Complex geometry

lecture 10: Bismut connection

Misha Verbitsky

HSE, room 306, 16:20,

October 24, 2020

Lie algebra and tensors (reminder)

DEFINITION: Let V be a representation of a Lie algebra \mathfrak{g} . Then V^* is also a representation; the action of \mathfrak{g} on V^* is given by the formula $\langle g(x), \lambda \rangle = -\langle x, g(\lambda) \rangle$, for all $x \in V, \lambda \in V^*$. A tensor product of two \mathfrak{g} representations V_1, V_2 is also a \mathfrak{g} -representation, with the action of \mathfrak{g} defined by $g(x \otimes y) = g(x) \otimes y + x \otimes g(y)$. This defines the action of \mathfrak{g} on all tensor powers $V^{\otimes i} \otimes (V^*)^{\otimes j}$, which are called the tensor representations of \mathfrak{g} . We say that \mathfrak{g} preserves a tensor Φ if $g(\Psi) = 0$ for all $g \in \mathfrak{g}$.

EXAMPLE: The algebra of all $g \in End(V)$ preserving a non-degenerate bilinear symmetric form $h \in Sym^2(V^*)$ is called **orthogonal algebra**, denoted $\mathfrak{so}(V,h)$ or $\mathfrak{so}(V)$. Since $g \in \mathfrak{so}(V)$ if and only if $h(g(x), y) = -h(x, g(y)), \mathfrak{so}(V)$ is represented by antisymmetric matrices.

CLAIM: Let $h \in \text{Sym}^2(V^*)$ be a non-degenerate bilinear symmetric form. Using h, we identify V and V^* . This gives an isomorphism $V^* \otimes V^* \xrightarrow{\tau} V^* \otimes V = \text{End}(V)$. Then $\tau(\Lambda^2 V^*) = \mathfrak{so}(V)$.

Proof: For any $f \in \text{End}(V)$, the 2-form $\tau^{-1}(f)$ is written as $x, y \longrightarrow h(f(x), y)$. By definition, $f \in \mathfrak{so}(V)$ means that h(f(x), y) = -h(x, f(y)) and this happens if and only if $\tau^{-1}(f)$ is antisymmetric.

The Lie algebra $\mathfrak{u}(V)$ (reminder)

EXAMPLE: Let (V, I) be a real vector space with a complex structure map $I: V \longrightarrow V, I^2 = -\text{Id}$, and a Hermitian (that is, *I*-invariant) scalar product. Define **the unitary Lie algebra** $\mathfrak{u}(V) = \{f \in \text{End}(V) \mid f(I) = f(h) = 0\}$. This is the same as the space of *I*-invariant orthogonal matrices.

CLAIM: Consider the natural map $V^* \otimes V^* \xrightarrow{\tau} V^* \otimes V = \text{End}(V)$ associated with *h*. Then $\tau(\Lambda^{1,1}(V^*)) = \mathfrak{u}(V)$.

Proof: The isomorphism τ is *I*-invariant, because *h* is *I*-invariant. Then $\tau^{-1}(\mathfrak{u}(V))$ is the space of *I*-invariant 2-forms, which is precisely $\Lambda^{1,1}(V^*)$.

COROLLARY: Let *B* be a bundle with a Hermitian structure product. Then the space of orthogonal connections on *B* an affine space over $\Lambda^1 M \otimes \mathfrak{u}(B)$.

The space of intrinsic torsion (reminder)

REMARK: Let Φ be a tensor on a manifold, and ∇ a connection preserving Φ . Denote by $\mathfrak{a}(M) \subset \operatorname{End}(TM)$ the bundle of Lie algebras consisting of all $A \in \operatorname{End}(TM)$ such that $A(\Phi) = 0$. Clearly, a connection ∇_1 preserves Φ if and only if $\nabla - \nabla_1 \in \Lambda^1(M) \otimes \mathfrak{a}(M)$. In other words, **connections preserving** Φ are an affine space over $\Lambda^1(M) \otimes \mathfrak{a}(M)$.

