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Distributions (reminder)

DEFINITION: Distribution on a manifold is a sub-bundle B ⊂ TM

REMARK: Let Π : TM −→ TM/B be the projection, and x, y ∈ B some

vector fields. Then [fx, y] = f [x, y] − Dy(f)x. This implies that Π([x, y]) is

C∞(M)-linear as a function of x and y.

DEFINITION: The map [B,B]−→ TM/B we have constructed is called

Frobenius bracket (or Frobenius form); it is a skew-symmetric C∞(M)-

linear form on B with values in TM/B.

DEFINITION: A distribution is called integrable, or holonomic, or involu-

tive, if its Frobenius form vanishes.
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Smooth submersions (reminder)

DEFINITION: Let π : M −→M ′ be a smooth map of manifolds. This map
is called submersion if at each point of M the differential Dπ is surjective,
and immersion if it is injective.

CLAIM: Let π : M −→M ′ be a submersion. Then each m ∈ M has a
neighbourhood U ∼= V ×W , where V,W are smooth and π|U is a projection
of V ×W = U ⊂M to W ⊂M ′ along V .

EXERCISE: Deduce this result from the inverse function theorem.

EXERCISE: (“Ehresmann’s fibration theorem”)
Let π : M −→M ′ be a smooth submersion of compact manifolds. Prove that
π is a locally trivial fibration.

DEFINITION: Vertical tangent space TπM ⊂ TM of a submersion π :
M −→M ′ is the kernel of Dπ.

CLAIM: Let π : M −→M ′ be a submersion and TπM ⊂ TM the vertical
tangent space. Then TπM is an involutive subbundle.

Proof: Dπ([X,Y ]) = [Dπ(X), Dπ(Y )] = 0 for any X,Y ∈ kerDπ.
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Frobenius theorem (statement)

Frobenius Theorem: Let B ⊂ TM be a sub-bundle. Then B is involutive

if and only if each point x ∈ M has a neighbourhood U 3 x and a smooth

submersion U
π−→ V such that B is its vertical tangent space: B = TπM.

REMARK: The implication “B = TπM” ⇒ “Frobenius form vanishes”

was proven above.

DEFINITION: The fibers of π are called leaves, or integral submanifolds

of the distribution B. Globally on M , a leaf of B is a maximal connected

manifold Z ↪→ M which is immersed to M and tangent to B at each point.

A distribution for which Frobenius theorem holds is called integrable. If B is

integrable, the set of its leaves is called a foliation. The leaves are manifolds

which are immersed to M , but not necessarily closed.
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Proof of Frobenius Theorem: Lie group action

DEFINITION: A Lie group is a smooth manifold equipped with a group

structure in such a way that the group operations are smooth. An action of

a Lie group G on a manifold M is a smooth map G ×M −→M inducing the

group action.

DEFINITION: The Lie algebra of a Lie group is an algebra of left-invariant

vector fields. Since the left action of G on itself is free and transitive, the

Lie algebra of G is in bijective correspondence with TeG.

REMARK: Let ρ : G ×M −→M be a Lie group action on a manifold M .

Then dρ induces a map from the Lie algebra of G to the Lie algebra of the

manifold M . The corresponding vector fields are tangent to the orbits

of G.

Claim 1: Suppose that G is a Lie group acting on a manifold M . Let B ⊂ TM
be sub-bundle generated by the vector fields from Lie algebra of G. Then B

is integrable, that is, Frobenius theorem holds of B ⊂ TM .

Proof: The orbits of the G-action are tangent to B ⊂ TM .
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Proof of Frobenius Theorem: preliminaries

Exercise 1: Let u, v be commuting vector fields on a manifold M , and etu,

etv be corresponding diffeomorphism flows. Prove that etu, etv commute.

Remark 1: Let π : M −→M1 be a smooth submersion, and v ∈ TM a vector

fields which satisfies

dπ(v)|x = dπ(v)|y (∗)

for any x, y ∈ π−1(z) and any z ∈M1. In this case, the vector field dπ(v) is

well defined on M.

