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Real structures on complex manifolds (reminder)

DEFINITION: A smooth map Ψ : M −→N on an almost complex mani-

fold (M, I) is called antiholomorphic if dΨ(I) = −I. A function f is called

antiholomorphic if f is holomorphic.

EXERCISE: Prove that an antiholomorphic function on M defines an

antiholomorphic map from M to C.

EXERCISE: Prove that a map Ψ : M −→N of almost complex manifolds is

antiholomorphic if and only if Ψ∗(Λ0,1(N)) ⊂ Λ1,0(M).

EXERCISE: Let ι be a smooth map from a complex manifold M to itself.

Prove that ι is antiholomorphic if and only if ι∗(f) is antiholomorphic for

any holomorphic function f on U ⊂M.

DEFINITION: A real structure on a complex manifold M is an antiholo-

morphic involution τ : M −→M .

EXAMPLE: Complex conjugation defines a real structure on Cn.
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Fixed points of real structures on manifolds (reminder)

PROPOSITION: Let M be a complex manifold and ι : M −→M a real
structure. Denote by M ι the fixed point set of ι. Then, for each x ∈ M ι

there exists a ι-invariant coordinate neighbourhood with holomorphic
coordinates z1, ..., zn, such that ι∗(zi) = zi.

Proof. Step 1: For each basis of 1-forms ν1, ..., νn ∈ Λ1,0
x (M), there exists

a set of holomorphic coordinate functions u1, ..., un such that dui|x = νi. To
obtain such a coordinate system, we chose any coordinate system v1, ..., vn
and apply a linear transform mapping dvi|x to νi.

Step 2: The differential dι acts on TxM as a real structure. Using the
structure theorem about real structures, we obtain that any real basis ζ1, .., ζn
of T ∗xM

ι is a complex basis in the complex vector space T ∗xM . Then νi :=
ζi +

√
−1 I(ζi)} is a basis in Λ1,0

x (M). Choose the coordinate system u1, ..., un
such that dui|x = νi (Step 1). Replacing ui by zi := ui + ι∗(ui), we obtain
a holomorphic coordinate system zi on M (compare with Theorem 1 in
Lecture 4) which satisfies ι∗(zi) = zi.

DEFINITION: Let {Ui} be an complex atlas on M . Assume that any Ui
intersecting M ι satisfies the conclusion of this proposition. Then {Ui} is
called compatible with the real structure.
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Real analytic manifolds and real structures (reminder)

PROPOSITION: Let M ι ⊂ M be a fixed point set of an antiholomorphic

involution ι on a complex manifold M , {Ui} a complex analytic atlas, and

Ψij : Uij −→ Uij the gluing functions. Assume that the atlas Ui is compatible

with the real structure, in the sense of the previous proposition. Then all Ψij

are real analytic on M ι, and define a real analytic atlas on the manifold

M ι.

Proof: All gluing functions from one coordinate system compatible with the

real structure to another commute with ι, acting on coordinate functions

as the complex conjugation. This gives Ψij(zi) = Ψij(zi). Therefore, Ψij

preserve M ι, and are expressed by real-valued functions on M ι.
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Real analytic manifolds and real structures 2 (reminder)

PROPOSITION: Any real analytic manifold can be obtained from this

construction.

Proof. Step 1: Let {Ui} be a locally finite atlas of a real analytic manifold

M , and Ψij : Uij −→ Uij the gluing maps. We realize Ui as an open ball with

compact closure in Re(Cn) = Rn. By local finiteness, there are only finitely

many such Ψij for any given Ui. Denote by Bε an open ball of radius ε in the

n-dimensional real space im(Cn).

Step 2: Let ε > 0 be a sufficiently small real number such that all Ψij can be

extended to gluing functions Ψ̃ij on the open sets Ũi := Ui ×Bε ⊂ Cn. Then

(Ũi,Ψij) is an atlas for a complex manifold MC. Since all Ψij are real,

they are preserved by the natural involution acting on Bε as −1 and on Ui as

identity. This involution defines a real structure on MC. Clearly, M is the set

of its fixed points.

5



Complex geometry, lecture 6 M. Verbitsky

Complexification

DEFINITION: Let MR be a real analytic manifold, and MC a complex analytic
manifold equipped with an antiholomorphic involution, such that MR is the
set of its fixed points. Then MC is called complexification of MR.

DEFINITION: A tensor on a real analytic manifold is called real analytic
if it is expressed locally by a sum of coordinate monomials with real analytic
coefficients.

CLAIM: Let MR be a real analytic manifold, (MC, ι) its complexification,
and Φ a tensor on MR. Then Φ is real analytic if and only if Φ can
be extended to a holomorpic tensor ΦC in some neighbourhood of MR
inside MC. Moreover, Φ is real on MR if ι∗ΦC = ΦC.