DEFINITION: Consider the linearized torsion operator Alt_{12} : $\Lambda^1(M) \otimes \mathfrak{a}(M) \longrightarrow \Lambda^2(M) \otimes TM$. The quotient bundle

$$\mathcal{T}_{\mathfrak{a}} := \frac{\Lambda^2(M) \otimes TM}{\mathsf{Alt}_{12}(\Lambda^1(M) \otimes \mathfrak{a}(M))}$$

is called the space of intrinsic torsion for $\mathfrak{a}(M)$ -valued connections.

DEFINITION: Let Φ be a tensor on a manifold, and ∇ a connection preserving Φ . Intrinsic torsion of Φ is the image of the torsion of ∇ in $\mathcal{T}_{\mathfrak{a}}$.

Intrinsic torsion (reminder)

THEOREM: Let Φ be a tensor on a manifold, ∇ a connection preserving Φ , and $\tau(\Phi)$ the intrinsic torsion. Then $\tau(\Phi)$ is independent from the choice of ∇ . Moreover, M admits a torsion-free connection preserving Φ if and only if $\tau(\Phi) = 0$.

Proof. Step 1: For any ∇ and ∇' preserving Φ , and $A := \nabla - \nabla'$, one has $A \in \Lambda^1(M) \otimes \mathfrak{a}(M)$, hence $T_{\nabla} - T_{\nabla'} \in \operatorname{Alt}_{12}(\Lambda^1(M) \otimes \mathfrak{a}(M))$. Therefore, T_{∇} represents the same vector in $\mathcal{T}_{\mathfrak{a}}$ as $T_{\nabla'}$

Step 2: The map $\nabla \mapsto T_{\nabla}$ takes an affine space of all connections preserving Φ and puts it to an affine subspace $W \subset \Lambda^2(M) \otimes TM$. The linearization of W is the image of T_{lin} , hence W is an affine space $\operatorname{im}(T_{\text{lin}}) + T_{\nabla}$. It contains zero if and only if $T_{\nabla} \in \operatorname{im}(T_{\text{lin}})$.

EXAMPLE: The space of intrinsic torsion for $\mathfrak{so}(TM)$ is zero (prove it).

EXAMPLE: The space of intrinsic torsion for the symplectic Lie algebra $\mathfrak{sp}(TM)$ is naturally identified with the space $\Lambda^3(M)$ (this is proven later today).

Symplectic connections (reminder)

DEFINITION: When $B = \Lambda^1 M$, consider the exterior multiplication map Alt : $\Lambda^i M \otimes \Lambda^1 M \longrightarrow \Lambda^{i+1} M$. Define **the torsion map** $T_{\nabla}(\eta) := \operatorname{Alt}(\nabla(\eta)) - d\eta$. Then T_{∇} is equal to torsion on $\Lambda^1 M$ and satisfies the Leibnitz identity:

$$T_{\nabla}(\lambda \wedge \mu) = T_{\nabla}(\lambda) \wedge \mu + (-1)^{\tilde{\lambda}} \lambda \wedge T_{\nabla}(\mu) \quad (**)$$

DEFINITION: An almost symplectic structure on a manifold is a nondegenerate 2-form.

EXERCISE: Let (M, ω) be an almost symplectic manifold. Prove that there exists a connection ∇ on TM such that $\nabla(\omega) = 0$. We call such connection a symplectic connection.

Lemma 1: Let $\omega \in \Lambda^2 M$ be an almost symplectic structure, and ∇ a symplectic connection. Using ω , we will identify TM and $\Lambda^1 M$, and then we can consider the torsion tensor $\mathfrak{T} \in \Lambda^2 M \otimes TM$ of ∇ as $\tau \in \Lambda^2 M \otimes \Lambda^1 M$. Let $\rho := \operatorname{Alt}(\tau)$. Then $d\omega = -2\rho$.