Exercise 2: Let π : M −→M1 be a smooth submersion, and u, v ∈ TM

vector fields which satisfy (*). Consider the vector fields u1 := dπ(u) and

v1 := dπ(v) ∈ TM1 defined as in Remark 1. Prove that the commutator

[u, v] satisfies (*) and, moreover, [u1, v1] = dπ([u, v]).
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Proof of Frobenius Theorem: commuting vector fields

Exercise 1: Let u, v be commuting vector fields on a manifold M , and etu,

etv be corresponding diffeomorphism flows. Prove that etu, etv commute.

Solution. Step 1: The statement is local, and trivial in any open set

where u = 0, hence it suffices to prove it in a coordinate chart where u is

non-degenerate. Since all non-degenerate vector fields can be linearized, we

can always assume that the vector field u is a coordinate vector field,

u = d/dx1. Then etu(x1, ..., xn) = (x1 + t, ..., xn).

Step 2: For any vector field v =
∑
i aid/dxi, one has

[
u,

∑
i ai

d
dxi

]
=

∑ dai
dx1

d
dxi

.

Therefore, [u, v] = 0 is equivalent to the coefficients ai being constant in

x1. This implies that the parallel transport along x1 preserves v. Therefore,

it also preserves etv, and the corresponding diffeomorphisms commute.
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Frobenius theorem (proof)

Frobenius Theorem: Let B ⊂ TM be a sub-bundle. Then B is involutive

if and only if each point m ∈ M has a neighbourhood U 3 m and a smooth

submersion U
π−→ V such that B is its vertical tangent space: B = TπM.

Proof. Step 1: The “if” part is clear. The statement of Frobenius Theo-

rem is local, hence we may replace M be a small neighbourhood of a given

point. We are going to show that B locally has a basis of commuting vector

fields. By Exercise 1, these vector fields can be locally integrated to a

commutative group action, and Frobenius Theorem follows from Claim 1.

Step 2: Consider a smooth submersion M −→M1 inducing an isomorphism

from B to TM1. Let ζ1, ..., ζk be the coordinate vector fields on M1. Since

dσ : B|x −→ Tσ(x)M1 is an isomorphism, there exist unique vector fields

ξ1, ..., ξk ∈ B such that dσ(ξi) = ζi. By Exercise 2, dσ([ξ1, ξj]) = [ζi, ζj] = 0.

However, [ξ1, ξj] is a section of B, and dσ : B|m −→ Tσ(m)M1 is an isomor-

phism, hence dσ([ξ1, ξj]) = 0 implies [ξ1, ξj] = 0. We have shown that B

admits a basis of commuting vector fiels.
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Complex manifolds (reminder)

DEFINITION: A holomorphic function on Cn is a function f : Cn −→ C
such that df is complex linear, that is df ∈ Λ1,0(M).

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally

isomorphic to an open ball in Cn with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to Cn

and transition functions (being coordinate functions for one ball considered

in other coordinate system) are holomorphic.
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Integrability of almost complex structures (reminder)

DEFINITION: An almost complex structure I on a manifold is called inte-

grable if any point of M has a neighbourhood U diffeomorphic to an open

subset of Cn, in such a way that the almost complex structure I is induced

by the standard one on U ⊂ Cn.

CLAIM: Complex structure on a manifold M uniquely determines an

integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of

holomorphic functions OM , and OM is determined by I as explained above.

Therefore, an integrable almost complex structure defines a complex struc-

ture. Conversely, every complex structure gives a sub-bundle in Λ1,0(M) =

dOM ⊂ Λ1(M,C), and such a sub-bundle defines an almost complex struc-

ture by Remark 1.
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Formal integrability (reminder)

DEFINITION: An almost complex structure I on (M, I) is called formally
integrable if [T1,0M,T1,0] ⊂ T1,0, that is, if T1,0M is involutive.

DEFINITION: The Frobenius form Ψ ∈ Λ2(Λ1,0M) ⊗ T0,1M is called the
Nijenhuis tensor.

CLAIM: If a complex structure I on M is integrable, it is formally
integrable.

Proof: Locally, the bundle T1,0(M) is generated by d/dzi, where zi are com-
plex coordinates. These vector fields commute, hence satisfy [d/dzi, d/dzj] ∈
T1,0(M). This means that the Frobenius form vanishes.

THEOREM: (Newlander-Nirenberg)
A complex structure I on M is integrable if and only if it is formally
integrable.

Proof: (real analytic case) next lecture, probably.