Proof: The “if” part is clear, because every complex analytic tensor on MC
is by definition real analytic on MR.

Conversely, suppose that Φ is expressed in coordinates by a sum of tensorial
monomials with real analytic coefficients fi. Let {Ui} be a cover of M , and
Ũi := Ui × Bε the corresponding cover of a neighbourhood of MR in MC
constructed above. Chosing ε sufficiently small, we can assume that the
Taylor series giving coefficients of Φ converges on each Ũi. We define ΦC
as the sum of these series.
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Categories

DEFINITION: A category C is a collection of data called “objects” and

“morphisms between objects” which satisfies the axioms below.

DATA.

Objects: A class Ob(C) of objects of C.

Morphisms: For each X,Y ∈ Ob(C), one has a set Mor(X,Y ) of mor-

phisms from X to Y .

Composition of morphisms: For each ϕ ∈ Mor(X,Y ), ψ ∈ Mor(Y, Z)

there exists the composition ϕ ◦ ψ ∈Mor(X,Z)

Identity morphism: For each A ∈ Ob(C) there exists a morphism IdA ∈
Mor(A,A).

AXIOMS.

Associativity of composition: ϕ1 ◦ (ϕ2 ◦ ϕ3) = (ϕ1 ◦ ϕ2) ◦ ϕ3.

Properties of identity morphism: For each ϕ ∈ Mor(X,Y ), one has

Idx ◦ϕ = ϕ = ϕ ◦ IdY
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Categories (2)

DEFINITION: Let X,Y ∈ Ob(C) – objects of C. A morphism ϕ ∈Mor(X,Y )

is called an isomorphism if there exists ψ ∈Mor(Y,X) such that ϕ ◦ ψ = IdX
and ψ ◦ ϕ = IdY . In this case, the objects X and Y are called isomorphic.

Examples of categories:

Category of sets: its morphisms are arbitrary maps.

Category of vector spaces: its morphisms are linear maps.

Categories of rings, groups, fields: morphisms are homomorphisms.

Category of topological spaces: morphisms are continuous maps.

Category of smooth manifolds: morphisms are smooth maps.
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Functors

DEFINITION: Let C1,C2 be two categories. A covariant functor from C1

to C2 is the following set of data.

1. A map F : Ob(C1)−→ Ob(C2).

2. A map F : Mor(X,Y )−→ Mor(F (X), F (Y )) defined for any pair of

objects X,Y ∈ Ob(C1).

These data define a functor if they are compatible with compositions, that

is, satisfy F (ϕ) ◦ F (ψ) = F (ϕ ◦ ψ) for any ϕ ∈ Mor(X,Y ) and ψ ∈ Mor(Y, Z),

and map identity morphism to identity morphism.
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Small categories

REMARK: This way, one could speak of category of all categories, with

categories as objects and functors as morphisms.

A caution To avoid set-theoretic complications, Grothendieck added another

axiom to set theory, “universum axiom”, postulating existence of “univer-

sum”, a very big set, and worked with “small categories” – categories where

the set of all objects and sets of morphisms belong to the universum. In this

sense, “category of all categories” is not a “small category”, because the set

of its object (being comparable to the set of all subsets of the universum) is

too big to fit in the universum.

In practice, mathematicians say “category” when they mean “small category”,

tacitly assuming that any given category is “small”. This is why not many

people call “category of all categories” a category: nobody wants to deal

with set-theoretic complications.
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Example of functors

A “natural operation” on mathematical objects is usually a functor.

Examples:

1. A map X −→ 2X from the set X to the set of all subsets of X is a functor

from the category Sets of sets to itself.

2. A map M −→M2 mapping a topological space to its product with itself is

a functor on topological spaces.

3. A map V −→ V ⊕V is a functor on vector spaces; same for a map V −→ V ⊗V
or V −→ (V ⊕ V )⊗ V .

4. Identity functor from any category to itself.

5. A map from topological spaces to Sets, putting a topological space to the

set of its connected components.

EXERCISE: Prove that it is a functor.
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Equivalence of functors

DEFINITION: Let X,Y ∈ Ob(C) be objects of a category C. A mprphism

ϕ ∈ Mor(X,Y ) is called an isomorphism if there exists ψ ∈ Mor(Y,X) such

that ϕ◦ψ = IdX and ψ ◦ϕ = IdY . In this case X and Y are called isomorphic.

DEFINITION: Two functors F,G : C1 −→ C2 are called equivalent if for any

X ∈ Ob(C1) we are given an isomorphism ΨX : F (X)−→G(X), in such a way

that for any ϕ ∈Mor(X,Y ), one has F (ϕ) ◦ΨY = ΨX ◦G(ϕ).

