map ¢« : M — M such that 2 =1d;;. A
real structure on a complex vector space V = C"™ is an R-linear involution
v V — V such that «(Az) = \e(z) for any X € C.

DEFINITION: A map WV : M — M on an almost complex manifold (M,I)
is called antiholomorphic if d¥(I) = —I. A function f is called antiholo-
morphic if f is holomorphic.

EXERCISE: Prove that antiholomorphic function on M defines an an-
tiholomorphic map from M to C.

EXERCISE: Let ¢« be a smooth map from a complex manifold M to itself.
Prove that . is antiholomorphic if and only if .*(f) is antiholomorphic for
any holomorphic function f on U C M.

DEFINITION: A real structure on a complex manifold M is an antiholo-
morphic involution : M — M.

EXAMPLE: Complex conjugation defines a real structure on C".
19
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Real analytic manifolds and real structures

PROPOSITION: Let My C Mc be a fixed point set of an antiholomorphic
involution ¢, U; a complex analytic atlas, and W;; : U;; — U;; the gluing
functions. Then, for appropriate choice of coordinate systems all WV;;
are real analytic on Mp, and define a real analytic atlas on the manifold
MR.

Proof. Step 1: Let 24, ..., 2 be a holomorphic coordinate system on Mg in a
neighbourhood of m € Mk such that ((dz;) = dz; in T;;, M. Such a coordinate
system can be chosen by taking linear functions with prescribed differentials
in m. Replacing z; by z; .= z;, + /*(%Z;), we obtain another coordinate
system z; on M (compare with Theorem 1).

Step 2: This new coordinate system satisfies *z; = T;, hence Mp in these
coordinates is giving by equation imx; = imxzo, = ... = imxz, = 0. All gluing
functions from such coordinate system to another one of this type
satisfy V,,(z;) = V;,(%;), hence they are real on Mp. =
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Real analytic manifolds and real structures (2)

PROPOSITION: Any real analytic manifold can be obtained from this
construction.

Proof. Step 1: Let {U;} be a locally finite atlas of a real analytic manifold
M, and W;; : U;; — U;; the gluing map. We realize U; as an open ball with
compact closure in Re(C") = R". By local finiteness, there are only finitely
many such \l!z-j for any given U;. Denote by B: an open ball of radius € in the
n-dimensional real space im(C").

Step 2: Let € > 0 be a sufficiently small real number such that all \lfz-j can
be extended to gluing functions W;; on the open sets U; := U; x B: C C".
Then (U;, V;;) is an atlas for a complex manifold M¢. Since all W;; are
real, they are preserved by natural involution acting on B as —1 and on U,
as identity. This involution defines a real structure on M. Clearly, M is the
set of its fixed points. m
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Complexification

DEFINITION: Let My be a real analytic manifold, and M¢c a complex analytic
manifold equipped with an antiholomorphic involution, such that Mp is the
set of its fixed points. Then Mg is called complexification of My.

DEFINITION: A tensor on a real analytic manifold is called real analytic
if it is expressed locally by a sum of coordinate monomials with real analytic
coefficients.

CLAIM: Let My be a real analytic manifold, M¢ its complexification, and &
a tensor on Mgr. Then & is real analytic if and only if ® can be extended
to a holomorpic tensor ¢ in some neighbourhood of Mp inside M.

Proof: The “if” part is clear, because every complex analytic tensor on Mg
is by definition real analytic on Mp.

Conversely, suppose that & is expressed by a sum of coordinate monomials
with real analytic coefficients f;. Let {U;} be a cover of M, and U, := U; x B:
the corresponding cover of a neighbourhood of Mgy in M constructed above.
Chosing e sufficiently small, we can assume that the Taylor series giving
coefficients of & converges on each (77;. We define o as the sum of these
series. m
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Extension of tensors to a complexification

Lemma 1: Let X be an open ball in C" equipped with the standard anticom-
plex involution, Xp = X NR" its fixed point set, and « a holomorphic tensor
on X vanishing in Xg. Then a = 0.

Proof: Any holomorphic function which vanishes on R"™ has all its deriva-
tives is equal zero. Therefore its Taylor series vanish. Such a function van-
ishes on C" by analytic continuation principle. This argument can be applied
to all coefficients of o. m

DEFINITION: An almost complex structure I on a real analytic manifold is
real analytic if I is a real anaytic tensor.

COROLLARY: Let (M,I) be a real analytic almost complex manifold, Mg
its complexification, and I¢ : T'Mc — T M¢ the holomorphic extension of I
to Mc. Then I2 = —1Id.

