
Complex geometry, lecture 11 M. Verbitsky

Complex geometry
lecture 11: Supersymmetry for Kähler manifolds: Hodge ∗ operator

Misha Verbitsky

HSE, room 306, 16:20,

October 27, 2020

1



Complex geometry, lecture 11 M. Verbitsky

Hodge ∗ operator

Let V be a vector space. A metric g on V induces a natural metric

on each of its tensor spaces: g(x1 ⊗ x2 ⊗ ... ⊗ xk, x
′
1 ⊗ x′2 ⊗ ... ⊗ x′k) =

g(x1, x
′
1)g(x2, x

′
2)...g(xk, x

′
k).

This gives a natural positive definite scalar product on differential k-

forms over a Riemannian manifold (M, g): g(α, β) :=
√
k!
∫
M g(α, β) VolM .

We rescale it in such a way that the standard monomials become

orthonormal.

Another non-degenerate form is provided by the Poincare pairing:

α, β −→
∫
M α ∧ β.

DEFINITION: Let M be a Riemannian n-manifold. Define the Hodge ∗
operator ∗ : ΛkM −→ Λn−kM by the following relation: g(α, β) =

∫
M α ∧ ∗β.

REMARK: The Hodge ∗ operator always exists. It is defined explicitly in

an orthonormal basis ξ1, ..., ξn ∈ Λ1M :

∗(ξi1 ∧ ξi2 ∧ ... ∧ ξik) = (−1)sξj1 ∧ ξj2 ∧ ... ∧ ξjn−k,
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where ξj1, ξj2, ..., ξjn−k is a complementary set of vectors to ξi1, ξi2, ..., ξik, and

s the signature of a permutation (i1, ..., ik, j1, ..., jn−k).

REMARK: ∗2
∣∣∣Λk(M) = (−1)k(n−k) IdΛk(M)
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d∗ = (−1)nk ∗ d∗

CLAIM: On a compact Riemannian n-manifold, one has d∗
∣∣∣ΛkM = (−1)nk∗d∗,

where d∗ denotes the adjoint operator, which is defined by the equation

(dα, γ) = (α, d∗γ).

Proof: Since

0 =
∫
M
d(α ∧ β) =

∫
M
d(α) ∧ β + (−1)α̃α ∧ d(β),

one has (dα, ∗β) = (−1)α̃(α, ∗dβ). Setting γ := ∗β, we obtain

(dα, γ) = (−1)α̃(α, ∗d(∗)−1γ) = (−1)α̃(−1)α̃(ñ−α̃)(α, ∗d∗γ) = (−1)α̃ñ(α, ∗d∗γ).

REMARK: Since in all applications which we consider, n is even, I would

from now on ignore the sign (−1)nk.
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Graded vector spaces and algebras (reminder)

DEFINITION: A graded vector space is a space V ∗ =
⊕
i∈Z V

i.

REMARK: If V ∗ is graded, the endomorphisms space End(V ∗) =
⊕
i∈Z Endi(V ∗)

is also graded, with Endi(V ∗) =
⊕
j∈Z Hom(V j, V i+j)

DEFINITION: A graded algebra(or “graded associative algebra”) is an as-
sociative algebra A∗ =

⊕
i∈ZA

i, with the product compatible with the grading:
Ai ·Aj ⊂ Ai+j.

REMARK: A bilinear map of graded paces which satisfies Ai · Aj ⊂ Ai+j is
called graded, or compatible with grading.

REMARK: The category of graded spaces can be defined as a category of
vector spaces with U(1)-action, with the weight decomposition providing
the grading. Then a graded algebra is an associative algebra in the
category of spaces with U(1)-action.

DEFINITION: An operator on a graded vector space is called even (odd)
if it shifts the grading by even (odd) number. The parity ã of an operator a
is 0 if it is even, 1 if it is odd. We say that an operator is pure if it is even
or odd.
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Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a, b} = ab− (−1)ã̃bba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g∗ equipped with a bilinear graded map {·, ·} : g∗ × g∗ −→ g∗ which
is graded anticommutative: {a, b} = −(−1)ã̃b{b, a} and satisfies the super
Jacobi identity {c, {a, b}} = {{c, a}, b}+ (−1)ãc̃{a, {c, b}}

EXAMPLE: Consider the algebra End(A∗) of operators on a graded vector
space, with supercommutator as above. Then End(A∗), {·, ·} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d, d} =
0, and L an even or odd element. Then {{L, d}, d} = 0.

Proof: 0 = {L, {d, d}} = {{L, d}, d}+ (−1)L̃{d, {L, d}} = 2{{L, d}, d}.
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Supersymmetry in Kähler geometry

Let (M, I, g) be a Kaehler manifold, ω its Kaehler form. On Λ∗(M), the

following operators are defined.

0. d, d∗, ∆, because it is Riemannian.

1. L(α) := ω ∧ α

2. Λ(α) := ∗L ∗ α. It is easily seen that Λ = L∗.

3. The Weil operator W
∣∣∣Λp,q(M) =

√
−1 (p− q)

THEOREM: These operators generate a Lie superalgebra a of dimen-

sion (5|4), acting on Λ∗(M). Moreover, the Laplacian ∆ is central in a, hence

a also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kähler relations and

the Lefschetz’ sl(2)-action.
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The coordinate operators

Let V be an even-dimensional real vector space equipped with a scalar prod-
uct, and v1, ..., v2n an orthonormal basis. Denote by evi : ΛkV −→ Λk+1V an
operator of multiplication, evi(η) = vi ∧ η. Let ivi : ΛkV −→ Λk−1V be an
adjoint operator, ivi = ∗evi∗.

CLAIM: The operators evi, ivi, Id are a basis of an odd Heisenberg Lie
superalgebra H, with the only non-trivial supercommutator given by the
formula {evi, ivj} = δi,j Id.

Now, consider the tensor ω =
∑n
i=1 v2i−1 ∧ v2i, and let L(α) = ω ∧ α, and

Λ := L∗ be the corresponding Hodge operators.

CLAIM: (Lefschetz triples) From the commutator relations in H, one ob-
tains immediately that

H := [L,Λ] =
[∑

ev2i−1ev2i,
∑

iv2i−1iv2i

]
=

2n∑
i=1

eviivi −
2n∑
i=1

ivievi,

is a scalar operator acting as k − n on k-forms.

COROLLARY: The triple L,Λ, H satisfies the relations for the sl(2) Lie
algebra: [L,Λ] = H, [H,L] = 2L, [H,Λ] = 2Λ.
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