Complex geometry

lecture 13: Cohomology and a circle action

Misha Verbitsky

HSE, room 306, 16:20,

November 4, 2020

Stone-Weierstrass approximation theorem

DEFINITION: Let M be a topological space, and $||f|| := \sup_M |f|$ the sup-norm on functions. C^0 -topology on the space $C^0(M)$ of continuous, bounded real-valued functions is the topology defined by the sup-norm.

EXERCISE: Prove that $C^0(M)$ with sup-norm is a complete metric space.

DEFINITION: Let $A \subset C^0 M$ be a subspace in the space of continuous functions. We say that A separates the points of M if for all distinct points $x, y \in M$, there exists $f \in A$ such that $f(x) \neq f(y)$.

THEOREM: (Stone-Weierstrass theorem)

Let $A \subset C^0 M$ be a subring separating points, and \overline{A} its closure. Then $\overline{A} = C^0 M$.

Hilbert spaces

DEFINITION: Hilbert space over \mathbb{C} is a complete, infinite-dimensional Hermitian space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space *H* is a set of pairwise orthogonal vectors $\{x_{\alpha}\}$ which satisfy $|x_{\alpha}| = 1$, and such that *H* is the closure of the subspace generated by the set $\{x_{\alpha}\}$.

THEOREM: Any Hilbert space has a basis, and all such bases are countable.

Proof: A basis is found using Zorn lemma. If it's not countable, open balls with centers in x_{α} and radius $\varepsilon < 2^{-1/2}$ don't intersect, which means that the second countability axiom is not satisfied.

THEOREM: All Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis.

Fourier series

EXAMPLE: Let (M,μ) be a space with measure. Consider the space V of measurable functions $f : M \longrightarrow \mathbb{C}$ such that $\int_M |f|^2 \mu < \infty$. For each $f,g \in V$, the integral $\int f\overline{g}\mu$ is well defined, by Cauchy inequality: $\int |fg|\mu < \sqrt{\int_M |f|^2 \mu \int_M |g|^2 \mu}$. This gives a Hermitian form on V. Let $L^2(M)$ denote the completion of V with respect to this metric. It is called the space of square-integrable functions on M. Its elements are called L^2 -functions.

CLAIM: ("Fourier series") Functions $e_k(t) = e^{2\pi\sqrt{-1}kt}$, $k \in \mathbb{Z}$ on $S^1 = \mathbb{R}/\mathbb{Z}$ form an orthonormal basis in the Hilbert space $L^2(S^1)$.

Proof. Step 1: Orthogonality is clear from $\int_{S^1} e^{2\pi\sqrt{-1}kt} dt = 0$ for all $k \neq 0$ (prove it).

Step 2: The space of Fourier polynomials $\sum_{i=-n}^{n} a_k e_k(t)$ is dense in the space of continuous functions on the circle by the Stone-Weierstrass approximation theorem. Therefore, the closure of the space of functions which admit Fourier series is $L^2(S^1)$.

Fourier series on a torus

REMARK: Let $t_1, ..., t_n$ be coordinates on \mathbb{R}^n . We can think of t_i as of angle coordinates on the torus $T^n = \mathbb{R}^n / \mathbb{Z}^n$, considered as a product of n copies of S^1 . Consider the Fourier monomials $F_{l_1,...,l_n} := \exp(2\pi \sqrt{-1} \sum_{i=1}^n l_i t_i)$, where $l_1, ..., l_n$ are integers. Clearly,

$$L^{2}(T^{n}) \cong \underbrace{L^{2}(S^{1}) \widehat{\otimes} L^{2}(S^{1}) \widehat{\otimes} ... \widehat{\otimes} L^{2}(S^{1})}_{n \text{ times}}.$$

where $\hat{\otimes}$ denotes the completed tensor product. This implies that the Fourier monomials form a Hilbert basis in $L^2(T^n)$.

REMARK: This also follows directly from the Stone-Weierstrass theorem.

THEOREM: Let V be a Hilbert space, $Map(T^n, V)$ continuous maps, and $L^2(T^n, V)$ a completion of $Map(T^n, V)$ with respect to the L^2 -norm $|v|^2 = \int_{T^n} |v(x)|^2 dx$. Consider an orthonormal basis $u_1, ..., u_n, ...$ in V. Then **an orthonormal basis in** $Map(T^n, V)$ **is given by monomial maps** $F_{l_1,...,l_n}u_j$ taking $s \in T^n$ to $F_{l_1,...,l_n}(s)u_j$.

