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Weight decomposition for Tn-action (reminder)

EXERCISE: Consider the n-dimensional torus Tn as a Lie group, Tn = U(1)n.

Prove that any finite-dimensional Hermitian representation of Tn is a

direct sum of 1-dimensional representations, with action of Tn given by

ρ(t1, ..., tn)(x) = exp(2π
√
−1

∑n
i=1 piti)x, for some p1, ..., pn ∈ Zn, called the

weights of the 1-dimensional representation.

DEFINITION: Let V be a Hermitian space (possibly infinitely-dimensional)

equipped with an action of Tn, and Vα ⊂ V weight α representations, α ∈ Zn.

The direct sum
⊕
α∈Zn Vα is called the weight decomposition for V if it is

dense in V .

THEOREM: Let W be a Hermitian vector space. Then the Fourier series

provide the weight decomposition on L2(Tn,W ).

THEOREM: Let W be a Hermitian representation of Tn. Then W admits

a weight decomposition V = ̂⊕
α∈ZnWα.

Proof: We realize W as a subrepresentation in L2(Tn,W ), and use the Fourier

series to obtain the weight decomposition of L2(Tn,W ).
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Weight decomposition for Tn-action on differential forms (reminder)

REMARK: Let M be a manifold with the Tn-action, and

Λ∗(M) =
⊕̂

α∈ZnΛ∗(M)p1,...,pk

be the weight decomposition on the differential forms. Then the de Rham

differential preserves each term Λ∗(M)p1,...,pk. Indeed, d commutes with

the action of the Lie algebra of Tn, and Λ∗(M)p1,...,pk are its eigenspaces.

REMARK: Let α =
∑
αp1,...,pk be the weight decomposition. The forms

αp1,...,pk are obtained by averaging

e2π
√
−1

∑n
i=1 pitiα = AvTn e

2π
√
−1

∑n
i=1−pitiα

hence they are smooth.

3



Complex geometry, lecture 14 M. Verbitsky

De Rham cohomology and Tn-action (reminder)

THEOREM: Let M be a smooth manifold, and Tn a torus acting on M by
diffeomorphisms. Denote by Λ∗(M)T

n
the complex of Tn-invariant differen-

tial forms. Then the natural embedding Λ∗(M)T
n
↪→ Λ∗(M) induces an

isomorphism on de Rham cohomology.

Proof. Step 1: Let α ∈ Λ∗(M) be a form and α =
∑
αp1,...,pn its weight

decomposition, with αp1,...,pn ∈ Λ∗p1,...,pn
(M) a form of weight p1, ..., pn. Since

Tn-action commutes with de Rham differential, these forms are closed when
α is closed.

Step 2: Let r1, ..., rn be the standard generators of the Lie algebra of Tn

rescaled in such a way that Lierk(exp(2π
√
−1

∑n
i=1 piti)) =

√
−1 pk, and irk :

Λi(M)−→ Λi−1(M) the convolution operator. Since Lierk = {d, irk}, we have
pkαp1,...,pn = d(irkαp1,...,pn) whenever αp1,...,pn is closed. Therefore, all terms
in the weight decomposition α =

∑
αp1,...,pn are exact except α0,0,...,0.

Step 3: In the direct sum decomposition of the de Rham complex

Λ∗(M) = Λ∗(M)T
n
⊕
⊕̂

p1,...,pk 6=(0,0,...,0)
Λ∗p1,...,pk

(M)

the second component has trivial cohomology, because Lierk is invertible on⊕
pk 6=0 Λ∗p1,...,pn

(M) (deduce it from pkαp1,...,pk = d(irkαp1,...,pk)), and
Lierk(closed form) is exact.
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Constant forms on a torus

REMARK: In the proof above, the serie
∑
pk 6=0

1
pk
irkαp1,...,pk converges, be-

cause
∑
pk 6=0αp1,...,pk converges, and satisfies d

(∑
pk 6=0

1
pk
irkαp1,...,pk

)
=
∑
pk 6=0αp1,...,pk

as shown.

