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Complex geometry, lecture 10 M. Verbitsky

Lie algebra and tensors (reminder)

DEFINITION: Let V be a representation of a Lie algebra g. Then V ∗

is also a representation; the action of g on V ∗ is given by the formula
〈g(x), λ〉 = −〈x, g(λ)〉, for all x ∈ V, λ ∈ V ∗. A tensor product of two g-
representations V1, V2 is also a g-representation, with the action of g defined
by g(x ⊗ y) = g(x) ⊗ y + x ⊗ g(y). This defines the action of g on all tensor
powers V ⊗i⊗ (V ∗)⊗j, which are called the tensor representations of g. We
say that g preserves a tensor Φ if g(Ψ) = 0 for all g ∈ g.

EXAMPLE: The algebra of all g ∈ End(V ) preserving a non-degenerate
bilinear symmetric form h ∈ Sym2(V ∗) is called orthogonal algebra, denoted
so(V, h) or so(V ). Since g ∈ so(V ) if and only if h(g(x), y) = −h(x, g(y)), so(V )
is represented by antisymmetric matrices.

CLAIM: Let h ∈ Sym2(V ∗) be a non-degenerate bilinear symmetric form.
Using h, we identify V and V ∗. This gives an isomorphism V ∗ ⊗ V ∗ τ−→
V ∗ ⊗ V = End(V ). Then τ(Λ2V ∗) = so(V ).

Proof: For any f ∈ End(V ), the 2-form τ−1(f) is written as x, y −→ h(f(x), y).
By definition, f ∈ so(V ) means that h(f(x), y) = −h(x, f(y)) and this happens
if and only if τ−1(f) is antisymmetric.
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The Lie algebra u(V ) (reminder)

EXAMPLE: Let (V, I) be a real vector space with a complex structure map

I : V −→ V , I2 = − Id, and a Hermitian (that is, I-invariant) scalar product.

Define the unitary Lie algebra u(V ) = {f ∈ End(V ) | f(I) = f(h) = 0}.
This is the same as the space of I-invariant orthogonal matrices.

CLAIM: Consider the natural map V ∗⊗V ∗ τ−→ V ∗⊗V = End(V ) associated

with h. Then τ(Λ1,1(V ∗)) = u(V ).

Proof: The isomorphism τ is I-invariant, because h is I-invariant. Then

τ−1(u(V )) is the space of I-invariant 2-forms, which is precisely Λ1,1(V ∗).

COROLLARY: Let B be a bundle with a Hermitian structure product. Then

the space of orthogonal connections on B an affine space over Λ1M ⊗
u(B).
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The space of intrinsic torsion (reminder)

REMARK: Let Φ be a tensor on a manifold, and ∇ a connection preserving

Φ. Denote by a(M) ⊂ End(TM) the bundle of Lie algebras consisting of all

A ∈ End(TM) such that A(Φ) = 0. Clearly, a connection ∇1 preserves Φ if

and only if ∇−∇1 ∈ Λ1(M)⊗ a(M). In other words, connections preserving

Φ are an affine space over Λ1(M)⊗ a(M).

DEFINITION: Consider the linearized torsion operator Alt12 : Λ1(M) ⊗
a(M)−→ Λ2(M)⊗ TM . The quotient bundle

Ta :=
Λ2(M)⊗ TM

Alt12(Λ1(M)⊗ a(M))

is called the space of intrinsic torsion for a(M)-valued connections.

DEFINITION: Let Φ be a tensor on a manifold, and ∇ a connection pre-

serving Φ. Intrinsic torsion of Φ is the image of the torsion of ∇ in Ta.
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Intrinsic torsion (reminder)

THEOREM: Let Φ be a tensor on a manifold, ∇ a connection preserving Φ,

and τ(Φ) the intrinsic torsion. Then τ(Φ) is independent from the choice

of ∇. Moreover, M admits a torsion-free connection preserving Φ if and only

if τ(Φ) = 0.