Proof: Clearly, $T_{\nabla}(\omega) = -d\omega$, because $\nabla(\omega) = 0$ and $T_{\nabla}(\omega) = \operatorname{Alt}(\nabla(\omega)) - d\omega$. By (**), we have $T_{\nabla}(\omega) = \operatorname{Alt}(A_1(\omega \otimes \mathfrak{T}) - A_2(\omega \otimes \mathfrak{T}))$, where A_i is the convolution of *i*-th component of $\omega \otimes T_{\nabla}$ and the last, taking $\Lambda^2 M \otimes \Lambda^2 M \otimes T M$ to $\Lambda^2 M \otimes \Lambda^1 M$ and $\Lambda^1 M \otimes \Lambda^2 M$. Clearly, $\operatorname{Alt}(A_1(\omega \otimes T_{\nabla})) = -\operatorname{Alt}(A_2(\omega \otimes T_{\nabla})) = \rho$. This gives $T_{\nabla}(\omega) = d\omega = -2\rho$.

Torsion of almost symplectic structures (reminder)

Theorem 1: Let (M, ω) be an almost symplectic manifold, and ∇ a symplectic connection. Denote its torsion by $T_{\nabla} \in \Lambda^2 M \otimes TM$. Using the form ω , we identify TM and $\Lambda^1 M$ and consider T_{∇} as a section $\tau \in \Lambda^2 M \otimes \Lambda^1 M$. Denote by Alt₁₂₃ the multiplication map $\Lambda^2 M \otimes \Lambda^1 M \longrightarrow \Lambda^3 M$. Then Alt₁₂₃ $(\tau) = -\frac{1}{2}d\omega$. Moreover, any tensor $\mathfrak{T} \in \Lambda^2 M \otimes \Lambda^1 M$ such that Alt₁₂₃ $(\mathfrak{T}) = -\frac{1}{2}d\omega$ can be realized as a torsion of a symplectic connection.

Proof. Step 1: Let $\mathfrak{sp}(TM)$ be the Lie algebra of all tensors $a \in \text{End}(TM)$ such that $\omega(a(x), y) = -\omega(x, a(y))$. The same argument as the one used to show $\mathfrak{so}(TM) = \Lambda^2 M$ shows that $\mathfrak{sp}(TM) = \text{Sym}^2(\Lambda^1 M)$.

Step 2: Under this identification, the linearized torsion map T_{lin} : $\Lambda^1 M \otimes \mathfrak{sp}(TM) \longrightarrow \Lambda^2 M \otimes TM$ becomes Alt_{12} : $\Lambda^1 M \otimes \text{Sym}^2(\Lambda^1 M) \longrightarrow \Lambda^2 M \otimes \Lambda^1 M$. Kernel of this map is clearly $\text{Sym}^3(\Lambda^1 M)$. This gives an exact sequence **(check it).**

$$0 \longrightarrow \operatorname{Sym}^{3}(\Lambda^{1}M) \hookrightarrow \Lambda^{1}M \otimes \operatorname{Sym}^{2}(\Lambda^{1}M) \xrightarrow{\operatorname{Alt}_{12}} \Lambda^{2}M \otimes \Lambda^{1}M \xrightarrow{\operatorname{Alt}_{123}} \Lambda^{3}M \longrightarrow 0.$$

We identified $\Lambda^3 M$ with the space of intrinsic torsion for $\mathfrak{sp}(TM)$.

Step 3: Alt₁₂₃(τ) = $-\frac{1}{2}d\omega$ (Lemma 1). This is precisely the intrinsic torsion of ∇ .