REMARK: In dimension 1, formal integrability is automatic. Indeed,
T1,0M is 1-dimensional, hence all skew-symmetric 2-forms on T1,0M vanish.
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Real analytic manifolds

DEFINITION: A real analytic function on an open set U ⊂ Rn is a function

which admits a Taylor expansion near each point x ∈ U :

f(z1 + t1, z2 + t2, ..., zn + tn) =
∑

i1,...,in

ai1,...,int
i1
1 t

i2
2 ...t

in
n .

(here we assume that the real numbers ti satisfy |ti| < ε, where ε depends on

f and M).

REMARK: Clearly, real analytic functions constitute a sheaf.

DEFINITION: A real analytic manifold is a ringed space which is locally

isomorphic to an open ball B ⊂ Rn with the sheaf of of real analytic functions.
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Involutions

DEFINITION: An involution is a map ι : M −→M such that ι2 = IdM .

EXERCISE: Prove that any linear involution on a real vector space V
is diagonalizable, with eigenvalues ±1.

Theorem 1: Let M be a smooth manifold, and ι : M −→M an involutiin.
Then the fixed point set N of ι is a smooth submanifold.

Proof. Step 1: Inverse function theorem. Let m ∈ M be a point on a
smooth k-dimensional manifold and f1, ..., fk functions on M such that their
differentials df1, ..., dfk are linearly independent in m. Then f1, ..., fk define a
coordinate system in a neighbourhood of a, giving a diffeomorphism of
this neighbourhood to an open ball.

Step 2: Assume that dι has k eigenvalues 1 on TmM , and n− k eigenvalues
-1. Choose a coordinate system x1, ..., xn on M around a point m ∈ N such
that dx1|m, ..., dxk|m are ι-invariant and dxk+1|m, ..., dxn|m are ι-anti-invariant.
Let y1 = x1 + ι∗x1, y2 = x2 + ι∗x2, ... yk = xk + ι∗xk, and yk+1 = xk+1 −
ι∗xk+1, yk+2 = xk+2 − ι∗xk+2, ... yn = xn − ι∗xn. Since dxi|m = dyi|m, these
differentials are linearly independent in m. By Step 1, functions yi define an
ι-invariant coordinate system on an open neighbourhood of m, with N
given by equations yk+1 = yk+2 = ... = yn = 0.
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Real structures on complex vector spaces

DEFINITION: An involution is a map ι : M −→M such that ι2 = IdM . A

real structure on a complex vector space V = Cn is an R-linear involution

ι : V −→ V such that ι(λx) = λι(x) for any λ ∈ C.

CLAIM: Let ι be a real structure on a complex vector space V , and V ι ⊂ V

the space of V -invariant vectors. Then dimR V
ι = dimC V , and V = V ι⊗RC.

Proof. Step 1: Let x1, ..., xn be a basis in V ι, and
∑
iαixi = 0 a linear

relation in V , with αi ∈ C. Then 0 = ι (
∑
iαixi) =

∑
iαixi. Averaging these

two relations, we obtain
∑

Reαixi = 0. Since xi are linearly independent

over R, this implies Reαi = 0 for all i. Applying the same argument to∑
i
√
−1 αixi = 0, we obtain that Imαi = 0 for all i. Then the natural map

V ι ⊗R C−→ V is injective.

Step 2: This map is also surjective. Indeed, for any v ∈ V , one has 1
2(v +

ι(v)) ∈ V ι and
√
−1
2 (v − ι(v)) ∈ V ι, hence v can b expressed as a linear

combination of vectors from V ι with complex coefficients.
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Real structures on complex manifolds

DEFINITION: A map Ψ : M −→M on an almost complex manifold (M, I)

is called antiholomorphic if dΨ(I) = −I. A function f is called antiholo-

morphic if f is holomorphic.

EXERCISE: Prove that an antiholomorphic function on M defines an

antiholomorphic map from M to C.

EXERCISE: Let ι be a smooth map from a complex manifold M to itself.

Prove that ι is antiholomorphic if and only if ι∗(f) is antiholomorphic for

any holomorphic function f on U ⊂M.

DEFINITION: A real structure on a complex manifold M is an antiholo-

morphic involution τ : M −→M .

EXAMPLE: Complex conjugation defines a real structure on Cn.
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