DEFINITION: Let Tn = (S1)n be a compact torus equipped with a action on

itself by shifts, and Λ∗const(M). the space of Tn-invariant forms on Tn. These

forms are called constant differential forms. Clearly, constant forms have

constant coefficients in the usual (flat) coordinates on the torus.

THEOREM: The natural embedding Λ∗const(T
n) ↪→ Λ∗(Tn) induces an iso-

morphism Λ∗const(T
n) = H∗(Tn).

Proof: The embedding Λ∗const(T
n) = Λ∗(Tn)Tn ↪→ Λ∗(Tn) induces an iso-

morphism on cohomology, however, all constant forms are closed, hence

H∗(Λ∗const(T
n), d) = Λ∗const(T

n).
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Holomorphic vector fields

DEFINITION: Let (M, I) be a complex manifold, and X ∈ TM a real vector

field. It is called holomorphic if LieX(I) = 0, that is, if the corresponding

flow of diffeomorphisms is holomorphic.

CLAIM: Let (M, I) be a complex manifold, and X ∈ TM a holomorphic vector

field. Then Xc := I(X) is also holomorphic, and commutes with X.

Proof. Step 1: Assume that X is non-zero at a given point m ∈ M Solving

the appropriate differential equation in holomorphic coordinates, we obtain a

coordinate system z1, ..., zn in a neighbourhood of m such that LieX zi = 0 for

i > 1 and Liez1 = 1. Let xi, yi be the corresponding real coordinate system,

wih xi = Re zi and yi = Im zi. Then X = d
dx1

and Xc = d
dy1

.

Step 2: The conditions LieXc(I) = 0 and [Xc, X] = 0 hold on a closed subset

of M , that is, they are true on the closure C of the set of points where X 6= 0.

Outside of C, the vector field X is identically zero, hence these conditions are

also hold.
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Cartan’s formula for Dolbeault differential

LEMMA: Let X be a holomorphic vector field, and Xc = I(X). Then

{dc, iX} = −LieXc.

Proof: Using {IdI−1, iX} = I{d, I−1iXI}I−1, we obtain {dc, iX} = −I{d, iXc}I−1 =

I LieXc I−1. However, Xc is holomorphic, hence I LieXc I−1 = LieXc.

PROPOSITION: Let X be a holomorphic vector field, and Xc = I(X).

Then {∂, iX} = 1
2(LieX −

√
−1 LieXc).

Proof: ∂ = 1
2(d+

√
−1 dc), hence

{∂, iX} =
1

2
LieX +

√
−1 {dc, iX} =

1

2
(LieX −

√
−1 LieXc).

REMARK: Let M be a complex manifold equipped with a holomorphic action

of the torus Tn. Then the action of Tn commutes with d and dc. Therefore,

the operators d, dc preserve the eigenspaces of the corresponding Lie algebra.

These eigenspaces are components of the weight decomposition. This implies

that the Dolbeault differential ∂ preserves the weight decomposition.
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Dolbeault cohomology of an elliptic curve

DEFINITION: An elliptic curve is a 1-dimensional compact complex man-
ifold X := C/Z2.

REMARK: The additive group C acts on itself by parallel transforms, hence
the 2-dimensional torus T2 acts on an elliptic curve by holomorphic
diffeomorphisms.

DEFINITION: The Tn-invariant forms on Tn are called constant.

DEFINITION: Dolbeault cohomology of a complex manifold is ker ∂
im ∂

.

COROLLARY: Dolbeault cohomology of an elliptic curve X are rep-
resented by the constant forms on X.

Proof using the Hodge theory: Choose a T2-invariant Kähler form on X.
We have already obtained an isomorphism between de Rham cohomology
and the constant forms. Since the constant forms are harmonic, there are no
other harmonic forms. Now, ∆∂ = 1

2∆d, hence
constant forms = ∂-harmonic forms = Dolbeault cohomology.

