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Distributions (reminder)

DEFINITION: Distribution on a manifold is a sub-bundle B ⊂ TM

REMARK: Let Π : TM −→ TM/B be the projection, and x, y ∈ B some

vector fields. Then [fx, y] = f [x, y] − Dy(f)x. This implies that Π([x, y]) is

C∞(M)-linear as a function of x and y.

DEFINITION: The map [B,B]−→ TM/B we have constructed is called

Frobenius bracket (or Frobenius form); it is a skew-symmetric C∞(M)-

linear form on B with values in TM/B.

DEFINITION: A distribution is called integrable, or holonomic, or involu-

tive, if its Frobenius form vanishes.
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Smooth submersions

DEFINITION: Let π : M −→M ′ be a smooth map of manifolds. This map
is called submersion if at each point of M the differential Dπ is surjective,
and immersion if it is injective.

CLAIM: Let π : M −→M ′ be a submersion. Then each m ∈ M has a
neighbourhood U ∼= V ×W , where V,W are smooth and π|U is a projection
of V ×W = U ⊂M to W ⊂M ′ along V .

EXERCISE: Deduce this result from the inverse function theorem.

EXERCISE: (“Ehresmann’s fibration theorem”)
Let π : M −→M ′ be a smooth submersion of compact manifolds. Prove that
π is a locally trivial fibration.

DEFINITION: Vertical tangent space TπM ⊂ TM of a submersion π :
M −→M ′ is the kernel of Dπ.

CLAIM: Let π : M −→M ′ be a submersion and TπM ⊂ TM the vertical
tangent space. Then TπM is an involutive subbundle.

Proof: Dπ([X,Y ]) = [Dπ(X), Dπ(Y )] = 0 for any X,Y ∈ kerDπ.
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Frobenius theorem (statement)

Frobenius Theorem: Let B ⊂ TM be a sub-bundle. Then B is involutive

if and only if each point x ∈ M has a neighbourhood U 3 x and a smooth

submersion U
π−→ V such that B is its vertical tangent space: B = TπM.

REMARK: The implication “B = TπM” ⇒ “Frobenius form vanishes”

was proven above.

DEFINITION: The fibers of π are called leaves, or integral submanifolds

of the distribution B. Globally on M , a leaf of B is a maximal connected

manifold Z ↪→ M which is immersed to M and tangent to B at each point.

A distribution for which Frobenius theorem holds is called integrable. If B is

integrable, the set of its leaves is called a foliation. The leaves are manifolds

which are immersed to M , but not necessarily closed.
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Frobenius theorem: existence of integral submanifolds

REMARK: To prove the Frobenius theorem for B ⊂ TM , it suffices to

show that each point is contained in an interal submanifold. In this

case, the smooth submersion U
π−→ V is a projection to the leaf space of the

distribution.

REMARK: When B is 1-dimensional (in this case one says that B has rank

1, denoted rkB = 1), Frobenius theorem follows from existence of the

diffeomorphism flow associated with a vector field. Indeed, locally we

may assume that B admits a non-degenerate section v. Let Vt : M ×R−→M

be the corresponding flow of diffeomorphisms. Then Zm := Vt({m} × R is

tangent to v everywhere, hence it is a 1-dimensional manifold immersed in

M . Clearly, Zm is a leaf this distribution. Since B is a tangent to a foliation,

it is integrable.

Further on we shall need the following exercise.

EXERCISE: Let Vt = etv be a diffeomorphism flow on M , and F ⊂ TM a

vector bundle. Assume that [v, F ] ⊂ F . Prove that Vt preserves F ⊂ TM.
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Flow of diffeomorphisms

DEFINITION: Let f : M × [a, b]−→M be a smooth map such that for all
t ∈ [a, b] the restriction ft := f

∣∣∣M×{t} : M −→M is a diffeomorphism. Then f
is called a flow of diffeomorphisms.

CLAIM: Let Vt be a flow of diffeomorphisms, f ∈ C∞M , and V ∗t (f)(x) :=
f(Vt(x)). Consider the map d

dtVt|t=c : C∞M −→ C∞M , with d
dtVt|t=c(f) =

(V −1
c )∗dVtdt |t=cf . Then f −→ (V −1

t )∗ ddtV
∗
t f is a derivation (that is, a vector

field).