Proof. Step 1: For any ∇ and ∇′ preserving Φ, and A := ∇ − ∇′, one has

A ∈ Λ1(M) ⊗ a(M), hence T∇ − T∇′ ∈ Alt12(Λ1(M) ⊗ a(M)). Therefore, T∇
represents the same vector in Ta as T∇′

Step 2: The map ∇ 7→ T∇ takes an affine space of all connections preserving

Φ and puts it to an affine subspace W ⊂ Λ2(M) ⊗ TM . The linearization of

W is the image of Tlin, hence W is an affine space im(Tlin) +T∇. It contains

zero if and only if T∇ ∈ im(Tlin).

EXAMPLE: The space of intrinsic torsion for so(TM) is zero (prove it).

EXAMPLE: The space of intrinsic torsion for the symplectic Lie algebra

sp(TM) is naturally identified with the space Λ3(M) (this is proven later

today).
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Symplectic connections (reminder)

DEFINITION: When B = Λ1M , consider the exterior multiplication map
Alt : ΛiM ⊗ Λ1M −→ Λi+1M . Define the torsion map T∇(η) := Alt(∇(η))−
dη. Then T∇ is equal to torsion on Λ1M and satisfies the Leibnitz identity:

T∇(λ ∧ µ) = T∇(λ) ∧ µ+ (−1)λ̃λ ∧ T∇(µ) (∗∗)
DEFINITION: An almost symplectic structure on a manifold is a non-
degenerate 2-form.

EXERCISE: Let (M,ω) be an almost symplectic manifold. Prove that there
exists a connection ∇ on TM such that ∇(ω) = 0. We call such connection
a symplectic connection.

Lemma 1: Let ω ∈ Λ2M be an almost symplectic structure, and ∇ a sym-
plectic connection. Using ω, we will identify TM and Λ1M , and then we can
consider the torsion tensor T ∈ Λ2M ⊗ TM of ∇ as τ ∈ Λ2M ⊗ Λ1M . Let
ρ := Alt(τ). Then dω = −2ρ.

Proof: Clearly, T∇(ω) = −dω, because ∇(ω) = 0 and T∇(ω) = Alt(∇(ω))−dω.
By (**), we have T∇(ω) = Alt(A1(ω ⊗ T) − A2(ω ⊗ T)), where Ai is the
convolution of i-th component of ω⊗T∇ and the last, taking Λ2M⊗Λ2M⊗TM
to Λ2M⊗Λ1M and Λ1M⊗Λ2M . Clearly, Alt(A1(ω⊗T∇)) = −Alt(A2(ω⊗T∇)) =
ρ. This gives T∇(ω) = dω = −2ρ.
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Torsion of almost symplectic structures (reminder)

Theorem 1: Let (M,ω) be an almost symplectic manifold, and ∇ a symplectic
connection. Denote its torsion by T∇ ∈ Λ2M ⊗ TM . Using the form ω, we
identify TM and Λ1M and consider T∇ as a section τ ∈ Λ2M⊗Λ1M . Denote by
Alt123 the multiplication map Λ2M⊗Λ1M −→ Λ3M . Then Alt123(τ) = −1

2dω.
Moreover, any tensor T ∈ Λ2M ⊗ Λ1M such that Alt123(T) = −1

2dω can be
realized as a torsion of a symplectic connection.

Proof. Step 1: Let sp(TM) be the Lie algebra of all tensors a ∈ End(TM)
such that ω(a(x), y) = −ω(x, a(y)). The same argument as the one used to
show so(TM) = Λ2M shows that sp(TM) = Sym2(Λ1M).

Step 2: Under this identification, the linearized torsion map Tlin : Λ1M ⊗
sp(TM)−→ Λ2M ⊗ TM becomes Alt12 : Λ1M ⊗ Sym2(Λ1M)−→ Λ2M ⊗ Λ1M .
Kernel of this map is clearly Sym3(Λ1M). This gives an exact sequence
(check it).

0−→ Sym3(Λ1M) ↪→ Λ1M ⊗ Sym2(Λ1M)
Alt12−→ Λ2M ⊗ Λ1M

Alt123−→ Λ3M −→ 0.

