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Torsion (reminder)

DEFINITION: Let ∇ be a connection on Λ1M ,

Λ1 ∇−→ Λ1M ⊗ Λ1M.

Torsion of ∇ T∇ : Λ1M −→ Λ2M is a map ∇ ◦ Alt−d, where Alt : Λ1M ⊗
Λ1M −→ Λ2M is exterior multiplication.

REMARK:

T∇(fη) = Alt(f∇η + df ⊗ η)− d(fη)

=f

[
Alt(∇η)− dη

]
+ df ∧ η − df ∧ η = fT∇(η).

Therefore T∇ is linear.

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ on
TM is called orthogonal if ∇(g) = 0, and Levi-Civita connection if it is
orthogonal and has zero torsion.

THEOREM: (“the fundamental theorem of Riemannian geometry”)
Every Riemannian manifold admits a Levi-Civita connection, and it is
unique.

Proof: Lecture 8.
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Gregorio Ricci-Curbastro, Tullio Levi-Civita

Gregorio Ricci-Curbastro, Tullio Levi-Civita,
1853-1925 1873-1941

...With his former student Tullio Levi-Civita, he wrote his most famous single

publication, a pioneering work on the calculus of tensors, signing it as Gre-

gorio Ricci. This appears to be the only time that Ricci-Curbastro used the

shortened form of his name in a publication, and continues to cause confusion.
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Torsion and commutator of vector fields (reminder)

REMARK: Cartan formula gives

T∇(η)(X,Y ) =∇X(η)(Y )−∇Y (η)(X)− dη(X,Y )

=∇X(η)(Y )−∇Y (η)(X)− η([X,Y ])− LieX(η(Y )) + LieY (η(X)).

On the other hand, ∇X(η)(Y ) = LieX(η(Y )) − η(∇X(Y )). Comparing the

equations, we obtain

T∇(η)(X,Y ) = η

(
∇X(Y )−∇Y (X)− [X,Y ]

)
.

Torsion is often defined as a map Λ2TM −→ TM using the formula

∇X(Y )−∇Y (X)− [X,Y ].

We have just proved

CLAIM: The torsion tensor ∇X(Y )−∇Y (X)−[X,Y ] is dual to the torsion

∇ ◦Alt−d : Λ1M −→ Λ2M defined above.

4



Complex geometry, lecture 9 M. Verbitsky

Linearization of the torsion (reminder)

REMARK: Consider the space A(Λ1M) of connections on Λ1M . The torsion

defines an affine map

A(Λ1M)−→ Hom(Λ1M,Λ2M) = TM ⊗ Λ2M.

because T (∇+α) = T (∇)+Alt12(α), where Alt12 : Λ1M⊗End(Λ1M)−→ Λ2M⊗
TM is antisymmetrization in the first two indices.

DEFINITION: Linearized torsion is a map

Tlin : Λ1(M)⊗ Λ1(M)⊗ TM −→ Λ2M ⊗ TM

obtained as a linearization of the torsion map. It is equal to Alt12.
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Existence of orthogonal connections (reminder)

CLAIM: Let B be a vector bundle equipped with a scalar product. Then B

admits an orthogonal connection.

Proof: Chose a covering {Ui}, such that B is trivial on each Ui and admits an

orthonormal basis in each Ui. On each Ui we chose a connection ∇i preserving

this basis. Let ψi be a partition of unit subjugated to {Ui}. Then the formula

∇(b) :=
∑
∇i(ψib) defines an orthogonal connection.

EXERCISE: Let ω ∈ Λ2B∗ be a non-degenerate skew-symmetric 2-form on

B. Use the same argument to prove that there exists a connection ∇ :

B −→B ⊗ Λ1M such that ∇(ω) = 0.

THEOREM: (“the fundamental theorem of Riemannian geometry”)

Every Riemannian manifold admits a Levi-Civita connection, and it is

unique.

Proof: See the next slide.
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Levi-Civita connection (reminder)

Proof. Step 1: Chose an orthogonal connection ∇0 on Λ1M . The space A

of orthogonal connections is affine and its linearization is Λ1M⊗so(TM). We
shall identify so(TM) and Λ2M . Then A is an affine space over Λ1M⊗Λ2M .

Step 2: Then the linearized torsion map is

Tlin : Λ1M ⊗ so(TM) = Λ1(M)⊗ Λ2M
Alt12−→ Λ2M ⊗ Λ1M = Λ2M ⊗ TM.