In the next slide, we give a proof which is independent from the Hodge
theory.
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Dolbeault cohomology of an elliptic curve (2)

PROPOSITION: Let X be an elliptic curve, and Λ∗(X) =
⊕
α∈Z2 Λ∗(X)p1,p2

its weight decomposition under the T2-action. Consider the space T2-invariant

forms Λ∗(X)T
2

= Λ∗(X)0,0. Then the natural embedding Λ∗(X)T
2
↪→

Λ∗(X) induces an isomorphism of Dolbeault cohomology.

Proof: Let α ∈ Λ∗(X)p1,p2 be a ∂-closed form, with (p, q) 6= (0,0). Suppose,

for example, that p 6= 0, and X is the generator of the corresponding compo-

nent of the Lie algebra such that LieX α = p
√
−1 α. Since Xc belongs to the

same Lie algebra, we have LieXc(α) = vα, where v ∈
√
−1 R. Then

√
−1 p+ v

2
α =

1

2
(LieX −

√
−1 LieXc)α = {∂, iX}α = ∂iXα, (∗ ∗ ∗)

hence α is ∂-exact. This implies that ∂ has no cohomology on⊕
p1,p2 6=(0,0)

Λ∗(X)p1,p2.
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∂-exact top forms on an elliptic curve

CLAIM: Let η ∈ Λn(Tn) be a top form on a torus, and ν =
∑
α∈Zn να its

weight decomposition. Then
∫
Tn ν =

∫
Tn ν0, where ν0 denotes the Tn-

invariant component. Moreover, whenever
∫
Tn ν = 0, the component ν0

also vanishes.

Proof: Let ν be a top form on a compact manifold, equipped with an action

of S1, and ν =
∑
νi its weight decomposition. Then

∫
M νi = 0 for all i 6= 0.

Indeed, the S1-action multiplies νi by a non-zero number, but the integral is

invariant under the action of diffeomorphisms.

PROPOSITION: Let η ∈ Λ2(X) be a form on an elliptic curve such that∫
X η = 0. Then η is ∂-exact.

Proof: Consider the weight decomposition η =
∑
α∈Z2 ηα. Since

∫
M η = 0, the

(0,0)-component vanishes, and by (***) the form η is ∂-exact.

10



Complex geometry, lecture 14 M. Verbitsky

Dolbeault cohomology of a disk

COROLLARY: Let K ⊂ C be a compact subset, K0 its interior, and η ∈
Λ2(K0) a top form smoothly extending to a neighbourhood of K. Then η is

∂-exact.

Proof: Choosing an appropriate lattice Z2 ⊂ C, we may assume that K is a

subset of an elliptic curve X. Since η extends to a neighbourhood of K, we

can use partition of unity to extend it to a smooth form η̃ on X. Applying

the weight decomposition η̃ =
∑
α∈Z2 ηα, we obtain that the form η − η0,0 is

∂-exact. However, the constant part η0,0 = const ·dz∧dz = const ·∂(zdz) is also

∂-exact.

COROLLARY: Let K ⊂ C be a compact subset, K0 its interior, and µ ∈
Λ2(K0) a (0,1)-form smoothly extending to a neighbourhood of K. Then µ

is ∂-exact.

Proof: By the previous corollary, µ∧dz is ∂-exact: there exists a (1,0)-form ϕ

such that ∂ϕ = µ∧dz. However, for any (1,0)-form ϕ there exists a function ψ

such that ψdz = ϕ, which gives ∂ψ = µ because the map Λ0,1(X)
∧dz−→ Λ1,1(X)

is an isomorphism which commutes with ∂.
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Poincaré-Dolbeault-Grothendieck lemma

DEFINITION: Polydisc Dn is a product of n discs D ⊂ C.

THEOREM: (Poincaré-Dolbeault-Grothendieck lemma)

Let η ∈ Λp,q(Dn), q > 0, be a ∂-closed form on a polydisc, smoothly extended

to a neighbourhood of its closure Dn ⊂ Cn. Then η is ∂-exact.

We proved it for n = 1. Nextr lecture we prove it for all n.
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