Torsion of unitary connection on a complex manifold

PROPOSITION: Let (M, I, ω) be an Hermitian complex manifold, ∇ a connection on TM preserving I and ω , and $T_{\nabla} \in \Lambda^2 M \otimes TM = \Lambda^2 M \otimes \Lambda^1 M$ (we identify TM and $\Lambda^1 M$ using the Riemannian structure). Then

$$T_{\nabla} \in \left(\Lambda^{2,0}(M) \otimes \Lambda^{0,1}(M)\right) \oplus \left(\Lambda^{0,2} \otimes \Lambda^{1,0}(M)\right) \oplus \left(\Lambda^{1,1}(M) \otimes \Lambda^{1}M\right). \quad (**)$$

Proof. Step 1: Integrability of *I* implies that $[T^{1,0}M, T^{1,0}M] \subset T^{1,0}M$. Since $\nabla(I) = 0$, one also has $\nabla_X(T^{1,0}M) \subset T^{1,0}M$ for any vector field $X \in TM$. This gives $\nabla_X(Y) - \nabla_Y(X) - [X,Y] \in T^{1,0}M$ for any $X, Y \in T^{1,0}M$. We have shown that

$$T_{\nabla} \in \left(\Lambda^{2,0}(M) \otimes T^{1,0}(M)\right) \oplus \left(\Lambda^{0,2} \otimes T^{0,1}(M)\right) \oplus \left(\Lambda^{1,1}(M) \otimes \Lambda^{1}M\right).$$

Step 2: Since the Riemannian form g is of type (1,1), it pairs (0,1)-vectors and (1,0)-vectors. Therefore, it identifies $T^{1,0}M$ with $\Lambda^{0,1}(M)$. This proves (**).

Jean-Michel Bismut (born 26 February 1948)

Bismut connection

THEOREM: (Bismut) Let (M, I, ω) be an Hermitian complex manifold. Then there exists a unique connection ∇ preserving I and ω , such that its torsion $T_{\nabla} \in \Lambda^2 M \otimes TM = \Lambda^2 M \otimes \Lambda^1 M$ (we identify TM and $\Lambda^1 M$ using the Riemannian metric) is antisymmetric: $T_{\nabla} \in \Lambda^3 M \subset \Lambda^2 M \otimes \Lambda^1 M$. Moreover, in this case $T_{\nabla} = -\frac{1}{2}I(d\omega)$.

REMARK: This connection is called **the Bismut connection**. When (M, I, ω) is Kähler, it is torsion-free and orthogonal, hence ∇ is the Levi-Civita connection. We obtain that on a Kähler manifold, Levi-Civita connection satisfies $\nabla(I) = 0$.

Proof. Step 1: There are two different ways to identify $\Lambda^2 M \otimes TM$ and $\Lambda^2 M \otimes \Lambda^1 M$: using $g : TM \xrightarrow{\sim} \Lambda^1 M$ and using $\omega : TM \xrightarrow{\sim} \Lambda^1 M$. Denote the first tensor by τ_g and the second by τ_{ω} . It is clear that $I_3(\tau_g) = \tau_{\omega}$, where $I_3(x \otimes y \otimes z) = x \otimes y \otimes I(z)$. Torsion of symplectic connections was described earlier today (Theorem 1): we have shown that $\operatorname{Alt}(\tau_{\omega}) = -\frac{1}{2}d\omega$. This implies that the image of the linearized torsion $T_{\operatorname{lin}}(\Lambda^1 M \otimes \mathfrak{u}(TM))$ satisfies $\operatorname{Alt}(I_3(T_{\operatorname{lin}}(\Lambda^1 M \otimes \mathfrak{u}(TM))) = 0$. Indeed, $\operatorname{Alt}(I_3(T_{\nabla}))$ is independent from ∇ for any Hermitian connection ∇ , hence the linearization of the affine map $\nabla \mapsto \operatorname{Alt}(I_3(T_{\nabla}))$ vanishes.

