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Stone-Weierstrass approximation theorem

DEFINITION: Let M be a topological space, and ||f| := sup,/|f| the
sup-norm on functions. C°-topology on the space CO(M) of continuous,
bounded real-valued functions is the topology defined by the sup-norm.

EXERCISE: Prove that C%°(M) with sup-norm is a complete metric
space.

DEFINITION: Let A ¢ C°M be a subspace in the space of continuous
functions. We say that A separates the points of M if for all distinct points
x,y € M, there exists f € A such that f(x) # f(y).

THEOREM: (Stone-Weierstrass theorem)
Let A ¢ COM be a subring separating points, and A its closure. Then
A=COM.



Complex geometry, lecture 13 M. Verbitsky
Hilbert spaces

DEFINITION: Hilbert space over C is a complete, infinite-dimensional Her-
mitian space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space H is a set of pairwise
orthogonal vectors {xo} which satisfy |xo| = 1, and such that H is the closure
of the subspace generated by the set {z.}.

THEOREM: Any Hilbert space has a basis, and all such bases are
countable.

Proof: A basis is found using Zorn lemma. If it's not countable, open balls
with centers in z, and radius € < 271/2 don't intersect, which means that the
second countability axiom is not satisfied. m

THEOREM: AIll Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis. =
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Fourier series

EXAMPLE: Let (M,u) be a space with measure. Consider the space V
of measurable functions f : M — C such that [,,|f|°s < oco. For each
f,g € V, the integral [ fgu is well defined, by Cauchy inequality: [|fglp <
\/fM|f|2ufM lg|21.  This gives a Hermitian form on V. Let L2(M) denote
the completion of V with respect to this metric. It is called the space of
square-integrable functions on M. Its elements are called L2-functions.

CLAIM: (” Fourier series”) Functions ey (t) = e2™V—1k L c7 on S1 =R/Z
form an orthonormal basis in the Hilbert space L2(S1).

Proof. Step 1: Orthogonality is clear from [¢1 2™V =1/t =0 for all k% 0
(prove it).

Step 2: The space of Fourier polynomials 3% ager(t) is dense in the space
of continuous functions on the circle by the Stone-Weierstrass approximation
theorem. Therefore, the closure of the space of functions which admit Fourier

series is L2(S1). m
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Fourier series on a torus

REMARK: Let tq,...,t, be coordinates on R™. We can think of t; as of angle
coordinates on the torus T"™ = R"™/Z", considered as a product of n copies of
S1. Consider the Fourier monomials Fy, 0, = exp(2ry/—=1 X7 I;t;), where
l1,...,ln are integers. Clearly,

L2(T™) & L2(SHRL?(S1)®..®L2(S1) .
n times
where & denotes the completed tensor product. This implies that the Fourier
monomials form a Hilbert basis in L2(T™).

REMARK: This also follows directly from the Stone-Weierstrass theorem.

THEOREM: Let V be a Hilbert space, Map(T™,V) continuous maps, and
L2(T™, V) a completion of Map(T™,V) with respect to the L?-norm |v|? =
Jm |v(z)|?dz. Consider an orthonormal basis uq,...,un,... in V. Then an or-
thonormal basis in Map(7™,V) is given by monomial maps F;, _; u; taking
s€T™ to Fy, . 1,(s)u;.

Proof: Orthonormality of the collection {Fj, , u;} is clear. To prove its
completeness (that is, the density of the subspace generated by {Fll,...,lnuj})'
notice that Map(7T™,V) is a completion of &; Map(T™,V;), where V; = (v;).
Now, {F}, . 1,u;} is an orthonormal basis in V; = Map(7",C). =
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Weight decomposition for U(1)-representations

EXERCISE: Let p: U(1) — GL(V) be a finite-dimensional irreducible com-
plex representation of the Lie group U(1). Prove that dimC = 1 and there
exists n € Z such that t € U(1) = R/Z acts on V as p(t)(v) = 2™V 1nty,

DEFINITION: A representation of U(1) with p(t)(v) = e2™V—17ty is called
weight n representation.

DEFINITION: Let V be a Hermitian space (possibly infinitely-dimensional)
equipped with an action of U(1), and Vi, C V weight k representations, k € Z.
The direct sum @V, is called the weight decomposition for V if it is dense
in V.

EXAMPLE: Let L2(S1, W) the space of maps from S! to a Hermitian space
W. We define U(1)-action on L2(S1, W) by p(¢t)(f) = Ri(f) where R:(f(z)) =
f(x +t) shifts S1 by t. Clearly, this is a Hermitian representation, and its
weight decomposition is its Fourier decomposition.
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Weight decomposition for U(1)-representations (2)

CLAIM: Let @V, C V be the weight decomposition of a Hermitian repre-
sentation p of U(1). Then any vector v € V can be decomposed onto a
converging serie v = ) ;-7 v;, With v; € V;. This decomposition is called the
weight decomposition for v.