It is an isomorphism. Indeed, on the right and on the left there are bundles
of the same rank, hence it would suffice to show that Tlin = Alt12 is injective.
However, if η ∈ ker Tlin, it is a form which is symmetric on first two argu-
ments and antisymmetric on the second two, giving η(x, y, z) = η(y, x, z) =
−η(y, z, x). This gives σ(η) = −η, where σ is a cyclic permutation of the
arguments. Since σ3 = 1, this implies η = 0.

Step 3: We have shown that an orthogonal connection is uniquely de-
termined by its torsion. Indeed, torsion map is an isomorphism of affine
spaces.

Step 4: Let ∇ := ∇0 − T−1
lin (T∇0

). Then T∇ = T∇0
− Tlin(T−1

lin (T∇0
)) = 0,

hence ∇ is torsion-free.
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Lie algebra and tensors (reminder)

DEFINITION: Let V be a representation of a Lie algebra g. Then V ∗

is also a representation; the action of g on V ∗ is given by the formula
〈g(x), λ〉 = −〈x, g(λ)〉, for all x ∈ V, λ ∈ V ∗. A tensor product of two g-
representations V1, V2 is also a g-representation, with the action of g defined
by g(x ⊗ y) = g(x) ⊗ y + x ⊗ g(y). This defines the action of g on all tensor
powers V ⊗i⊗ (V ∗)⊗j, which are called the tensor representations of g. We
say that g preserves a tensor Φ if g(Ψ) = 0 for all g ∈ g.

EXAMPLE: The algebra of all g ∈ End(V ) preserving a non-degenerate
bilinear symmetric form h ∈ Sym2(V ∗) is called orthogonal algebra, denoted
so(V, h) or so(V ). Since g ∈ so(V ) if and only if h(g(x), y) = −h(x, g(y)), so(V )
is represented by antisymmetric matrices.

CLAIM: Let h ∈ Sym2(V ∗) be a non-degenerate bilinear symmetric form.
Using h, we identify V and V ∗. This gives an isomorphism V ∗ ⊗ V ∗ τ−→
V ∗ ⊗ V = End(V ). Then τ(Λ2V ∗) = so(V ).

Proof: For any f ∈ End(V ), the 2-form τ−1(f) is written as x, y −→ h(f(x), y).
By definition, f ∈ so(V ) means that h(f(x), y) = −h(x, f(y)) and this happens
if and only if τ−1(f) is antisymmetric.
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The Lie algebra u(V )

EXAMPLE: Let (V, I) be a real vector space with a complex structure map

I : V −→ V , I2 = − Id, and a Hermitian (that is, I-invariant) scalar product.

Define the unitary Lie algebra u(V ) = {f ∈ End(V ) | f(I) = f(h) = 0}.
This is the same as the space of I-invariant orthogonal matrices.

CLAIM: Consider the natural map V ∗⊗V ∗ τ−→ V ∗⊗V = End(V ) associated

with h. Then τ(Λ1,1(V ∗)) = u(V ).

Proof: The isomorphism τ is I-invariant, because h is I-invariant. Then

τ−1(u(V )) is the space of I-invariant 2-forms, which is precisely Λ1,1(V ∗).

COROLLARY: Let B be a bundle with a Hermitian structure product. Then

the space of orthogonal connections on B an affine space over Λ1M ⊗
u(B).
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The space of intrinsic torsion

REMARK: Let Φ be a tensor on a manifold, and ∇ a connection preserving

Φ. Denote by a(M) ⊂ End(TM) the bundle of Lie algebras consisting of all

A ∈ End(TM) such that A(Φ) = 0. Clearly, a connection ∇1 preserves Φ if

and only if ∇−∇1 ∈ Λ1(M)⊗ a(M). In other words, connections preserving

Φ are an affine space over Λ1(M)⊗ a(M).

DEFINITION: Consider the linearized torsion operator Alt12 : Λ1(M) ⊗
a(M)−→ Λ2(M)⊗ TM . The quotient bundle

Ta :=
Λ2(M)⊗ TM

Alt12(Λ1(M)⊗ a(M))

is called the space of intrinsic torsion for a(M)-valued connections.

DEFINITION: Let Φ be a tensor on a manifold, and ∇ a connection pre-

serving Φ. Intrinsic torsion of Φ is the image of the torsion of ∇ in Ta.
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Intrinsic torsion

THEOREM: Let Φ be a tensor on a manifold, ∇ a connection preserving Φ,

and τ(Φ) the intrinsic torsion. Then τ(Φ) is independent from the choice

of ∇. Moreover, M admits a torsion-free connection preserving Φ if and only

if τ(Φ) = 0.