We identified Λ3M with the space of intrinsic torsion for sp(TM).

Step 3: Alt123(τ) = −1
2dω (Lemma 1). This is precisely the intrinsic torsion

of ∇.
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Torsion of unitary connection on a complex manifold

PROPOSITION: Let (M, I, ω) be an Hermitian complex manifold, ∇ a con-

nection on TM preserving I and ω, and T∇ ∈ Λ2M ⊗ TM = Λ2M ⊗ Λ1M (we

identify TM and Λ1M using the Riemannian structure). Then

T∇ ∈
(

Λ2,0(M)⊗ Λ0,1(M)

)
⊕
(

Λ0,2 ⊗ Λ1,0(M)

)
⊕
(

Λ1,1(M)⊗ Λ1M

)
. (∗∗)

Proof. Step 1: Integrability of I implies that [T1,0M,T1,0M ] ⊂ T1,0M . Since

∇(I) = 0, one also has ∇X(T1,0M) ⊂ T1,0M for any vector field X ∈ TM .

This gives ∇X(Y )−∇Y (X)− [X,Y ] ∈ T1,0M for any X,Y ∈ T1,0M . We have

shown that

T∇ ∈
(

Λ2,0(M)⊗ T1,0(M)

)
⊕
(

Λ0,2 ⊗ T0,1(M)

)
⊕
(

Λ1,1(M)⊗ Λ1M

)
.

Step 2: Since the Riemannian form g is of type (1,1), it pairs (0,1)-vectors

and (1,0)-vectors. Therefore, it identifies T1,0M with Λ0,1(M). This proves

(**).
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Jean-Michel Bismut (born 26 February 1948)
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Bismut connection

THEOREM: (Bismut) Let (M, I, ω) be an Hermitian complex manifold.
Then there exists a unique connection ∇ preserving I and ω, such that its
torsion T∇ ∈ Λ2M ⊗ TM = Λ2M ⊗ Λ1M (we identify TM and Λ1M using the
Riemannian metric) is antisymmetric: T∇ ∈ Λ3M ⊂ Λ2M ⊗ Λ1M . Moreover,
in this case T∇ = −1

2I(dω).

REMARK: This connection is called the Bismut connection. When (M, I, ω)
is Kähler, it is torsion-free and orthogonal, hence ∇ is the Levi-Civita con-
nection. We obtain that on a Kähler manifold, Levi-Civita connection
satisfies ∇(I) = 0.

Proof. Step 1: There are two different ways to identify Λ2M ⊗ TM and
Λ2M ⊗ Λ1M : using g : TM −̃→ Λ1M and using ω : TM −̃→ Λ1M . Denote
the first tensor by τg and the second by τω. It is clear that I3(τg) = τω,
where I3(x ⊗ y ⊗ z) = x ⊗ y ⊗ I(z). Torsion of symplectic connections was
described earlier today (Theorem 1): we have shown that Alt(τω) = −1

2dω.
This implies that the image of the linearized torsion Tlin(Λ1M ⊗ u(TM))
satisfies Alt(I3(Tlin(Λ1M ⊗ u(TM))) = 0. Indeed, Alt(I3(T∇)) is independent
from ∇ for any Hermitian connection ∇, hence the linearization of the
affine map ∇ 7→ Alt(I3(T∇)) vanishes.
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Bismut connection (2)

Proof. Step 1: The image of the linearized torsion Tlin(Λ1M ⊗ u(TM))

satisfies Alt(I3(Tlin(Λ1M ⊗ u(TM))) = 0.

Step 2: The torsion of ∇ belongs to the space

W :=

(
Λ2,0(M)⊗ Λ0,1(M)

)
⊕
(

Λ0,2 ⊗ Λ1,0(M)

)
⊕
(

Λ1,1(M)⊗ Λ1M

)
,

as shown above. The linearized torsion map is Tlin : Λ1M ⊗ u(TM)−→W.