Proof: The tensor Ié—l—Id IS holomorphic and vanishes on Mp, hence the
previous lemma can be applied. =
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Underlying real analytic manifold

REMARK: A complex analytic map & : C*" — C" is real analytic as a
map R2" —s R2", Indeed, the coefficients of ® are real and imaginary parts of
holomorphic functions, and real and imaginary parts of holomorphic functions
can be expressed as Taylor series of the real variables.

DEFINITION: Let M be a complex manifold. The underlying real analytic
manifold is the same manifold, with the same gluing functions, considered
as real analytic maps.

DEFINITION: Let M be a complex manifold. The complex conjugate
manifold is the same manifold with almost complex structure —I and anti-
holomorphic functions on M holomorphic on M.

CLAIM: Let M be an integrable almost complex manifold. Denote by Mp
its underlying real analytic manifold. Then a complexification of Mp can
be given as Mg := M x M, with the anticomplex involution 7(z,y) = (y, x).

Proof: Clearly, the fixed point set of 7 is the diagonal, identified with Mp = M
as usual. Both holomorphic and antiholomorphic functions on Mp are obtained
as restrictions of holomorphic functions from M, hence the sheaf of real
analytic functions on Mp is a real part of the sheaf OM@ of holomorphic
functions on M¢. =
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Holomorphic and antiholomorphic foliations

DEFINITION: Let B C T'M be a sub-bundle. The foliation associated
with B is a family of submanifolds X; C U, defined for each sufficiently small
subset of M, called the leaves of the foliation, such that B is the bundle of
vectors tangent to X;. In this case, X; are called the leaves of the foliation.

REMARK: The famous “Frobenius theorem’” says that B is involutive if
and only if it is tangent to a foliation.

REMARK: Let (M,I) be a real analytic almost complex manifold, and Mg
its complexification. Replacing M¢ by a smaller neighbourhood of M, we may
assume that the tensor I is extended to an endomorphism [ : T'M¢c — T M,

2 = —1d. Since TM¢ is a complex vector bundle, I acts there with the
eigenvalues /—1 and —v/—1, giving a decomposition TM¢c = T1O0M: @
T Me

DEFINITION: Holomorphic foliation is a foliation tangent to T1.9M¢, an-
tiholomorphic foliation is a foliation tangent to 7% M.

25



Complex geometry, lecture 3 M. Verbitsky

Antiholomorphic foliation on Mg = M x M.

CLAIM: Let (M, I) be a integrable almost complex manifold, Mg = M x M its
complexification, and m, 7™ projections of M¢ to M and M. Then the fibers
of 7w is a holomorphic foliation, and the fibers of = is a holomorphic
foliation.

Proof: Let TM¢c = T' @ T"” be a decomposition of TM¢ onto part tangent
to fibers of @ and tangent to fibers of . On Mp the decomposition
TMc = T'&T" coincides with the decomposition TMQC = T1O0M a1 M.
By Lemma 1 the same is true everywhere on M¢. =

COROLLARY: Let (M, I) be a integrable almost complex manifold. Then
I 1s a real analytic almost complex structure.

Proof: It was extended to M¢ in the previous claim. =
Corollary 1: Let (M,I) be a real analytic almost complex manifold. Then
holomorphic functions on Mg which are constant on the leaves of antiholo-

moirphic foliation restrict to holomorphic functions on (M,I) C Mc.

Proof: Such functions are constant in the (0, 1)-direction on TM ® C. =
26
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Integrability of real analytic almost complex structure

THEOREM: (“linearization of a vector field”) Let v € TM be a nowhere
vanishing vector field on M. Then there exists a family of 1-dimensional
submanifolds passing through each point of M such that v is tangent
to these submanifolds at each point of M.

THEOREM: Let (M, I) be a real analytic almost complex manifold, dimp M =
2. Then M is integrable.

Proof. Step 1: Consider the complexification Mg of M, and let T Mg =
T1OMc @ TOIMc be the decomposition defined above. By “linearization of
a vector field” theorem, there exists a foliation tangent to TO>1M@ and one
tangent to TLOM@. Since the leaves of these foliations are transversal, locally
M¢ is a product of M’ and M"” which are identified with the space of
leaves of T9 1M and T1OM.

Step 2: Locally, functions on M’ can be lifted to M’ x M" = Mg, giving
functions which are constant on the leaves of the foliation tangent to 791 M.
By Corollary 1, such functions are holomorphic on (M, I). Choose a collection
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of n = %dimRM holomorphic functions f1,...fn on M¢ which are constant on
the leaves of Tole@ and have linearly independent differentials in x € M C
Mc. By inverse function theorem, f1,..., fn holomorphic coordinate system
in a neigbourhood of =z € (M, 1), and the transition functions between such
coordinate systems are by construction holomorphic. =
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