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Distributions (reminder)
DEFINITION: Distribution on a manifold is a sub-bundle BC TM

REMARK: Let I : TM — TM/B be the projection, and z,y € B some
vector fields. Then [fz,y] = flz,y] — Dy(f)x. This implies that M([z,y]) is
C*°(M)-linear as a function of z and y.

DEFINITION: The map [B,B]— TM/B we have constructed is called
Frobenius bracket (or Frobenius form); it is a skew-symmetric C°°(M )-
linear form on B with values in TM/B.

DEFINITION: A distribution is called integrable, or holonomic, or involu-
tive, if its Frobenius form vanishes.
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Smooth submersions (reminder)

DEFINITION: Let 7 : M — M’ be a smooth map of manifolds. This map
is called submersion if at each point of M the differential Dm is surjective,
and immersion if it is injective.

CLAIM: Let # : M — M’ be a submersion. Then each m € M has a
neighbourhood U =V x W, where V,W are smooth and x|y is a projection
of VxW=UcCM to W c M along V.

EXERCISE: Deduce this result from the inverse function theorem.

EXERCISE: (“Ehresmann’s fibration theorem”)
Let 7: M — M’ be a smooth submersion of compact manifolds. Prove that
7 is a locally trivial fibration.

DEFINITION: Vertical tangent space 1M C TM of a submersion = :
M — M’ is the kernel of Dr.

CLAIM: Let 71 : M — M’ be a submersion and T,M C TM the vertical
tangent space. Then T;M is an involutive subbundle.

Proof: D;([X,Y]) = [Dx(X),Dr(Y)] =0 for any X, Y € kerD,. =
3
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Frobenius theorem (statement)

Frobenius Theorem: Let B C T'M be a sub-bundle. Then B is involutive
if and only if each point x € M has a neighbourhood U > x and a smooth
submersion U -~ V such that B is its vertical tangent space: B = T, M.

REMARK: The implication “B = T:M" = “Frobenius form vanishes”
was proven above.

DEFINITION: The fibers of m are called leaves, or integral submanifolds
of the distribution B. Globally on M, a leaf of B is a maximal connected
manifold Z — M which is immersed to M and tangent to B at each point.
A distribution for which Frobenius theorem holds is called integrable. If B is
integrable, the set of its leaves is called a foliation. The leaves are manifolds
which are immersed to M, but not necessarily closed.
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Proof of Frobenius Theorem: Lie group action

DEFINITION: A Lie group is a smooth manifold equipped with a group
structure in such a way that the group operations are smooth. An action of
a Lie group G on a manifold M is a smooth map G x M — M inducing the
group action.

DEFINITION: The Lie algebra of a Lie group is an algebra of left-invariant
vector fields. Since the left action of G on itself is free and transitive, the
Lie algebra of G is in bijective correspondence with T:.G.

REMARK: Let p: GxXx M — M be a Lie group action on a manifold M.
Then dp induces a map from the Lie algebra of G to the Lie algebra of the
manifold M. The corresponding vector fields are tangent to the orbits
of G.

Claim 1: Suppose that G is a Lie group acting on a manifold M. Let BCTM
be sub-bundle generated by the vector fields from Lie algebra of G. Then B
IS integrable, that is, Frobenius theorem holds of B C T'M.

Proof: The orbits of the G-action are tangent to BCTM. =
5
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Proof of Frobenius Theorem: preliminaries

Exercise 1: Let u,v be commuting vector fields on a manifold M, and e'¥,
etV be corresponding diffeomorphism flows. Prove that %, ¢ commute.

Remark 1: Let 7 : M — M7 be a smooth submersion, and v € T'M a vector
fields which satisfies

dr(v)|z = dm(v)ly (%)

for any z,y € 7~ 1(2) and any z € M7. In this case, the vector field dx(v) is
well defined on M.