Proof. Step 1: Clearly, all V; are pairwise orthogonal; indeed, forany t € U(1)
and Lp c Vp, Lq - Vq, ) # j, we have

GQW\/__lpt(CEpaxq) = (p(t)(zp), zq) = (Tp, p(—t)3q) =
—2my/—1 thEq) — 6271'\/——1 qt

— (xpa € (pra qu)

giving p = q whenever (zp,zq) # O.

Step 2: Let wm;; : V —V, be the orthogonal projection. Then |:13|2 >
Zf:_p|7rz-(:c)|2 because orthogonal projection is always distance-decreasing.
Therefore, the serie > ;<7 m;(x) converges. Its limit is a vector =’ which sat-
isfies (z,u) = (a/,u) for any u € @rcyz Vi- Since @rez Vi is dense in V, this
implies x = 2/. =
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Weight decomposition and Fourier series

LEMMA: Let W be a Hermitian representation of U(1) admitting a weight
decomposition. Then any subquotient of W also admits a weight de-
composition.

Proof: This is clear for quotients. Any closed subspace V C W gives a direct
sum decomposition W = V@VL, hence it also can be realized as a quotient.
[ |

LEMMA: Let p: U(1) — U(W) be a Hermitian representation of U(1), and
L2(S1, W) the space of maps from S to W with the U(1)-action by translation
as defined earlier. Then W can be realized as a sub-representation of
L2(St,w).

Proof: For any =z € W consider a, € L?(S1,W) taking t € U(1) = R/Z to
p(t)(x). Clearly, x — o, defines a homomorphism of representations. =

THEOREM: Let W be a Hermitian representation of U(1). Then W admits
a weight decomposition W = @,z W;.

Proof: We realize W as a subrepresentation in L2(S1, W), and use the Fourier
series to obtain the weight decomposition of L2(S1, W). =
8
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Weight decomposition for 7T"-action

EXERCISE: Consider the n-dimensional torus T" as a Lie group, T" = U(1)".
Prove that any finite-dimensional Hermitian representation of 7" is a
direct sum of 1-dimensional representations, with action of T™ given by
p(t1,....tn)(x) = exp(2mv/—1 Y, pit;)z, for some p1,...,pn € Z", called the
weights of the 1-dimensional representation.

DEFINITION: Let V be a Hermitian space (possibly infinitely-dimensional)
equipped with an action of T™, and V, C V weight o representations, o € Z".
The direct sum @P,c7zn Vo is called the weight decomposition for V if it is
dense in V.

THEOREM: Let W be a Hermitian vector space. Then the Fourier series
provide the weight decomposition on L2(T", W). =

THEOREM: Let W be a Hermitian representation of 7. Then W admits

L ———

a weight decomposition V = @, c7n Wa.

Proof: We realize W as a subrepresentation in L2(T", W), and use the Fourier

series to obtain the weight decomposition of L2(T", W). m
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Weight decomposition for T"-action on differential forms

REMARK: Let M be a manifold with the T™-action, and

—~

/\*(M) — @QGZHA*(M)plr”apk

be the weight decomposition on the differential forms. Then the de Rham
differential preserves each term A*(M)p,...p.. Indeed, d commutes with
the action of the Lie algebra of T, and A*(M)p,,...p, are its eigenspaces.

REMARK: The weight decomposition a = > ap,,...p, CONverges, generally
speaking, only in L2, however, if action of T™ is smooth, it converges uni-
formly in t € T™ because the Fourier serie of a smooth function converge
uniformly.

REMARK: Let a = } ap,,.p, be the weight decomposition. The forms
apq,....p, @re obtained by averaging

27TV Zz 1 it — AVT 627TV Z —p;t iy

hence they are smooth.

10



Complex geometry, lecture 13 M. Verbitsky
De Rham cohomology and 7"-action

THEOREM: Let M be a smooth manifold, and T™ a torus acting on M by
diffeomorphisms. Denote by A*(M)T" the complex of T™-invariant differen-
tial forms. Then the natural embedding A*(M)T" < A*(M) induces an
iIsomorphism on de Rham cohomology.

Proof. Step 1: Let a € A*(M) be a form and a = Y} ap,....p, its weight
decomposition, with ap,,..p, € Ap, . (M) a form of weight py,...,pn. Since
T"-action commutes with de Rham differential, these forms are closed when

« IS closed.

Step 2: Let rq,...,rn, be the standard generators of the Lie algebra of T™
rescaled in such a way that Lie; (exp(2nv—1 > 1 pit;)) = V—1pg, and ip, :
N{(M) — N=1(M) the convolution operator. Since Lie,, = {d,ir, }, we have
PLOp,...pn = d(ir,Qpq,...p,) Whenever ayp .. p, is closed. Therefore, all terms
In the weight decomposition a = > ap,,...p, are exact except ag o .. o-

Step 3: In the direct sum decomposition of the de Rham complex

* Ak T T *
the second component has trivial cohomology, because Lie,,_ is invertible on

Lier (closed form) is exact. m
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