Proof. Step 1: For any ∇ and ∇′ preserving Φ, and A := ∇ − ∇′, one has

A ∈ Λ1(M) ⊗ a(M), hence T∇ − T∇′ ∈ Alt12(Λ1(M) ⊗ a(M)). Therefore, T∇
represents the same vector in Ta as T∇′

Step 2: The map ∇ 7→ T∇ takes an affine space of all connections preserving

Φ and puts it to an affine subspace W ⊂ Λ2(M) ⊗ TM . The linearization of

W is the image of Tlin, hence W is an affine space im(Tlin) +T∇. It contains

zero if and only if T∇ ∈ im(Tlin).

EXAMPLE: The space of intrinsic torsion for so(TM) is zero (prove it).

EXAMPLE: The space of intrinsic torsion for the symplectic Lie algebra

sp(TM) is naturally identified with the space Λ3(M) (this is proven later

today).
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Symplectic connections

DEFINITION: When B = Λ1M , consider the exterior multiplication map
Alt : ΛiM ⊗ Λ1M −→ Λi+1M . Define the torsion map T∇(η) := Alt(∇(η))−
dη. Then T∇ is equal to torsion on Λ1M and satisfies the Leibnitz identity:

T∇(λ ∧ µ) = T∇(λ) ∧ µ+ (−1)λ̃λ ∧ T∇(µ) (∗∗)
DEFINITION: An almost symplectic structure on a manifold is a non-
degenerate 2-form.

EXERCISE: Let (M,ω) be an almost symplectic manifold. Prove that there
exists a connection ∇ on TM such that ∇(ω) = 0. We call such connection
a symplectic connection.

Lemma 1: Let ω ∈ Λ2M be an almost symplectic structure, and ∇ a sym-
plectic connection. Using ω, we will identify TM and Λ1M , and then we can
consider the torsion tensor T ∈ Λ2M ⊗ TM of ∇ as τ ∈ Λ2M ⊗ Λ1M . Let
ρ := Alt(τ). Then dω = −2ρ.

Proof: Clearly, T∇(ω) = −dω, because ∇(ω) = 0 and T∇(ω) = Alt(∇(ω))−dω.
By (**), we have T∇(ω) = Alt(A1(ω ⊗ T) − A2(ω ⊗ T)), where Ai is the
convolution of i-th component of ω⊗T∇ and the last, taking Λ2M⊗Λ2M⊗TM
to Λ2M⊗Λ1M and Λ1M⊗Λ2M . Clearly, Alt(A1(ω⊗T∇)) = −Alt(A2(ω⊗T∇)) =
ρ. This gives T∇(ω) = dω = −2ρ.
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Torsion of almost symplectic structures

Theorem 1: Let (M,ω) be an almost symplectic manifold, and ∇ a symplectic
connection. Denote its torsion by T∇ ∈ Λ2M ⊗ TM . Using the form ω, we
identify TM and Λ1M and consider T∇ as a section τ ∈ Λ2M⊗Λ1M . Denote by
Alt123 the multiplication map Λ2M⊗Λ1M −→ Λ3M . Then Alt123(τ) = −1

2dω.
Moreover, any tensor T ∈ Λ2M ⊗ Λ1M such that Alt123(T) = −1

2dω can be
realized as a torsion of a symplectic connection.

Proof. Step 1: Let sp(TM) be the Lie algebra of all tensors a ∈ End(TM)
such that ω(a(x), y) = −ω(x, a(y)). The same argument as the one used to
show so(TM) = Λ2M shows that sp(TM) = Sym2(Λ1M).

Step 2: Under this identification, the linearized torsion map Tlin : Λ1M ⊗
sp(TM)−→ Λ2M ⊗ TM becomes Alt12 : Λ1M ⊗ Sym2(Λ1M)−→ Λ2M ⊗ Λ1M .
Kernel of this map is clearly Sym3(Λ1M). This gives an exact sequence
(check it).

0−→ Sym3(Λ1M) ↪→ Λ1M ⊗ Sym2(Λ1M)
Alt12−→ Λ2M ⊗ Λ1M

Alt123−→ Λ3M −→ 0.

We identified Λ3M with the space of intrinsic torsion for sp(TM).

Step 3: Alt123(τ) = −1
2dω (Lemma 1). This is precisely the intrinsic torsion

of ∇.
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