Exercise 2: Let # . M — My be a smooth submersion, and w,v € TM
vector fields which satisfy (*). Consider the vector fields uq := dn(u) and
v1 .= dmw(v) € TM, defined as in Remark 1. Prove that the commutator
[u,v] satisfies (*) and, moreover, [uy,v1] = dn([u,v]).
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Proof of Frobenius Theorem: commuting vector fields

Exercise 1: Let u,v be commuting vector fields on a manifold M, and e“
etV be corresponding diffeomorphism flows. Prove that e, ¢ commute.

Solution. Step 1: The statement is local, and trivial in any open set
where v = 0, hence it suffices to prove it in a coordinate chart where u is
non-degenerate. Since all non-degenerate vector fields can be linearized, we
can always assume that the vector field v is a coordinate vector field,
w=d/dxy. Then e®(xq,...,2n) = (v1 +1t,...,Tn).

da;
Step 2: For any vector field v = Y, a;d/dz;, one has [u S ade] Zdifl du;
Therefore, [u,v] = 0 is equivalent to the coefficients a; being constant in
x1. This implies that the parallel transport along xq preserves v. Therefore,

it also preserves eV, and the corresponding diffeomorphisms commute. =
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Frobenius theorem (proof)

Frobenius Theorem: Let B C T'M be a sub-bundle. Then B is involutive
if and only if each point m € M has a neighbourhood U > m and a smooth
submersion U -~ V such that B is its vertical tangent space: B = T, M.

Proof. Step 1: The "“if" part is clear. The statement of Frobenius Theo-
rem is local, hence we may replace M be a small neighbourhood of a given
point. We are going to show that B locally has a basis of commuting vector
fields. By Exercise 1, these vector fields can be locally integrated to a
commutative group action, and Frobenius Theorem follows from Claim 1.

Step 2: Consider a smooth submersion M — M4 inducing an isomorphism
from B to T'M;. Let (q,...,(;. be the coordinate vector fields on M. Since
do : B|;,;—>T0($)M1 IS an isomorphism, there exist unique vector fields
1,..,&x € B such that do(§;) = ¢;. By Exercise 2, do([£1,¢5]) = [¢i,¢;] = O.
However, [£1,£;] is a section of B, and do : Blnm — Ty (m)M1 IS an isomor-
phism, hence do([{1,£;]) = O implies [£1,£;] = 0. We have shown that B
admits a basis of commuting vector fiels. =
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Complex manifolds (reminder)

DEFINITION: A holomorphic function on C" is a function f: C"—C
such that df is complex linear, that is df € ALO(M).

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally
isomorphic to an open ball in C" with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to C"
and transition functions (being coordinate functions for one ball considered
in other coordinate system) are holomorphic.
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Integrability of almost complex structures (reminder)

DEFINITION: An almost complex structure I on a manifold is called inte-
grable if any point of M has a neighbourhood U diffeomorphic to an open
subset of C", in such a way that the almost complex structure I is induced
by the standard one on U C C™.

CLAIM: Complex structure on a manifold M uniquely determines an
integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of
holomorphic functions Oy, and Oy, is determined by I as explained above.
Therefore, an integrable almost complex structure defines a complex struc-
ture. Conversely, every complex structure gives a sub-bundle in /\1’O(M) —
dOy; € AL(M,C), and such a sub-bundle defines an almost complex struc-
ture by Remark 1. =

10



Complex geometry, lecture 4 M. Verbitsky

Formal integrability (reminder)

DEFINITION: An almost complex structure I on (M,I) is called formally
integrable if [T1.0M, 71,01 ¢ 710, that is, if T1.O0M is involutive.

DEFINITION: The Frobenius form W € A2(ALOM) @ TO:1M is called the
Nijenhuis tensor.

CLAIM: If a complex structure I on M is integrable, it is formally
integrable.

Proof: Locally, the bundle T19(M) is generated by d/dz;, where z; are com-
plex coordinates. These vector fields commute, hence satisfy [d/dz;, d/dz;] €
T1.9(M). This means that the Frobenius form vanishes. m

THEOREM: (Newlander-Nirenberg)
A complex structure I on M is integrable if and only if it is formally
integrable.