Proof: Orthonormality of the collection $\{F_{l_1,...,l_n}u_j\}$ is clear. To prove its completeness (that is, the density of the subspace generated by $\{F_{l_1,...,l_n}u_j\}$), notice that $Map(T^n, V)$ is a completion of $\bigoplus_i Map(T^n, V_i)$, where $V_i = \langle v_i \rangle$. Now, $\{F_{l_1,...,l_n}u_i\}$ is an orthonormal basis in $V_i = Map(T^n, \mathbb{C})$.

Weight decomposition for U(1)-representations

EXERCISE: Let ρ : $U(1) \longrightarrow GL(V)$ be a finite-dimensional irreducible complex representation of the Lie group U(1). **Prove that** dim $\mathbb{C} = 1$ and there exists $n \in \mathbb{Z}$ such that $t \in U(1) = \mathbb{R}/\mathbb{Z}$ acts on V as $\rho(t)(v) = e^{2\pi\sqrt{-1} nt}v$.

DEFINITION: A representation of U(1) with $\rho(t)(v) = e^{2\pi\sqrt{-1}nt}v$ is called weight *n* representation.

DEFINITION: Let V be a Hermitian space (possibly infinitely-dimensional) equipped with an action of U(1), and $V_k \subset V$ weight k representations, $k \in \mathbb{Z}$. The direct sum $\bigoplus V_k$ is called **the weight decomposition** for V if it is dense in V.

EXAMPLE: Let $L^2(S^1, W)$ the space of maps from S^1 to a Hermitian space W. We define U(1)-action on $L^2(S^1, W)$ by $\rho(t)(f) = R_t(f)$ where $R_t(f(x)) = f(x + t)$ shifts S^1 by t. Clearly, this is a Hermitian representation, and **its weight decomposition is its Fourier decomposition.**

Weight decomposition for U(1)-representations (2)

CLAIM: Let $\bigoplus V_k \subset V$ be the weight decomposition of a Hermitian representation ρ of U(1). Then any vector $v \in V$ can be decomposed onto a converging serie $v = \sum_{i \in \mathbb{Z}} v_i$, with $v_i \in V_i$. This decomposition is called the weight decomposition for v.

Proof. Step 1: Clearly, all V_i are pairwise orthogonal; indeed, for any $t \in U(1)$ and $x_p \in V_p$, $x_q \in V_q$, $i \neq j$, we have

$$e^{2\pi\sqrt{-1}\,pt}(x_p, x_q) = (\rho(t)(x_p), x_q) = (x_p, \rho(-t)x_q) = (x_p, e^{-2\pi\sqrt{-1}\,qt}x_q) = e^{2\pi\sqrt{-1}\,qt}(x_p, x_q)$$

giving p = q whenever $(x_p, x_q) \neq 0$.

Step 2: Let $\pi_i : V \longrightarrow V_i$ be the orthogonal projection. Then $|x|^2 \ge \sum_{i=-p}^p |\pi_i(x)|^2$ because orthogonal projection is always distance-decreasing. Therefore, the serie $\sum_{i\in\mathbb{Z}}\pi_i(x)$ converges. Its limit is a vector x' which satisfies (x, u) = (x', u) for any $u \in \bigoplus_{k\in\mathbb{Z}}V_k$. Since $\bigoplus_{k\in\mathbb{Z}}V_k$ is dense in V, this implies x = x'.

Weight decomposition and Fourier series

LEMMA: Let W be a Hermitian representation of U(1) admitting a weight decomposition. Then **any subquotient of** W **also admits a weight decomposition.**

Proof: This is clear for quotients. Any closed subspace $V \subset W$ gives a direct sum decomposition $W = V \oplus V^{\perp}$, hence it also can be realized as a quotient.

LEMMA: Let ρ : $U(1) \longrightarrow U(W)$ be a Hermitian representation of U(1), and $L^2(S^1, W)$ the space of maps from S^1 to W with the U(1)-action by translation as defined earlier. Then W can be realized as a sub-representation of $L^2(S^1, W)$.

Proof: For any $x \in W$ consider $\alpha_x \in L^2(S^1, W)$ taking $t \in U(1) = \mathbb{R}/\mathbb{Z}$ to $\rho(t)(x)$. Clearly, $x \mapsto \alpha_x$ defines a homomorphism of representations.

THEOREM: Let W be a Hermitian representation of U(1). Then W admits a weight decomposition $W = \bigoplus_{i \in \mathbb{Z}} W_i$.

Proof: We realize W as a subrepresentation in $L^2(S^1, W)$, and use the Fourier series to obtain the weight decomposition of $L^2(S^1, W)$.

Weight decomposition for T^n -action

EXERCISE: Consider the *n*-dimensional torus T^n as a Lie group, $T^n = U(1)^n$. **Prove that any finite-dimensional Hermitian representation of** T^n **is a direct sum of 1-dimensional representations,** with action of T^n given by $\rho(t_1, ..., t_n)(x) = \exp(2\pi\sqrt{-1} \sum_{i=1}^n p_i t_i)x$, for some $p_1, ..., p_n \in \mathbb{Z}^n$, called **the weights** of the 1-dimensional representation.