Proof: d
dtV
∗
t (fg) = V ∗t (f) ddtV

∗
t g + d

dtV
∗
t fV

∗
t (g) by the Leignitz rule, giving

(V −1
t )∗

d

dt
V ∗t (fg) = f(V −1

t )∗
d

dt
V ∗t g + g(V −1

t )∗
d

dt
V ∗t f.

DEFINITION: The vector field d
dtVt|t=c is called the vector field tangent

to a flow of diffeomorphisms Vt at t = c.

CLAIM: Let Vt be a flow of diffeomorphisms and Xt the corresponding vector
field. Then for any η ∈ Λ∗M, one has d

dtV
∗
t (η) = LieXt(η).

Proof: The operators d
dtV
∗
t and LieXt are equal on functions, satisfy the

Leibitz identity and commute with d.
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Flow of diffeomorphisms obtained from vector fields

EXERCISE: Let M be a compact manifold, and Ψ : C∞M −→ C∞M is a ring
automorphism. Prove that Ψ is induced by an action of a diffeomorphism
of M.

THEOREM: Let M be a compact manifold, and Xt ∈ TM a family of
vector fields smoothly depending on t ∈ [0, a]. Then there exists a unique
diffeomorphism flow Vt, t ∈ [0, a], such that V0 = Id and d

dtV
∗
t = Xt.

Proof. Step 1: Given f ∈ C∞M , we can solve an equation d
dtWt(f) = LieXt(f)

(here LieXt(f) denotes the derivative along the vector field). The solution
Wt(f) exists for all t ∈ [0, x] and is unique by Peano theorem on existence and
uniqueness of solutions of ODE.

Step 2: Since

d

dt
Wt(fg) = LieXt(f)g + LieXt(g)f =

d

dt
(Wt(f)Wt(g)),

Wt is multiplicative. Also, it is invertible. Applying the previous exercise, we
obtain that Wt is a diffeomorphism.

REMARK: If the vector field Xt = X is independent from t, the corresponding
diffeomorphism flow is often denoted as etX.
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Distributions preserved by a vector field

EXERCISE: Let v, v′ be commuting vector fields. Then the corresponding

diffeomorphism flows etv and etv
′

commute.

CLAIM: Let Vt = etv be a diffeomorphism flow on M , and F ⊂ TM a vector

bundle. Assume that [vt, F ] ⊂ F . Then Vt preserves F ⊂ TM.

Proof. Step 1: Since a non-degenerate vector fields can be linearized, we

can always assume that the vector field vt is a coordinate vector field,

vt = x1. Since the statement is local, we can always assume that M is an

open subset in Rn with coordinates x1, ..., xn.

Step 2: Let R1, ..., Rr be a basis in F . We write Ri =
∑
fij

d
dxj

; then [vt, Ri] =∑ dfij
dxi

d
dxj

. In these terms [vt, F ] ⊂ F is written as dRi
dx1

=
∑
aijRj, where aij are

appropriate functions on M .
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Distributions preserved by a vector field (2)

CLAIM: Let Vt = etv be a diffeomorphism flow on M , and F ⊂ TM a vector
bundle. Assume that [vt, F ] ⊂ F . Then Vt preserves F ⊂ TM.
Step 2: Let R1, ..., Rr be a basis in F . We write Ri =

∑
fij

d
dxj

; then

[vt, Ri] =
∑ dfij
dx1

d
dxj

. In these terms [vt, F ] ⊂ F is written as dRi
dx1

=
∑
aijRj,

where aij are appropriate functions on M .
Step 3: Let Fi(t) := Vt(Ri) ∈ TM . By definition, Vt = etd/dx1, hence
d
dtVt(Ri) = [d/dx1, Vt(Ri)]. Then, Fi(t) is a solution of a vector-valued dif-
ferential equation

d

dt
Fi(t) = [d/dx1, Fi(t)], (∗)

with initial values Fi(t) = Ri. The solution can be found as Fi(t) =
∑r
j=1 bij(t)Rj

because d/dx1,
r∑

j=1

bij(t)Rj

 =
r∑

j=1

bij(t)
r∑

k=1

ajkRk +
bij

dx1
Rj.

Then Fi(t) =
∑r
j=1 bij(t)Rj is a solution of (*) if for all i, j = 1, ..., r, we have

dbij(t)

dt
=
dbij

dx1
+

r∑
i=1

r∑
k=1

bikakj.

This differential equation has a unique solution with a given initial value.
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Basic sub-bundles (1)

DEFINITION: Let B ⊂ TM be an involutive sub-bundle. A sub-bundle

F ⊂ TM is called basic for B if F ⊃ B and for all b ∈ B, b′ ∈ F , one has

[b, b′] ∈ F .