REMARK: Such commutation relations are usually expressed by commu-

tative diagrams. For example, the condition F (ϕ) ◦ ΨY = ΨX ◦ G(ϕ) is

expressed by a commutative diagram

F (X)
F (ϕ)−−−→ F (Y )

ΨX

y yΨY

G(X)
G(ϕ)−−−→ G(Y )
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Equivalence of categories

DEFINITION: A functor F : C1 −→ C2 is called equivalence of categories

if there exists a functor G : C2 −→ C1 such that the compositions G ◦ F and

G ◦ F are equivaleent to the identity functors IdC1
, IdC2

.

REMARK: It is possible to show that this is equivalent to the following

conditions: F defines a bijection on the set of isomorphism classes of

objects of C1 and C2, and a bijection

Mor(X,Y )−→ Mor(F (X), F (Y )).

for each X,Y ∈ Ob(C1).

REMARK: From the point of view of category theory, equivalent cate-

gories are two instances of the same category (even if the cardinality of

corresponding sets of objects is different).
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Germ of a complex manifold

DEFINITION: Let K ⊂M be a closed subset of a complex manifold, home-

omorphic to K1 ⊂ M1, where M1 is also a complex manifold. Fixing the

homeomorphism K ∼= K1, we may identify these sets and consider K as a

subset M1. We say that M and M1 have the same germ in K if there

exist biholomorphic open subsets U1 ⊂M1 and U ⊂M containing K, with the

biholomorphism ϕ : U −→ U1 identity on K.

DEFINITION: Germ of a manifold M in K ⊂M is an equivalence class of

open subsets U ⊂M containing K, with this equivalence relation.

DEFINITION: Consider category Cι, with objects complex manifolds (M, ι)

equipped with a real structure, and morphisms holomorphic maps commuting

with ι.

THEOREM: (Grauert) Category of real analytic manifolds is equivalent

to the category of germs of M ∈ Cι in M ι ⊂M.

EXERCISE: Prove this theorem.
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Hans Grauert

Hans Grauert in Bonn, 2000

(8.02.1930 - 4.09.2011)
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Extension of tensors to a complexification

Lemma 1: Let X be an open ball in Cn equipped with the standard anticom-

plex involution, XR = X ∩ Rn its fixed point set, and α a holomorphic tensor

on X vanishing in XR. Then α = 0.

Proof: Any holomorphic function which vanishes on Rn has all its deriva-

tives vanishing. Therefore its Taylor serie vanish. Such a function vanishes

on Cn by analytic continuation principle. This argument can be applied to all

coefficients of α.

DEFINITION: An almost complex structure I on a real analytic manifold is

real analytic if I is a real analytic tensor.

COROLLARY: Let (M, I) be a real analytic almost complex manifold, MC
its complexification, and IC : TMC −→ TMC the holomorphic extension of I

to MC. Then I2
C = − Id.

Proof: The tensor I2
C + Id is holomorphic and vanishes on MR, hence the

previous lemma can be applied.
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Underlying real analytic manifold

REMARK: A complex analytic map Φ : Cn −→ Cn is real analytic as a

map R2n −→ R2n. Indeed, the coefficients of Φ are real and imaginary parts of

holomorphic functions, and real and imaginary parts of holomorphic functions

can be expressed as Taylor series of the real variables.

DEFINITION: Let M be a complex manifold. The underlying real analytic

manifold MR is the same manifold, with the same gluing functions, considered

as real analytic maps.

REMARK: The sheaf of real analytic functions on MR can be defined as

the sheaf of converging power series generated by holomorphic and

antiholomorphic functions. Indeed, such functions are real analytic in any

of the real analytic map; conversely, any real analytic function on MR
is a converging power serie on Re zi, Im zi, where zi are holomorphic

coordinates on M.
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Complexification of the underlying real analytic manifold

DEFINITION: Let M be a complex manifold. The complex conjugate

manifold is the same manifold with almost complex structure −I and anti-

holomorphic functions on M holomorphic on M .

CLAIM: Let M be an integrable almost complex manifold. Denote by MR
its underlying real analytic manifold. Then a complexification of MR can

be given as MC := M ×M, with the anticomplex involution τ(x, y) = (y, x).

Proof: Clearly, the fixed point set of τ is the diagonal, identified with MR = M

as usual. Both holomorphic and antiholomorphic functions on MR are obtained

as restrictions of holomorphic functions from MC, hence the sheaf of real

analytic functions on MR is a subsheaf of OMC of holomorphic functions on

MC restricted to MR.
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Integrability of almost complex structures (reminder)

DEFINITION: An almost complex structure I on a manifold is called inte-

grable if any point of M has a neighbourhood U diffeomorphic to an open

subset of Cn, in such a way that the almost complex structure I is induced

by the standard one on U ⊂ Cn.

CLAIM: Complex structure on a manifold M uniquely determines an

integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of

holomorphic functions OM , and OM is determined by I as explained above.