Proof: (real analytic case) next lecture, probably.
REMARK: In dimension 1, formal integrability is automatic. Indeed,

71,907 is 1-dimensional, hence all skew-symmetric 2-forms on T1:9Mf vanish.
11
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Real analytic manifolds

DEFINITION: A real analytic function on an open set U C R" is a function
which admits a Taylor expansion near each point z € U:

flz1+t1, 20+ t2, .20 +tn) = | Z Ay, it Sy

Zl,...,'ln
(here we assume that the real numbers t; satisfy |t;| < e, where € depends on
f and M).

REMARK: Clearly, real analytic functions constitute a sheaf.

DEFINITION: A real analytic manifold is a ringed space which is locally
isomorphic to an open ball B C R"™ with the sheaf of of real analytic functions.

12
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Involutions
DEFINITION: An involution is a map ¢ : M — M such that 2 =1Id,,.

EXERCISE: Prove that any linear involution on a real vector space V
IS diagonalizable, with eigenvalues +1.

Theorem 1: Let M be a smooth manifold, and ¢ : M — M an involutiin.
Then the fixed point set NV of . iIs a smooth submanifold.

Proof. Step 1: Inverse function theorem. Let m € M be a point on a
smooth k-dimensional manifold and fq,..., fr. functions on M such that their
differentials dfq, ..., df;. are linearly independent in m. Then fq,..., f; define a
coordinate system in a neighbourhood of a, giving a diffeomorphism of
this neighbourhood to an open ball.

Step 2: Assume that dv has k eigenvalues 1 on T, M, and n — k eigenvalues
-1. Choose a coordinate system =zx1,...,zp, On M around a point m € N such
that dz1|m, ..., dzg|m are -invariant and dzy41|m, ..., dzn|m are c-anti-invariant.
Let y1 = 21 + ™21, yo = 2+ 20, ... Yy = xp + 2k, ANd Ypy1 = Tpyq —
L*Cljk_|_1, Y42 = Tg+2 — L*CIJk_|_2, cer Yn = ITn — L*wn. Since dCU7,|m = dyi|m, these
differentials are linearly independent in m. By Step 1, functions y; define an
(-invariant coordinate system on an open neighbourhood of m, with N
given by equations y;41 =yp4o0=.. =ypn=0. =
13
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Real structures on complex vector spaces

DEFINITION: An involution is a map :: M — M such that 2 =1Idy;. A
real structure on a complex vector space V = C" is an R-linear involution
vV — V such that ¢«(Az) = \e(z) for any X € C.

CLAIM: Let ¢+ be a real structure on a complex vector space V, and V¢t C V
the space of V-invariant vectors. Then dimp V! =dim¢V, and V = V*®p C.

Proof. Step 1: Let x1,...,xn, be a basis in V' and > ,a;xz; = 0 a linear
relation in V, with o; € C. Then 0 = ¢ (}; a4x;) = > ; @;x;. Averaging these
two relations, we obtain Y  Rea;x; = 0. Since x; are linearly independent
over R, this implies Rea; = 0 for all z. Applying the same argument to
Siv—1a;z; = 0, we obtain that Ima; = O for all <. Then the natural map
Vt@r C — V is injective.

Step 2: This map is also surjective. Indeed, for any v € V, one has %(v —+

t(v)) € V' and 51 (v —(v)) € V! hence v can b expressed as a linear

combination of vectors from V! with complex coefficients. =
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Real structures on complex manifolds

DEFINITION: A map WV : M — M on an almost complex manifold (M, )
is called antiholomorphic if d¥(I) = —I. A function f is called antiholo-
morphic if f is holomorphic.

EXERCISE: Prove that an antiholomorphic function on M defines an
antiholomorphic map from M to C.

EXERCISE: Let ¢« be a smooth map from a complex manifold M to itself.
Prove that . is antiholomorphic if and only if .*(f) is antiholomorphic for
any holomorphic function f on U C M.

DEFINITION: A real structure on a complex manifold M is an antiholo-
morphic involution : M — M.

EXAMPLE: Complex conjugation defines a real structure on C",
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