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Stone-Weierstrass approximation theorem

DEFINITION: Let M be a topological space, and ‖f‖ := supM |f | the

sup-norm on functions. C0-topology on the space C0(M) of continuous,

bounded real-valued functions is the topology defined by the sup-norm.

EXERCISE: Prove that C0(M) with sup-norm is a complete metric

space.

DEFINITION: Let A ⊂ C0M be a subspace in the space of continuous

functions. We say that A separates the points of M if for all distinct points

x, y ∈M , there exists f ∈ A such that f(x) 6= f(y).

THEOREM: (Stone-Weierstrass theorem)

Let A ⊂ C0M be a subring separating points, and A its closure. Then

A = C0M.
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Hilbert spaces

DEFINITION: Hilbert space over C is a complete, infinite-dimensional Her-

mitian space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space H is a set of pairwise

orthogonal vectors {xα} which satisfy |xα| = 1, and such that H is the closure

of the subspace generated by the set {xα}.

THEOREM: Any Hilbert space has a basis, and all such bases are

countable.

Proof: A basis is found using Zorn lemma. If it’s not countable, open balls

with centers in xα and radius ε < 2−1/2 don’t intersect, which means that the

second countability axiom is not satisfied.

THEOREM: All Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis.
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Fourier series

EXAMPLE: Let (M,µ) be a space with measure. Consider the space V

of measurable functions f : M −→ C such that
∫
M |f |2µ < ∞. For each

f, g ∈ V , the integral
∫
fgµ is well defined, by Cauchy inequality:

∫
|fg|µ <√∫

M |f |2µ
∫
M |g|2µ. This gives a Hermitian form on V . Let L2(M) denote

the completion of V with respect to this metric. It is called the space of

square-integrable functions on M . Its elements are called L2-functions.

CLAIM: (”Fourier series”) Functions ek(t) = e2π
√
−1 kt, k ∈ Z on S1 = R/Z

form an orthonormal basis in the Hilbert space L2(S1).

Proof. Step 1: Orthogonality is clear from
∫
S1 e2π

√
−1 ktdt = 0 for all k 6= 0

(prove it).

Step 2: The space of Fourier polynomials
∑n
i=−n akek(t) is dense in the space

of continuous functions on the circle by the Stone-Weierstrass approximation

theorem. Therefore, the closure of the space of functions which admit Fourier

series is L2(S1).
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Fourier series on a torus

REMARK: Let t1, ..., tn be coordinates on Rn. We can think of ti as of angle
coordinates on the torus Tn = Rn/Zn, considered as a product of n copies of
S1. Consider the Fourier monomials Fl1,...,ln := exp(2π

√
−1

∑n
i=1 liti), where

l1, ..., ln are integers. Clearly,

L2(Tn) ∼= L2(S1)⊗̂L2(S1)⊗̂...⊗̂L2(S1)︸ ︷︷ ︸
n times

.

where ⊗̂ denotes the completed tensor product. This implies that the Fourier
monomials form a Hilbert basis in L2(Tn).

REMARK: This also follows directly from the Stone-Weierstrass theorem.

THEOREM: Let V be a Hilbert space, Map(Tn, V ) continuous maps, and
L2(Tn, V ) a completion of Map(Tn, V ) with respect to the L2-norm |v|2 =∫
Tn |v(x)|2dx. Consider an orthonormal basis u1, ..., un, ... in V . Then an or-

thonormal basis in Map(Tn, V ) is given by monomial maps Fl1,...,lnuj taking
s ∈ Tn to Fl1,...,ln(s)uj.

Proof: Orthonormality of the collection {Fl1,...,lnuj} is clear. To prove its
completeness (that is, the density of the subspace generated by {Fl1,...,lnuj}),
notice that Map(Tn, V ) is a completion of ⊕iMap(Tn, Vi), where Vi = 〈vi〉.
Now, {Fl1,...,lnui} is an orthonormal basis in Vi = Map(Tn,C).
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Weight decomposition for U(1)-representations

EXERCISE: Let ρ : U(1)−→GL(V ) be a finite-dimensional irreducible com-

plex representation of the Lie group U(1). Prove that dimC = 1 and there

exists n ∈ Z such that t ∈ U(1) = R/Z acts on V as ρ(t)(v) = e2π
√
−1 ntv.

DEFINITION: A representation of U(1) with ρ(t)(v) = e2π
√
−1 ntv is called

weight n representation.

DEFINITION: Let V be a Hermitian space (possibly infinitely-dimensional)

equipped with an action of U(1), and Vk ⊂ V weight k representations, k ∈ Z.

The direct sum
⊕
Vk is called the weight decomposition for V if it is dense

in V .

EXAMPLE: Let L2(S1,W ) the space of maps from S1 to a Hermitian space

W . We define U(1)-action on L2(S1,W ) by ρ(t)(f) = Rt(f) where Rt(f(x)) =

f(x + t) shifts S1 by t. Clearly, this is a Hermitian representation, and its

weight decomposition is its Fourier decomposition.
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Weight decomposition for U(1)-representations (2)

CLAIM: Let
⊕
Vk ⊂ V be the weight decomposition of a Hermitian repre-

sentation ρ of U(1). Then any vector v ∈ V can be decomposed onto a

converging serie v =
∑
i∈Z vi, with vi ∈ Vi. This decomposition is called the

weight decomposition for v.