Bismut connection (2)

Proof. Step 1: The image of the linearized torsion $T_{\text{lin}}(\Lambda^1 M \otimes \mathfrak{u}(TM))$ **satisfies** $\text{Alt}(I_3(T_{\text{lin}}(\Lambda^1 M \otimes \mathfrak{u}(TM))) = 0.$

Step 2: The torsion of ∇ belongs to the space

$$\mathfrak{W} := \left(\Lambda^{2,0}(M) \otimes \Lambda^{0,1}(M)\right) \oplus \left(\Lambda^{0,2} \otimes \Lambda^{1,0}(M)\right) \oplus \left(\Lambda^{1,1}(M) \otimes \Lambda^{1}M\right),$$

as shown above. The linearized torsion map is T_{lin} : $\Lambda^1 M \otimes \mathfrak{u}(TM) \longrightarrow \mathfrak{V}$. By the same argument as in the proof of existence of Levi-Civita connection, this map is injective. This gives an exact sequence

$$0 \longrightarrow \Lambda^{1} M \otimes \mathfrak{u}(TM) \xrightarrow{T_{\mathsf{lin}}} \mathfrak{W} \xrightarrow{I_{3} \circ \mathsf{Alt}} \Lambda^{2,1}(M) \oplus \Lambda^{1,2}(M) \longrightarrow 0, \quad (***)$$

The last arrow of (***) is surjective because any (2,1)+(1,2)-form can be obtained as anti-symmetrization of $\alpha \in I_3(\mathfrak{W})$. The sequence (***) is exact in the middle term because dimension of the middle term is equal to sum of dimensions of the left and right terms.

Bismut connection (3)

Step 2: Let $\mathfrak{W} := (\Lambda^{2,0}(M) \otimes \Lambda^{0,1}(M)) \oplus (\Lambda^{0,2} \otimes \Lambda^{1,0}(M)) \oplus (\Lambda^{1,1}(M) \otimes \Lambda^{1}M)$. Then **the sequence**

 $0 \longrightarrow \Lambda^{1} M \otimes \mathfrak{u}(TM) \xrightarrow{T_{\text{lin}}} \mathfrak{W} \xrightarrow{I_{3} \circ \text{Alt}} \Lambda^{2,1}(M) \oplus \Lambda^{1,2}(M) \longrightarrow 0 \quad (***)$

is exact.

Step 3: Let $\mathfrak{U} \subset \mathfrak{W}$ be a subspace consisting of all antisymmetric 3-forms, $\mathfrak{U} = \Lambda^{2,1}(M) \oplus \Lambda^{1,2}(M)$. Clearly, for any differential form η , one has $\operatorname{Alt}(I_3(\eta)) = W(\eta)$, where W is **the Weil operator** acting as $W(\eta)(x, y, z) = \eta(Ix, y, z) + \eta(x, y, z) + \eta(x, y, Iz)$. Then $\mathfrak{U} \xrightarrow{I_3 \circ \operatorname{Alt}} \Lambda^{2,1}(M) \oplus \Lambda^{1,2}(M)$ is bijective. Therefore, **there exists a unique form** $\sigma \in \mathfrak{U}$ such that $\operatorname{Alt}(I_3(\sigma)) = -\frac{1}{2}d\omega$.

Step 4: Let ∇_0 be a connection on TM which satisfies $\nabla_0(g) = \nabla_0(I) = 0$ (prove that it exists), and $\tau_g \in \mathfrak{W}$ its torsion. Then $\operatorname{Alt}(I_3(\tau_g)) = \operatorname{Alt}(I_3(\sigma)) = -\frac{1}{2}d\omega$ by Theorem 1. Therefore, there exists a unique $A \in \Lambda^1 M \otimes \mathfrak{u}(TM)$ such that $T_{\operatorname{lin}}(A) + \tau_g = \sigma$, and the torsion of connection $\nabla := \nabla_0 + A$ is equal to σ .