DEFINITION: Let V be a Hermitian space (possibly infinitely-dimensional) equipped with an action of T^n , and $V_{\alpha} \subset V$ weight α representations, $\alpha \in \mathbb{Z}^n$. The direct sum $\bigoplus_{\alpha \in \mathbb{Z}^n} V_{\alpha}$ is called **the weight decomposition** for V if it is dense in V.

THEOREM: Let W be a Hermitian vector space. Then the Fourier series provide the weight decomposition on $L^2(T^n, W)$.

THEOREM: Let W be a Hermitian representation of T^n . Then W admits a weight decomposition $V = \bigoplus_{\alpha \in \mathbb{Z}^n} W_{\alpha}$.

Proof: We realize W as a subrepresentation in $L^2(T^n, W)$, and use the Fourier series to obtain the weight decomposition of $L^2(T^n, W)$.

Weight decomposition for T^n -action on differential forms

REMARK: Let M be a manifold with the T^n -action, and

$$\Lambda^*(M) = \bigoplus_{\alpha \in \mathbb{Z}^n} \Lambda^*(M)_{p_1, \dots, p_k}$$

be the weight decomposition on the differential forms. Then the **de Rham differential preserves each term** $\Lambda^*(M)_{p_1,...,p_k}$. Indeed, *d* commutes with **the action of the Lie algebra of** T^n , and $\Lambda^*(M)_{p_1,...,p_k}$ are its eigenspaces.

REMARK: The weight decomposition $\alpha = \sum \alpha_{p_1,...,p_k}$ converges, generally speaking, only in L^2 , however, if action of T^n is smooth, it converges uniformly in $t \in T^n$ because **the Fourier serie of a smooth function converge uniformly**.

REMARK: Let $\alpha = \sum \alpha_{p_1,...,p_k}$ be the weight decomposition. The forms $\alpha_{p_1,...,p_k}$ are obtained by averaging

$$e^{2\pi\sqrt{-1}\sum_{i=1}^{n}p_{i}t_{i}}\alpha = \operatorname{Av}_{T^{n}}e^{2\pi\sqrt{-1}\sum_{i=1}^{n}-p_{i}t_{i}}\alpha$$

hence they are smooth.

De Rham cohomology and T^n -action

THEOREM: Let M be a smooth manifold, and T^n a torus acting on M by diffeomorphisms. Denote by $\Lambda^*(M)^{T^n}$ the complex of T^n -invariant differential forms. Then the natural embedding $\Lambda^*(M)^{T^n} \hookrightarrow \Lambda^*(M)$ induces an isomorphism on de Rham cohomology.

Proof. Step 1: Let $\alpha \in \Lambda^*(M)$ be a form and $\alpha = \sum \alpha_{p_1,...,p_n}$ its weight decomposition, with $\alpha_{p_1,...,p_n} \in \Lambda^*_{p_1,...,p_n}(M)$ a form of weight $p_1,...,p_n$. Since T^n -action commutes with de Rham differential, these forms are closed when α is closed.

Step 2: Let $r_1, ..., r_n$ be the standard generators of the Lie algebra of T^n rescaled in such a way that $\operatorname{Lie}_{r_k}(\exp(2\pi\sqrt{-1}\sum_{i=1}^n p_i t_i)) = \sqrt{-1} p_k$, and i_{r_k} : $\Lambda^i(M) \longrightarrow \Lambda^{i-1}(M)$ the convolution operator. Since $\operatorname{Lie}_{r_k} = \{d, i_{r_k}\}$, we have $p_k \alpha_{p_1,...,p_n} = d(i_{r_k} \alpha_{p_1,...,p_n})$ whenever $\alpha_{p_1,...,p_n}$ is closed. Therefore, all terms in the weight decomposition $\alpha = \sum \alpha_{p_1,...,p_n}$ are exact except $\alpha_{0,0,...,0}$.

Step 3: In the direct sum decomposition of the de Rham complex

$$\Lambda^*(M) = \Lambda^*(M)^{T^n} \oplus \widehat{\bigoplus}_{p_1,\dots,p_k \neq (0,0,\dots,0)} \Lambda^*_{p_1,\dots,p_k}(M)$$

the second component has trivial cohomology, because Lie_{r_k} is invertible on $\bigoplus_{p_k \neq 0} \Lambda_{p_1,\ldots,p_n}^*(M)$ (deduce it from $p_k \alpha_{p_1,\ldots,p_k} = d(i_{r_k} \alpha_{p_1,\ldots,p_k})$), and Lie_{r_k} (closed form) is exact.