Proof. Step 1: Clearly, all Vi are pairwise orthogonal; indeed, for any t ∈ U(1)

and xp ∈ Vp, xq ∈ Vq, i 6= j, we have

e2π
√
−1 pt(xp, xq) = (ρ(t)(xp), xq) = (xp, ρ(−t)xq) =

= (xp, e
−2π
√
−1 qtxq) = e2π

√
−1 qt(xp, xq)

giving p = q whenever (xp, xq) 6= 0.

Step 2: Let πi : V −→ Vi be the orthogonal projection. Then |x|2 >∑p
i=−p |πi(x)|2 because orthogonal projection is always distance-decreasing.

Therefore, the serie
∑
i∈Z πi(x) converges. Its limit is a vector x′ which sat-

isfies (x, u) = (x′, u) for any u ∈
⊕
k∈Z Vk. Since

⊕
k∈Z Vk is dense in V , this

implies x = x′.
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Weight decomposition and Fourier series

LEMMA: Let W be a Hermitian representation of U(1) admitting a weight
decomposition. Then any subquotient of W also admits a weight de-
composition.

Proof: This is clear for quotients. Any closed subspace V ⊂W gives a direct
sum decomposition W = V ⊕ V ⊥, hence it also can be realized as a quotient.

LEMMA: Let ρ : U(1)−→ U(W ) be a Hermitian representation of U(1), and
L2(S1,W ) the space of maps from S1 to W with the U(1)-action by translation
as defined earlier. Then W can be realized as a sub-representation of
L2(S1,W ).

Proof: For any x ∈ W consider αx ∈ L2(S1,W ) taking t ∈ U(1) = R/Z to
ρ(t)(x). Clearly, x 7→ αx defines a homomorphism of representations.

THEOREM: Let W be a Hermitian representation of U(1). Then W admits
a weight decomposition W =

⊕̂
i∈ZWi.

Proof: We realize W as a subrepresentation in L2(S1,W ), and use the Fourier
series to obtain the weight decomposition of L2(S1,W ).
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Weight decomposition for Tn-action

EXERCISE: Consider the n-dimensional torus Tn as a Lie group, Tn = U(1)n.

Prove that any finite-dimensional Hermitian representation of Tn is a

direct sum of 1-dimensional representations, with action of Tn given by

ρ(t1, ..., tn)(x) = exp(2π
√
−1

∑n
i=1 piti)x, for some p1, ..., pn ∈ Zn, called the

weights of the 1-dimensional representation.

DEFINITION: Let V be a Hermitian space (possibly infinitely-dimensional)

equipped with an action of Tn, and Vα ⊂ V weight α representations, α ∈ Zn.

The direct sum
⊕
α∈Zn Vα is called the weight decomposition for V if it is

dense in V .

THEOREM: Let W be a Hermitian vector space. Then the Fourier series

provide the weight decomposition on L2(Tn,W ).

THEOREM: Let W be a Hermitian representation of Tn. Then W admits

a weight decomposition V = ̂⊕
α∈ZnWα.

Proof: We realize W as a subrepresentation in L2(Tn,W ), and use the Fourier

series to obtain the weight decomposition of L2(Tn,W ).
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Weight decomposition for Tn-action on differential forms

REMARK: Let M be a manifold with the Tn-action, and

Λ∗(M) =
⊕̂

α∈ZnΛ∗(M)p1,...,pk

be the weight decomposition on the differential forms. Then the de Rham

differential preserves each term Λ∗(M)p1,...,pk. Indeed, d commutes with

the action of the Lie algebra of Tn, and Λ∗(M)p1,...,pk are its eigenspaces.

REMARK: The weight decomposition α =
∑
αp1,...,pk converges, generally

speaking, only in L2, however, if action of Tn is smooth, it converges uni-

formly in t ∈ Tn because the Fourier serie of a smooth function converge

uniformly.

REMARK: Let α =
∑
αp1,...,pk be the weight decomposition. The forms

αp1,...,pk are obtained by averaging

e2π
√
−1

∑n
i=1 pitiα = AvTn e

2π
√
−1

∑n
i=1−pitiα

hence they are smooth.
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De Rham cohomology and Tn-action

THEOREM: Let M be a smooth manifold, and Tn a torus acting on M by
diffeomorphisms. Denote by Λ∗(M)T

n
the complex of Tn-invariant differen-

tial forms. Then the natural embedding Λ∗(M)T
n
↪→ Λ∗(M) induces an

isomorphism on de Rham cohomology.

Proof. Step 1: Let α ∈ Λ∗(M) be a form and α =
∑
αp1,...,pn its weight

decomposition, with αp1,...,pn ∈ Λ∗p1,...,pn
(M) a form of weight p1, ..., pn. Since

Tn-action commutes with de Rham differential, these forms are closed when
α is closed.

Step 2: Let r1, ..., rn be the standard generators of the Lie algebra of Tn

rescaled in such a way that Lierk(exp(2π
√
−1

∑n
i=1 piti)) =

√
−1 pk, and irk :

Λi(M)−→ Λi−1(M) the convolution operator. Since Lierk = {d, irk}, we have
pkαp1,...,pn = d(irkαp1,...,pn) whenever αp1,...,pn is closed. Therefore, all terms
in the weight decomposition α =

∑
αp1,...,pn are exact except α0,0,...,0.

Step 3: In the direct sum decomposition of the de Rham complex

Λ∗(M) = Λ∗(M)T
n
⊕

⊕̂
p1,...,pk 6=(0,0,...,0)

Λ∗p1,...,pk
(M)

the second component has trivial cohomology, because Lierk is invertible on⊕
pk 6=0 Λ∗p1,...,pn

(M) (deduce it from pkαp1,...,pk = d(irkαp1,...,pk)), and
Lierk(closed form) is exact.
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