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Torsion (reminder)

DEFINITION: Let V be a connection on AL\,
Al Y Al e AL

Torsion of V Ty : A'M — A2M is a map Vo Alt—d, where Alt : AlM ®
ALM — AN2M is exterior multiplication.

REMARK:
Ty (fn) =AR(fVn+df @n) —d(fn)
=f[Alt(Vn) — dn] +df An—df A= fIv(n).

Therefore Ty is linear.

DEFINITION: Let (M,g) be a Riemannian manifold. A connection V on
TM is called orthogonal if V(g) = 0, and Levi-Civita connection if it is
orthogonal and has zero torsion.

THEOREM: (“the fundamental theorem of Riemannian geometry”)
Every Riemannian manifold admits a Levi-Civita connection, and it is
unique.

Proof: Lecture 8.
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Gregorio Ricci-Curbastro, Tullio Levi-Civita

Gregorio Ricci-Curbastro, Tullio Levi-Civita,
1853-1925 1873-1941

...With his former student Tullio Levi-Civita, he wrote his most famous single
publication, a pioneering work on the calculus of tensors, signing it as Gre-
gorio Ricci. This appears to be the only time that Ricci-Curbastro used the

shortened form of his name in a publication, and continues to cause confusion.
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Torsion and commutator of vector fields (reminder)

REMARK: Cartan formula gives

Ty(m(X,Y) =Vx(m)(Y) = Vy(n)(X) —dn(X,Y)
=Vx(m ) = Vy(n)(X) —n(X,Y]) — Liex(n(Y)) + Liey (n(X)).

On the other hand, Vx(n)(Y) = Liex(n(Y)) — n(Vx(Y)). Comparing the
equations, we obtain

Tv(m(X,Y) = n(Vx(Y) — Vy(X) - [X, Y])-

Torsion is often defined as a map A?TM — TM using the formula
Vx(Y) - Vy(X) - [X,Y].

We have just proved

CLAIM: The torsion tensor Vx(Y)—-Vy(X)—[X,Y] is dual to the torsion
VoAlt—d: A'M — A°M defined above. =
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Linearization of the torsion (reminder)

REMARK: Consider the space A(A*M) of connections on ALM. The torsion
defines an affine map

ANYM) — Hom(ATM,A°M) = TM @ A°M.
because T(V+a) = T(V)+Alt1o(a), where Alt1s : A'MQEnd(AIM) — A2M®
TM is antisymmetrization in the first two indices.
DEFINITION: Linearized torsion is a map
Tin : AN (M) @AY (M) @ TM — N°M @ TM

obtained as a linearization of the torsion map. It is equal to Altq,.
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Existence of orthogonal connections (reminder)

CLAIM: Let B be a vector bundle equipped with a scalar product. Then B
admits an orthogonal connection.

Proof: Chose a covering {U;}, such that B is trivial on each U; and admits an
orthonormal basis in each U;. On each U; we chose a connection V; preserving
this basis. Let v; be a partition of unit subjugated to {U;}. Then the formula
V(b) :=> V,;(¢;b) defines an orthogonal connection.

EXERCISE: Let w € A2B* be a non-degenerate skew-symmetric 2-form on
B. Use the same argument to prove that there exists a connection V
B — B® ALM such that V(w) = 0.

THEOREM: (“the fundamental theorem of Riemannian geometry”)
Every Riemannian manifold admits a Levi-Civita connection, and it is
unique.

Proof: See the next slide.
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Levi-Civita connection (reminder)

Proof. Step 1: Chose an orthogonal connection Vg on AlM. The space A
of orthogonal connections is affine and its linearization is A1 M ®so(TM). We
shall identify so(T'M) and A2M. Then A is an affine space over A M QA2M.

Step 2: Then the linearized torsion map is

Altyo

Tin : A'M @ s0(TM) =AY (M) @ A°M A°M @AM = N°M @ TM.

It is an isomorphism. Indeed, on the right and on the left there are bundles
of the same rank, hence it would suffice to show that T};, = Alto is injective.
However, if n € kerTj,, it is a form which is symmetric on first two argu-
ments and antisymmetric on the second two, giving n(x,vy,z) = n(y,z,z) =
—n(y, z,x). This gives o(n) = —n, where o is a cyclic permutation of the
arguments. Since ¢3 = 1, this implies n = 0.

Step 3: We have shown that an orthogonal connection is uniquely de-
termined by its torsion. Indeed, torsion map is an isomorphism of affine
spaces.

Step 4: Let V := Vo — T 1(Ty,). Then Ty = Ty, — Tin(T;H (Tw,)) = O,
hence V Is torsion-free. =
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Lie algebra and tensors (reminder)

DEFINITION: Let V be a representation of a Lie algebra g. Then V*
Is also a representation; the action of g on V* is given by the formula
(g(x),\) = —(x,g(N\)), for all z € VX € V*. A tensor product of two g-
representations Vi, V5 is also a g-representation, with the action of g defined
by g(z®vy) = g(x) @y + x ® g(y). This defines the action of g on all tensor
powers V® g (V*)® which are called the tensor representations of g. We
say that g preserves a tensor & if g(W) =0 for all g € g.

EXAMPLE: The algebra of all ¢ € End(V) preserving a non-degenerate
bilinear symmetric form h € Sym?2(V*) is called orthogonal algebra, denoted
s0(V,h) or so(V). Since g € so(V) if and only if h(g(x),y) = —h(x,g(y)), so(V)
IS represented by antisymmetric matrices.

CLAIM: Let h € Sym2(V*) be a non-degenerate bilinear symmetric form.
T

Using h, we identify V and V*. This gives an isomorphism V*® V* —
V*@V = End(V). Then 7(A2V*) = so(V).