Step 5: Step 3 gives $\sigma = \frac{1}{2}W^{-1}(d\omega)$. However, $d\omega$ is (2,1)+(1,2)-form, and for such forms W = I, hence $\sigma = -\frac{1}{2}I(d\omega)$.

Levi-Civita connection on Kähler manifolds

When $d\omega = 0$, this immediately implies

THEOREM: On a Kähler manifold (M, I, g, ω) , the Levi-Civita connection ∇ satisfies $\nabla(I) = \nabla(\omega) = 0$.

Indeed, the Bismut connection is torsion-free in this case, hence coincides with Levi-Civita.

Let us prove this theorem directly.

Proof. Step 1: Let ∇ be a unitary connection on M, that is, one which satisfies $\nabla(I) = \nabla(\omega) = 0$ (prove that it exists). There are two different ways to identify $\Lambda^2 M \otimes TM$ and $\Lambda^2 M \otimes \Lambda^1 M$: using $g: TM \xrightarrow{\sim} \Lambda^1 M$ and using $\omega: TM \xrightarrow{\sim} \Lambda^1 M$. Denote the first tensor by τ_g and the second by τ_{ω} . It is clear that $I_3(\tau_g) = \tau_{\omega}$, where $I_3(x \otimes y \otimes z) = x \otimes y \otimes I(z)$. Torsion of symplectic connections was described earlier today (Theorem 1): we have shown that $\operatorname{Alt}(\tau_{\omega}) = -\frac{1}{2}d\omega$. This implies that $\operatorname{Alt}(I_3(T_{\nabla})) = 0$. Since this is true for any unitary connection, one also has $\operatorname{Alt}(I_3(T_{\operatorname{Iin}}(\Lambda^1 M \otimes \mathfrak{u}(TM))) = 0$.

Levi-Civita connection on Kähler manifolds (2)

Proof. Step 1: We proved that $Alt(I_3(T_{\nabla})) = 0$, where I_3 is I acting on the third tensor component. Moreover, $Alt(I_3(T_{lin}(\Lambda^1 M \otimes \mathfrak{u}(TM))) = 0$.

Step 2: The torsion of ∇ belongs to the space

$$\mathfrak{W} := \left(\Lambda^{2,0}(M) \otimes \Lambda^{0,1}(M)\right) \oplus \left(\Lambda^{0,2} \otimes \Lambda^{1,0}(M)\right) \oplus \left(\Lambda^{1,1}(M) \otimes \Lambda^{1}M\right),$$

as shown above. The linearized torsion map is T_{lin} : $\Lambda^1 M \otimes \mathfrak{u}(TM) \longrightarrow \mathfrak{M}$. By the same argument as in the proof of existence of Levi-Civita connection, this map is injective. **This gives an exact sequence**

$$0 \longrightarrow \Lambda^{1} M \otimes \mathfrak{u}(TM) \xrightarrow{T_{\mathsf{lin}}} \mathfrak{W} \xrightarrow{I_{3} \circ \mathsf{Alt}} \Lambda^{2,1}(M) \oplus \Lambda^{1,2}(M) \longrightarrow 0, \quad (***)$$

The last arrow of (***) is surjective because any (2,1)+(1,2)-form can be obtained as anti-symmetrization of $\alpha \in I_3(\mathfrak{W})$. The sequence (***) is exact in the middle term because dimension of the middle term is equal to sum of dimensions of the left and right terms.

Step 3: Now, T_{∇} satisfies $Alt(I_3(T_{\nabla})) = 0$, hence belongs to the image of T_{lin} . Therefore, the connection $\nabla - T_{\text{lin}}^{-1}(T_{\nabla})$ is a torsion-free unitary connection.