By the same argument as in the proof of existence of Levi-Civita connection,

this map is injective. This gives an exact sequence

0−→ Λ1M ⊗ u(TM)
Tlin−→ W

I3◦Alt−→ Λ2,1(M)⊕ Λ1,2(M)−→ 0, (∗ ∗ ∗)

The last arrow of (***) is surjective because any (2,1)+(1,2)-form can be

obtained as anti-symmetrization of α ∈ I3(W). The sequence (***) is exact

in the middle term because dimension of the middle term is equal to sum of

dimensions of the left and right terms.
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Bismut connection (3)

Step 2: Let W := (Λ2,0(M)⊗Λ0,1(M))⊕(Λ0,2⊗Λ1,0(M))⊕(Λ1,1(M)⊗Λ1M).
Then the sequence

0−→ Λ1M ⊗ u(TM)
Tlin−→ W

I3◦Alt−→ Λ2,1(M)⊕ Λ1,2(M)−→ 0 (∗ ∗ ∗)

is exact.

Step 3: Let U ⊂W be a subspace consisting of all antisymmetric 3-forms, U =
Λ2,1(M)⊕ Λ1,2(M). Clearly, for any differential form η, one has Alt(I3(η)) =
W (η), where W is the Weil operator acting as W (η)(x, y, z) = η(Ix, y, z) +

η(x, Iy, z)+η(x, y, Iz). Then U
I3◦Alt−→ Λ2,1(M)⊕Λ1,2(M) is bijective. Therefore,

there exists a unique form σ ∈ U such that Alt(I3(σ)) = −1
2dω.

Step 4: Let ∇0 be a connection on TM which satisfies ∇0(g) = ∇0(I) =
0 (prove that it exists), and τg ∈ W its torsion. Then Alt(I3(τg)) =
Alt(I3(σ)) = −1

2dω by Theorem 1. Therefore, there exists a unique A ∈
Λ1M ⊗ u(TM) such that Tlin(A) + τg = σ, and the torsion of connection
∇ := ∇0 +A is equal to σ.

Step 5: Step 3 gives σ = 1
2W
−1(dω). However, dω is (2,1)+(1,2)-form, and

for such forms W = I, hence σ = −1
2I(dω).
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Levi-Civita connection on Kähler manifolds

When dω = 0, this immediately implies

THEOREM: On a Kähler manifold (M, I, g, ω), the Levi-Civita connection

∇ satisfies ∇(I) = ∇(ω) = 0.

Indeed, the Bismut connection is torsion-free in this case, hence coincides

with Levi-Civita.

Let us prove this theorem directly.

Proof. Step 1: Let ∇ be a unitary connection on M , that is, one which

satisfies ∇(I) = ∇(ω) = 0 (prove that it exists). There are two different

ways to identify Λ2M⊗TM and Λ2M⊗Λ1M : using g : TM −̃→ Λ1M and using

ω : TM −̃→ Λ1M . Denote the first tensor by τg and the second by τω. It is

clear that I3(τg) = τω, where I3(x⊗y⊗z) = x⊗y⊗I(z). Torsion of symplectic

connections was described earlier today (Theorem 1): we have shown that

Alt(τω) = −1
2dω. This implies that Alt(I3(T∇)) = 0. Since this is true for

any unitary connection, one also has Alt(I3(Tlin(Λ1M ⊗ u(TM))) = 0.
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Levi-Civita connection on Kähler manifolds (2)

Proof. Step 1: We proved that Alt(I3(T∇)) = 0, where I3 is I acting on
the third tensor component. Moreover, Alt(I3(Tlin(Λ1M ⊗ u(TM))) = 0.