LEMMA: Let B ⊂ TM be an integrable distribution, π : M −→M1 projection

to the leaf space of B, and F ⊃ B a sub-bundle of TM containing B. Then

the following conditions are equivalent: (a) F is basic for B.

(b) There exists a sub-bundle F1 ⊂ TM1 such that π−1(F1) = F .

Proof: Next slide.

10



Complex geometry, lecture 3 M. Verbitsky

Basic sub-bundles (2)

LEMMA: Let B ⊂ TM be an integrable distribution, π : M −→M1 projection
to the leaf space of B, and F ⊃ B a sub-bundle of TM containing B. Then
the following conditions are equivalent: (a) F is basic for B.
(b) There exists a sub-bundle F1 ⊂ TM1 such that π−1F1 = F .

Proof. Step 1: Consider coordinates x1, ..., xn on M such that xk+1 =
π∗(x′k+1, ..., xn = π∗(xn), where x′i, i = k+ 1, k+ 2, ..., n are coordinates on M1,

and d
dx1

, ..., d
dxk

generate B. Locally such coordinates always exist, because B

is integrable. Denote by G a subgroup of Diff(M) obtained by exponents of
d
dx1

, ..., d
dxk

. Since [B,F ] ⊂ F , the corresponding diffeomorphisms preserve F .
Therefore, F is a G-invariant sub-bundle of TM.

Step 2: Any G-invariant sub-bundle F ⊃ B is obtained as π−1(F1) for
some sub-bundle F1 ⊂ TM1 = M/G. Indeed, since the action of G1 is free,
the bundle F is generated over C∞M by G-invariant sections. However, any
G-invariant bundle F containing B is generated by G-invariant sections, which
can be lifted from M/G (check this).

Step 3: Conversely, if F is lifted from M1 = M/G, it is G-invariant, hence
etb(b′) ⊂ F , and this gives [b, b′] ⊂ F (check this).
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Frobenius theorem (proof)

Frobenius Theorem: Let B ⊂ TM be a sub-bundle. Then B is involutive

if and only if each point x ∈ M has a neighbourhood U 3 x and a smooth

submersion U
π−→ V such that B is its vertical tangent space: B = TπM.

Proof. Step 1: Consider a rank 1 sub-bundle B1 ⊂ B. Using the diffeomor-

phism flow as above, we prove that B1 is integrable. Since [B1, B] ⊂ B, the

bundle B is basic with respect to B1. Therefore, B = π−1(B′) for some

B′ ⊂ TM1, where M1 is the leaf space of B1.

Step 2: Let π : M −→M1 be the projection to the leaf space. Then B =

π−1(B′), where rkB′ = rkB− 1. Using induction in rkB, we can assume that

B′ is integrable. Let π0 : M1 −→M0 be the projection to the leaf space of

B′, defined locally in M . Then π ◦ π0 : M −→M0 is the projection to the

leaf space of B.
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Complex manifolds (reminder)

DEFINITION: A holomorphic function on Cn is a function f : Cn −→ C
such that df is complex linear, that is df ∈ Λ1,0(M).

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally

isomorphic to an open ball in Cn with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to Cn

and transition functions (being coordinate functions for one ball considered

in other coordinate system) are holomorphic.
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Integrability of almost complex structures (reminder)

DEFINITION: An almost complex structure I on a manifold is called inte-

grable if any point of M has a neighbourhood U diffeomorphic to an open

subset of Cn, in such a way that the almost complex structure I is induced

by the standard one on U ⊂ Cn.

CLAIM: Complex structure on a manifold M uniquely determines an

integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of

holomorphic functions OM , and OM is determined by I as explained above.

Therefore, an integrable almost complex structure defines a complex struc-

ture. Conversely, every complex structure gives a sub-bundle in Λ1,0(M) =

dOM ⊂ Λ1(M,C), and such a sub-bundle defines an almost complex struc-

ture by Remark 1.
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Frobenius form (reminder)

CLAIM: Let B ⊂ TM be a sub-bundle of a tangent bundle of a smooth

manifold. Given vector fiels X,Y ∈ B, consider their commutator [X,Y ], and

lets Ψ(X,Y ) ∈ TM/B be the projection of [X,Y ] to TM/B. Then Ψ(X,Y )

is C∞(M)-linear in X, Y :

Ψ(fX, Y ) = Ψ(X, fY ) = fΨ(X,Y ).