Proof: For any f € End(V), the 2-form 7= 1(f) is written as z,y — h(f(2),v).
By definition, f € so(V) means that h(f(x),y) = —h(z, f(y)) and this happens

if and only if 7—1(f) is antisymmetric. =
8



Complex geometry, lecture 9 M. Verbitsky

The Lie algebra u(V)

EXAMPLE: Let (V,I) be a real vector space with a complex structure map
I: V—V, I?=—1Id, and a Hermitian (that is, I-invariant) scalar product.
Define the unitary Lie algebra u(V) = {f € End(V) | f(I) = f(h) = 0}.
This is the same as the space of I-invariant orthogonal matrices.

CLAIM: Consider the natural map V*@V* -/ V*®V = End(V) associated
with h. Then 7(ALL(V*)) = u(V).

Proof: The isomorphism 7 is I-invariant, because h is I-invariant. Then
r—1(u(V)) is the space of I-invariant 2-forms, which is precisely ALL(V*).
_

COROLLARY: Let B be a bundle with a Hermitian structure product. Then
the space of orthogonal connections on B an affine space over A1 M ®
u(B).
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The space of intrinsic torsion

REMARK: Let ®© be a tensor on a manifold, and V a connection preserving
&d. Denote by a(M) C End(T M) the bundle of Lie algebras consisting of all
A € End(TM) such that A(®) = 0. Clearly, a connection Vq preserves & if
and only if V-V € AL(M) ® a(M). In other words, connections preserving
& are an affine space over AY(M) ® a(M).

DEFINITION: Consider the linearized torsion operator Altis, : AN M) ®
a(M) — AN2(M) ® TM. The quotient bundle

. NWMeTM
T At (AL(M) © a(M))
is called the space of intrinsic torsion for a(M )-valued connections.

DEFINITION: Let ® be a tensor on a manifold, and V a connection pre-
serving é. Intrinsic torsion of ®© is the image of the torsion of V in ;.
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Intrinsic torsion

THEOREM: Let ® be a tensor on a manifold, V a connection preserving &,
and 7(®) the intrinsic torsion. Then 7(®) is independent from the choice
of V. Moreover, M admits a torsion-free connection preserving ¢ if and only
if 7(®) = 0.

Proof. Step 1: For any V and V/ preserving ®, and A :=V — V/, one has
A e AN (M) ® a(M), hence Ty — Twr € Altio(AY(M) ® a(M)). Therefore, Ty
represents the same vector in Jy as Ty

Step 2: The map V — Ty takes an affine space of all connections preserving
® and puts it to an affine subspace W C A2(M) ® TM. The linearization of
W is the image of T}j,, hence W is an affine space im(7Tjj,) + T1v. It contains
zero if and only if Ty € im(Tyi,). =

EXAMPLE: The space of intrinsic torsion for so(T'M) is zero (prove it).

EXAMPLE: The space of intrinsic torsion for the symplectic Lie algebra
sp(TM) is naturally identified with the space A3(M) (this is proven later

today).
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Symplectic connections

DEFINITION: When.B — /\1M, consider the exterior multiplication map
Alt : N'M @ N1M — AT1)M1. Define the torsion map To(n) = Alt(V(n)) —
dn. Then 1y is equal to torsion on AlM and satisfies the Leibnitz identity:

To(AAR) =TgW) Ap+ (1DNATg() ()
DEFINITION: An almost symplectic structure on a manifold is a non-
degenerate 2-form.

EXERCISE: Let (M,w) be an almost symplectic manifold. Prove that there
exists a connection V on T'M such that V(w) = 0. We call such connection
a symplectic connection.

Lemma 1: Let w € A2M be an almost symplectic structure, and V a sym-
plectic connection. Using w, we will identify T'M and /\1M, and then we can
consider the torsion tensor € € A2M @ TM of V as 7 € AN°M @ A1M. Let
p .= Alt(7r). Then dw = —2p.

Proof: Clearly, Ty (w) = —dw, because V(w) = 0 and Ty(w) = Alt(V(w)) — dw.
By (**), we have Ty(w) = Alt(A1(w ® ¥) — Ax(w ® T)), where A; is the
convolution of i-th component of w®Ty and the last, taking A2M QA2M QT M
to A°MALM and ALM®@A2M. Clearly, Alt(A1 (wRTY)) = — Alt(Asx(weTy)) =
p. This gives Ty(w) = dw = —2p. =
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Torsion of almost symplectic structures

Theorem 1: Let (M,w) be an almost symplectic manifold, and V a symplectic
connection. Denote its torsion by Ty € A°M ® TM. Using the form w, we
identify TM and AL M and consider Ty as a section 7 € A°MQQALM. Denote by
Alt1o3 the multiplication map /\2M®/\1M — A3M. Then Alt123(7-) = —Zdw.
Moreover, any tensor T € A2M @ A'M such that Alt153(%) = —3dw can be
realized as a torsion of a symplectic connection.

Proof. Step 1: Let sp(TM) be the Lie algebra of all tensors a € End(T' M)
such that w(a(x),y) = —w(x,a(y)). The same argument as the one used to
show so(TM) = A2M shows that sp(TM) = Sym2(AlM).

Step 2: Under this identification, the linearized torsion map Tjin, : AN1M ®
sp(TM) — AN2M ®@ TM becomes Altis : AIM @ Sym2(A1M) — A2M @ ALM.
Kernel of this map is clearly Sym3(/\1M). This gives an exact sequence
(check it).

Alt

0 — Sym3(AIM) < ALM @ Sym2(ALM) MH2 A2 07 @ AT M2 A3 0.

We identified A3M with the space of intrinsic torsion for sp(T'M).

Step 3: Alt1o3(7) = ——dw (Lemma 1). This is precisely the intrinsic torsion

of V. m
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