Laplacian on differential forms

DEFINITION: Let *V* be a vector space. A metric *g* on *V* induces a natural metric on each of its tensor spaces: $g(x_1 \otimes x_2 \otimes ... \otimes x_k, x'_1 \otimes x'_2 \otimes ... \otimes x'_k) = g(x_1, x'_1)g(x_2, x'_2)...g(x_k, x'_k).$

This gives a natural positive definite scalar product on differential forms over a Riemannian manifold (M,g): $g(\alpha,\beta) := \int_M g(\alpha,\beta) \operatorname{Vol}_M$

DEFINITION: Let *M* be a Riemannian manifold. Laplacian on differential forms is $\Delta := dd^* + d^*d$.

REMARK: Laplacian is self-adjoint and positive definite: $(\Delta x, x) = (dx, dx) + (d^*x, d^*x)$. Also, Δ commutes with d and d^* .

THEOREM: (The main theorem of Hodge theory) There is an orthonormal basis in the Hilbert space $L^2(\Lambda^*(M))$ consisting of eigenvectors of Δ . Moreover, each eigenspace is finitely-dimensional, and the eigenvalues convergeto zero.

THEOREM: ("Elliptic regularity for Δ ") Let $\alpha \in L^2(\Lambda^k(M))$ be an eigenvector of Δ . Then α is a smooth *k*-form. Fritz Alexander Ernst Noether (October 7, 1884 - September 10, 1941)



Emmy Noether und Fritz Noether, 1933

De Rham cohomology

DEFINITION: The space $H^i(M) := \frac{\ker d|_{\Lambda^i M}}{d(\Lambda^{i-1}M)}$ is called **the de Rham coho**mology of M.

DEFINITION: A form α is called **harmonic** if $\Delta(\alpha) = 0$.

REMARK: Let α be a harmonic form. Then $(\Delta x, x) = (dx, dx) + (d^*x, d^*x)$, hence $\alpha \in \ker d \cap \ker d^*$.

REMARK: The projection $\mathcal{H}^i(M) \longrightarrow H^i(M)$ from harmonic forms to cohomology is injective. Indeed, a form α lies in the kernel of such projection if $\alpha = d\beta$, but then $(\alpha, \alpha) = (\alpha, d\beta) = (d^*\alpha, \beta) = 0$.

THEOREM: The natural map $\mathcal{H}^{i}(M) \longrightarrow H^{i}(M)$ is an isomorphism (see the next page).

REMARK: Poincare duality immediately follows from this theorem.

Hodge theory and the cohomology

THEOREM: The natural map $\mathcal{H}^i(M) \longrightarrow H^i(M)$ is an isomorphism.

Proof. Step 1: Since $d^2 = 0$ and $(d^*)^2 = 0$, one has $[d, \Delta] = dd^*d - dd^*d = 0$. This means that Δ commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition $\Lambda^*(M) \cong \bigoplus_{\alpha} \Lambda^*_{\alpha}(M)$, where α runs through all eigenvalues of Δ , and $\Lambda^*_{\alpha}(M)$ is the corresponding eigenspace. **For each** α , **de Rham differential defines a complex**

$$\Lambda^0_{\alpha}(M) \xrightarrow{d} \Lambda^1_{\alpha}(M) \xrightarrow{d} \Lambda^2_{\alpha}(M) \xrightarrow{d} \dots$$

Step 3: On $\Lambda_{\alpha}^{*}(M)$, one has $dd^{*} + d^{*}d = \alpha$. When $\alpha \neq 0$, and η closed, this implies $dd^{*}(\eta) + d^{*}d(\eta) = dd^{*}\eta = \alpha\eta$, hence $\eta = d\xi$, with $\xi := \alpha^{-1}d^{*}\eta$. This implies that **the complexes** ($\Lambda_{\alpha}^{*}(M), d$) **don't contribute to cohomology.**

Step 4: We have proven that

$$H^*(\Lambda^*M,d) = \bigoplus_{\alpha} H^*(\Lambda^*_{\alpha}(M),d) = H^*(\Lambda^*_{0}(M),d) = \mathcal{H}^*(M).$$