Proof: Leibnitz identity gives [X, fY ] = f [X,Y ] + X(f)Y , and the second

term belongs to B, hence does not influence the projection to TM/B.

DEFINITION: This form is called the Frobenius form of the sub-bundle

B ⊂ TM . This bundle is called involutive, or integrable, or holonomic if

Ψ = 0.

EXERCISE: Give an example of a non-integrable sub-bundle.
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Formal integrability (reminder)

DEFINITION: An almost complex structure I on (M, I) is called formally
integrable if [T1,0M,T1,0] ⊂ T1,0, that is, if T1,0M is involutive.

DEFINITION: The Frobenius form Ψ ∈ Λ2(Λ1,0M) ⊗ T0,1M is called the
Nijenhuis tensor.

CLAIM: If a complex structure I on M is integrable, it is formally
integrable.

Proof: Locally, the bundle T1,0(M) is generated by d/dzi, where zi are com-
plex coordinates. These vector fields commute, hence satisfy [d/dzi, d/dzj] ∈
T1,0(M). This means that the Frobenius form vanishes.

THEOREM: (Newlander-Nirenberg)
A complex structure I on M is integrable if and only if it is formally
integrable.

Proof: (real analytic case) next lecture, probably.

REMARK: In dimension 1, formal integrability is automatic. Indeed,
T1,0M is 1-dimensional, hence all skew-symmetric 2-forms on T1,0M vanish.
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Real analytic manifolds

DEFINITION: A real analytic function on an open set U ⊂ Rn is a function

which admits a Taylor expansion near each point x ∈ U :

f(z1 + t1, z2 + t2, ..., zn + tn) =
∑

i1,...,in

ai1,...,int
i1
1 t

i2
2 ...t

in
n .

(here we assume that the real numbers ti satisfy |ti| < ε, where ε depends on

f and M).

REMARK: Clearly, real analytic functions constitute a sheaf.

DEFINITION: A real analytic manifold is a ringed space which is locally

isomorphic to an open ball B ⊂ Rn with the sheaf of of real analytic functions.
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Involutions

DEFINITION: An involution is a map ι : M −→M such that ι2 = IdM .

EXERCISE: Prove that any linear involution on a real vector space V
is diagonalizable, with eigenvalues ±1.

Theorem 1: Let M be a smooth manifold, and ι : M −→M an involutiin.
Then the fixed point set N of ι is a smooth submanifold.

Proof. Step 1: Inverse function theorem. Let m ∈ M be a point on a
smooth k-dimensional manifold and f1, ..., fk functions on M such that their
differentials df1, ..., dfk are linearly independent in m. Then f1, ..., fk define a
coordinate system in a neighbourhood of a, giving a diffeomorphism of
this neighbourhood to an open ball.

Step 2: Assume that dι has k eigenvalues 1 on TmM , and n− k eigenvalues
-1. Choose a coordinate system x1, ..., xn on M around a point m ∈ N such
that dx1|m, ..., dxk|m are ι-invariant and dxk+1|m, ..., dxn|m are ι-anti-invariant.
Let y1 = x1 + ι∗x1, y2 = x2 + ι∗x2, ... yk = xk + ι∗xk, and yk+1 = xk+1 −
ι∗xk+1, yk+2 = xk+2 − ι∗xk+2, ... yn = xn − ι∗xn. Since dxi|m = xyi|m, these
differentials are linearly independent in m. By Step 1, functions yi define an
ι-invariant coordinate system on an open neighbourhood of m, with N
given by equations yk+1 = yk+2 = ... = yn = 0.
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Real structures

DEFINITION: An involution is a map ι : M −→M such that ι2 = IdM . A

real structure on a complex vector space V = Cn is an R-linear involution

ι : V −→ V such that ι(λx) = λι(x) for any λ ∈ C.

DEFINITION: A map Ψ : M −→M on an almost complex manifold (M, I)

is called antiholomorphic if dΨ(I) = −I. A function f is called antiholo-

morphic if f is holomorphic.

EXERCISE: Prove that antiholomorphic function on M defines an an-

tiholomorphic map from M to C.

EXERCISE: Let ι be a smooth map from a complex manifold M to itself.

Prove that ι is antiholomorphic if and only if ι∗(f) is antiholomorphic for

any holomorphic function f on U ⊂M.