Step 2: The torsion of ∇ belongs to the space

W :=

(
Λ2,0(M)⊗ Λ0,1(M)

)
⊕
(

Λ0,2 ⊗ Λ1,0(M)

)
⊕
(

Λ1,1(M)⊗ Λ1M

)
,

as shown above. The linearized torsion map is Tlin : Λ1M ⊗ u(TM)−→W.
By the same argument as in the proof of existence of Levi-Civita connection,
this map is injective. This gives an exact sequence

0−→ Λ1M ⊗ u(TM)
Tlin−→ W

I3◦Alt−→ Λ2,1(M)⊕ Λ1,2(M)−→ 0, (∗ ∗ ∗)

The last arrow of (***) is surjective because any (2,1)+(1,2)-form can be
obtained as anti-symmetrization of α ∈ I3(W). The sequence (***) is exact
in the middle term because dimension of the middle term is equal to sum of
dimensions of the left and right terms.

Step 3: Now, T∇ satisfies Alt(I3(T∇)) = 0, hence belongs to the image of
Tlin. Therefore, the connection ∇ − T−1

lin (T∇) is a torsion-free unitary

connection.
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Laplacian on differential forms

DEFINITION: Let V be a vector space. A metric g on V induces a natural
metric on each of its tensor spaces: g(x1⊗x2⊗ ...⊗xk, x′1⊗x

′
2⊗ ...⊗x

′
k) =

g(x1, x
′
1)g(x2, x

′
2)...g(xk, x

′
k).

This gives a natural positive definite scalar product on differential forms
over a Riemannian manifold (M, g): g(α, β) :=

∫
M g(α, β) VolM

DEFINITION: Let M be a Riemannian manifold. Laplacian on differential
forms is ∆ := dd∗+ d∗d.

REMARK: Laplacian is self-adjoint and positive definite: (∆x, x) =
(dx, dx) + (d∗x, d∗x). Also, ∆ commutes with d and d∗.

THEOREM: (The main theorem of Hodge theory)
There is an orthonormal basis in the Hilbert space L2(Λ∗(M)) consisting
of eigenvectors of ∆. Moreover, each eigenspace is finitely-dimensional,
and the eigenvalues convergeto zero.

THEOREM: (“Elliptic regularity for ∆”)
Let α ∈ L2(Λk(M)) be an eigenvector of ∆. Then α is a smooth k-form.
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Fritz Alexander Ernst Noether

(October 7, 1884 - September 10, 1941)

Emmy Noether und Fritz Noether, 1933
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De Rham cohomology

DEFINITION: The space Hi(M) :=
ker d

∣∣
ΛiM

d(Λi−1M)
is called the de Rham coho-

mology of M .

DEFINITION: A form α is called harmonic if ∆(α) = 0.

REMARK: Let α be a harmonic form. Then (∆x, x) = (dx, dx) + (d∗x, d∗x),

hence α ∈ ker d ∩ ker d∗.

REMARK: The projection Hi(M)−→Hi(M) from harmonic forms to

cohomology is injective. Indeed, a form α lies in the kernel of such projection

if α = dβ, but then (α, α) = (α, dβ) = (d∗α, β) = 0.

THEOREM: The natural map Hi(M)−→Hi(M) is an isomorphism

(see the next page).

REMARK: Poincare duality immediately follows from this theorem.
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Hodge theory and the cohomology

THEOREM: The natural map Hi(M)−→Hi(M) is an isomorphism.

Proof. Step 1: Since d2 = 0 and (d∗)2 = 0, one has [d,∆] = dd∗d−dd∗d = 0.

This means that ∆ commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition Λ∗(M)=̃
⊕
αΛ∗α(M), where α

runs through all eigenvalues of ∆, and Λ∗α(M) is the corresponding eigenspace.

For each α, de Rham differential defines a complex

Λ0
α(M)

d−→ Λ1
α(M)

d−→ Λ2
α(M)

d−→ ...

Step 3: On Λ∗α(M), one has dd∗+ d∗d = α. When α 6= 0, and η closed, this

implies dd∗(η) + d∗d(η) = dd∗η = αη, hence η = dξ, with ξ := α−1d∗η. This

implies that the complexes (Λ∗α(M), d) don’t contribute to cohomology.

Step 4: We have proven that

H∗(Λ∗M,d) =
⊕
α
H∗(Λ∗α(M), d) = H∗(Λ∗0(M), d) = H∗(M).
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