Therefore, an integrable almost complex structure defines a complex struc-

ture. Conversely, every complex structure gives a sub-bundle in Λ1,0(M) =

dOM ⊂ Λ1(M,C), and such a sub-bundle defines an almost complex struc-

ture by Remark 1 in Lecture 1.
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Formal integrability (reminder)

DEFINITION: An almost complex structure I on (M, I) is called formally
integrable if [T1,0M,T1,0] ⊂ T1,0, that is, if T1,0M is involutive.

DEFINITION: The Frobenius form Ψ ∈ Λ2(Λ1,0M) ⊗ T0,1M is called the
Nijenhuis tensor.

CLAIM: If a complex structure I on M is integrable, it is formally
integrable.

Proof: Locally, the bundle T1,0(M) is generated by d/dzi, where zi are com-
plex coordinates. These vector fields commute, hence satisfy [d/dzi, d/dzj] ∈
T1,0(M). This means that the Frobenius form vanishes.

THEOREM: (Newlander-Nirenberg)
A complex structure I on M is integrable if and only if it is formally
integrable.

Proof: (real analytic case) this lecture.

REMARK: In dimension 1, formal integrability is automatic. Indeed,
T1,0M is 1-dimensional, hence all skew-symmetric 2-forms on T1,0M vanish.
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Holomorphic and antiholomorphic foliations

DEFINITION: Let B ⊂ TM be a sub-bundle. The foliation associated

with B is a family of submanifolds Xt ⊂ U , defined for each sufficiently small

subset of M , called the leaves of the foliation, such that B is the bundle of

vectors tangent to Xt. In this case, Xt are called the leaves of the foliation.

REMARK: The famous “Frobenius theorem” says that B is involutive if

and only if it is tangent to a foliation.

REMARK: Let (M, I) be a real analytic almost complex manifold, and MC
its complexification. Replacing MC by a smaller neighbourhood of M , we may

assume that the tensor I is extended to an endomorphism I : TMC −→ TMC,

I2 = − Id. Since TMC is a complex vector bundle, I acts there with the

eigenvalues
√
−1 and −

√
−1 , giving a decomposition TMC = T1,0MC ⊕

T0,1MC

DEFINITION: Holomorphic foliation is a foliation tangent to T1,0MC, an-

tiholomorphic foliation is a foliation tangent to T0,1MC.
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Antiholomorphic foliation on MC = M ×M.

REMARK: Let (M, I) be a integrable almost complex manifold, MC = M×M
its complexification, and π, π projections of MC to M and M . Then the fibers
of π is a holomorphic foliation, and the fibers of π is a holomorphic
foliation.

REMARK: Let TMC = T ′⊕T ′′ be a decomposition of TMC onto part tangent
to fibers of π and tangent to fibers of π. On MR the decomposition
TMC = T ′⊕T ′′ coincides with the decomposition TM⊗C = T1,0M⊕T0,1M.

COROLLARY: Let (M, I) be a integrable almost complex manifold. Then
I is a real analytic almost complex structure.

Proof: Extend I to an operator on MC acting as
√
−1 on T ′ and −

√
−1 on T ′′.

This operator is complex analytic because the decomposition TM = T ′ ⊕ T ′′
is holomorphic.

Corollary 1: Let (M, I) be a real analytic almost complex manifold. Then
holomorphic functions on MC which are constant on the leaves of antiholo-
moirphic foliation restrict to holomorphic functions on (M, I) ⊂MC.

Proof: Such functions are constant in the (0,1)-direction on TM ⊗ C.
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Integrability of real analytic almost complex structure

THEOREM: (Newlander-Nirenberg for real analytic manifolds) Let (M, I)

be a real analytic almost complex manifold, dimRM = 2. Then M is inte-

grable.

Proof. Step 1: Consider the complexification MC of M , and let TMC =

T1,0MC⊕T0,1MC be the decomposition defined above. By Frobenius theorem,

there exists a foliation tangent to T0,1MC and one tangent to T1,0MC. Since

the leaves of these foliations are transversal, locally MC is a product of M ′

and M ′′ which are identified with the space of leaves of T0,1MC and

T1,0MC.

Step 2: Locally, functions on M ′ can be lifted to M ′×M ′′ = MC, giving func-

tions which are constant on the leaves of the foliation tangent to T0,1MC. By

Corollary 1, such functions are holomorphic on (M, I). Choose a collection of

n = 1
2 dimRM holomorphic functions f1, ...fn on MC which are constant on the

leaves of T0,1MC and have linearly independent differentials in x ∈ M ⊂ MC.

By inverse function theorem, f1, ..., fn is a holomorphic coordinate system

in a neigbourhood of x ∈ (M, I), and the transition functions between such

coordinate systems are by construction holomorphic.
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