DEFINITION: A real structure on a complex manifold M is an antiholo-

morphic involution τ : M −→M .

EXAMPLE: Complex conjugation defines a real structure on Cn.
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Real analytic manifolds and real structures

PROPOSITION: Let MR ⊂ MC be a fixed point set of an antiholomorphic

involution ι, Ui a complex analytic atlas, and Ψij : Uij −→ Uij the gluing

functions. Then, for appropriate choice of coordinate systems all Ψij

are real analytic on MR, and define a real analytic atlas on the manifold

MR.

Proof. Step 1: Let z1, ..., zn be a holomorphic coordinate system on MC in a

neighbourhood of m ∈MR such that ι(dzi) = dzi in T ∗mM . Such a coordinate

system can be chosen by taking linear functions with prescribed differentials

in m. Replacing zi by xi := zi + ι∗(zi), we obtain another coordinate

system xi on M (compare with Theorem 1).

Step 2: This new coordinate system satisfies ι∗xi = xi, hence MR in these

coordinates is giving by equation imx1 = imx2 = ... = imxn = 0. All gluing

functions from such coordinate system to another one of this type

satisfy Ψij(zi) = Ψij(zi), hence they are real on MR.
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Real analytic manifolds and real structures (2)

PROPOSITION: Any real analytic manifold can be obtained from this

construction.

Proof. Step 1: Let {Ui} be a locally finite atlas of a real analytic manifold

M , and Ψij : Uij −→ Uij the gluing map. We realize Ui as an open ball with

compact closure in Re(Cn) = Rn. By local finiteness, there are only finitely

many such Ψij for any given Ui. Denote by Bε an open ball of radius ε in the

n-dimensional real space im(Cn).

Step 2: Let ε > 0 be a sufficiently small real number such that all Ψij can

be extended to gluing functions Ψ̃ij on the open sets Ũi := Ui × Bε ⊂ Cn.

Then (Ũi,Ψij) is an atlas for a complex manifold MC. Since all Ψij are

real, they are preserved by natural involution acting on Bε as −1 and on Ui
as identity. This involution defines a real structure on MC. Clearly, M is the

set of its fixed points.
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Complexification

DEFINITION: Let MR be a real analytic manifold, and MC a complex analytic
manifold equipped with an antiholomorphic involution, such that MR is the
set of its fixed points. Then MC is called complexification of MR.

DEFINITION: A tensor on a real analytic manifold is called real analytic
if it is expressed locally by a sum of coordinate monomials with real analytic
coefficients.

CLAIM: Let MR be a real analytic manifold, MC its complexification, and Φ
a tensor on MR. Then Φ is real analytic if and only if Φ can be extended
to a holomorpic tensor ΦC in some neighbourhood of MR inside MC.

Proof: The “if” part is clear, because every complex analytic tensor on MC
is by definition real analytic on MR.

Conversely, suppose that Φ is expressed by a sum of coordinate monomials
with real analytic coefficients fi. Let {Ui} be a cover of M , and Ũi := Ui×Bε
the corresponding cover of a neighbourhood of MR in MC constructed above.
Chosing ε sufficiently small, we can assume that the Taylor series giving
coefficients of Φ converges on each Ũi. We define ΦC as the sum of these
series.
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Extension of tensors to a complexification

Lemma 1: Let X be an open ball in Cn equipped with the standard anticom-

plex involution, XR = X ∩ Rn its fixed point set, and α a holomorphic tensor

on X vanishing in XR. Then α = 0.

Proof: Any holomorphic function which vanishes on Rn has all its deriva-

tives is equal zero. Therefore its Taylor series vanish. Such a function van-

ishes on Cn by analytic continuation principle. This argument can be applied

to all coefficients of α.

DEFINITION: An almost complex structure I on a real analytic manifold is

real analytic if I is a real anaytic tensor.

COROLLARY: Let (M, I) be a real analytic almost complex manifold, MC
its complexification, and IC : TMC −→ TMC the holomorphic extension of I

to MC. Then I2
C = − Id.

Proof: The tensor I2
C + Id is holomorphic and vanishes on MR, hence the

previous lemma can be applied.
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Underlying real analytic manifold

REMARK: A complex analytic map Φ : Cn −→ Cn is real analytic as a
map R2n −→ R2n. Indeed, the coefficients of Φ are real and imaginary parts of
holomorphic functions, and real and imaginary parts of holomorphic functions
can be expressed as Taylor series of the real variables.

DEFINITION: Let M be a complex manifold. The underlying real analytic
manifold is the same manifold, with the same gluing functions, considered
as real analytic maps.

DEFINITION: Let M be a complex manifold. The complex conjugate
manifold is the same manifold with almost complex structure −I and anti-
holomorphic functions on M holomorphic on M .

CLAIM: Let M be an integrable almost complex manifold. Denote by MR
its underlying real analytic manifold. Then a complexification of MR can
be given as MC := M ×M, with the anticomplex involution τ(x, y) = (y, x).

Proof: Clearly, the fixed point set of τ is the diagonal, identified with MR = M
as usual. Both holomorphic and antiholomorphic functions on MR are obtained
as restrictions of holomorphic functions from MC, hence the sheaf of real
analytic functions on MR is a real part of the sheaf OMC of holomorphic
functions on MC.
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Holomorphic and antiholomorphic foliations

DEFINITION: Let B ⊂ TM be a sub-bundle. The foliation associated

with B is a family of submanifolds Xt ⊂ U , defined for each sufficiently small

subset of M , called the leaves of the foliation, such that B is the bundle of

vectors tangent to Xt. In this case, Xt are called the leaves of the foliation.

REMARK: The famous “Frobenius theorem” says that B is involutive if

and only if it is tangent to a foliation.

REMARK: Let (M, I) be a real analytic almost complex manifold, and MC
its complexification. Replacing MC by a smaller neighbourhood of M , we may

assume that the tensor I is extended to an endomorphism I : TMC −→ TMC,

I2 = − Id. Since TMC is a complex vector bundle, I acts there with the

eigenvalues
√
−1 and −

√
−1 , giving a decomposition TMC = T1,0MC ⊕

T0,1MC

DEFINITION: Holomorphic foliation is a foliation tangent to T1,0MC, an-

tiholomorphic foliation is a foliation tangent to T0,1MC.
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Antiholomorphic foliation on MC = M ×M.

CLAIM: Let (M, I) be a integrable almost complex manifold, MC = M×M its
complexification, and π, π projections of MC to M and M . Then the fibers
of π is a holomorphic foliation, and the fibers of π is a holomorphic
foliation.

Proof: Let TMC = T ′ ⊕ T ′′ be a decomposition of TMC onto part tangent
to fibers of π and tangent to fibers of π. On MR the decomposition
TMC = T ′⊕T ′′ coincides with the decomposition TM⊗C = T1,0M⊕T0,1M.
By Lemma 1 the same is true everywhere on MC.

COROLLARY: Let (M, I) be a integrable almost complex manifold. Then
I is a real analytic almost complex structure.

Proof: It was extended to MC in the previous claim.

Corollary 1: Let (M, I) be a real analytic almost complex manifold. Then
holomorphic functions on MC which are constant on the leaves of antiholo-
moirphic foliation restrict to holomorphic functions on (M, I) ⊂MC.

Proof: Such functions are constant in the (0,1)-direction on TM ⊗ C.
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Integrability of real analytic almost complex structure

THEOREM: (“linearization of a vector field”) Let v ∈ TM be a nowhere

vanishing vector field on M . Then there exists a family of 1-dimensional

submanifolds passing through each point of M such that v is tangent

to these submanifolds at each point of M.

THEOREM: Let (M, I) be a real analytic almost complex manifold, dimRM =

2. Then M is integrable.

Proof. Step 1: Consider the complexification MC of M , and let TMC =

T1,0MC ⊕ T0,1MC be the decomposition defined above. By “linearization of

a vector field” theorem, there exists a foliation tangent to T0,1MC and one

tangent to T1,0MC. Since the leaves of these foliations are transversal, locally

MC is a product of M ′ and M ′′ which are identified with the space of

leaves of T0,1MC and T1,0MC.

Step 2: Locally, functions on M ′ can be lifted to M ′ × M ′′ = MC, giving

functions which are constant on the leaves of the foliation tangent to T0,1MC.

By Corollary 1, such functions are holomorphic on (M, I). Choose a collection
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of n = 1
2 dimRM holomorphic functions f1, ...fn on MC which are constant on

the leaves of T0,1MC and have linearly independent differentials in x ∈ M ⊂
MC. By inverse function theorem, f1, ..., fn holomorphic coordinate system

in a neigbourhood of x ∈ (M, I), and the transition functions between such

coordinate systems are by construction holomorphic.
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