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Complex geometry, lecture 15 M. Verbitsky

Weight decomposition for Tn-action (reminder)

EXERCISE: Consider the n-dimensional torus Tn as a Lie group, Tn = U(1)n.

Prove that any finite-dimensional Hermitian representation of Tn is a

direct sum of 1-dimensional representations, with action of Tn given by

ρ(t1, ..., tn)(x) = exp(2π
√
−1

∑n
i=1 piti)x, for some p1, ..., pn ∈ Zn, called the

weights of the 1-dimensional representation.

DEFINITION: Let V be a Hermitian space (possibly infinitely-dimensional)

equipped with an action of Tn, and Vα ⊂ V weight α representations, α ∈ Zn.

The direct sum
⊕
α∈Zn Vα is called the weight decomposition for V if it is

dense in V .

THEOREM: Let W be a Hermitian vector space. Then the Fourier series

provide the weight decomposition on L2(Tn,W ).

THEOREM: Let W be a Hermitian representation of Tn. Then W admits

a weight decomposition V = ̂⊕
α∈ZnWα.

Proof: We realize W as a subrepresentation in L2(Tn,W ), and use the Fourier

series to obtain the weight decomposition of L2(Tn,W ).
2



Complex geometry, lecture 15 M. Verbitsky

Weight decomposition for Tn-action on differential forms (reminder)

REMARK: Let M be a manifold with the Tn-action, and

Λ∗(M) =
⊕̂

α∈ZnΛ∗(M)p1,...,pk

be the weight decomposition on the differential forms. Then the de Rham

differential preserves each term Λ∗(M)p1,...,pk. Indeed, d commutes with

the action of the Lie algebra of Tn, and Λ∗(M)p1,...,pk are its eigenspaces.

REMARK: Let α =
∑
αp1,...,pk be the weight decomposition. The forms

αp1,...,pk are obtained by averaging

e2π
√
−1

∑n
i=1 pitiα = AvTn e

2π
√
−1

∑n
i=1−pitiα

hence they are smooth.

THEOREM: Let M be a smooth manifold, and Tn a torus acting on M by

diffeomorphisms. Denote by Λ∗(M)T
n

the complex of Tn-invariant differen-

tial forms. Then the natural embedding Λ∗(M)T
n
↪→ Λ∗(M) induces an

isomorphism on de Rham cohomology.
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Constant forms on a torus (reminder)

DEFINITION: Let Tn = (S1)n be a compact torus equipped with a action on

itself by shifts, and Λ∗const(M). the space of Tn-invariant forms on Tn. These

forms are called constant differential forms. Clearly, constant forms have

constant coefficients in the usual (flat) coordinates on the torus.

THEOREM: The natural embedding Λ∗const(T
n) ↪→ Λ∗(Tn) induces an iso-

morphism Λ∗const(T
n) = H∗(Tn).

Proof: The embedding Λ∗const(T
n) = Λ∗(Tn)Tn ↪→ Λ∗(Tn) induces an iso-

morphism on cohomology, however, all constant forms are closed, hence

H∗(Λ∗const(T
n), d) = Λ∗const(T

n).
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Holomorphic vector fields (reminder)

DEFINITION: Let (M, I) be a complex manifold, and X ∈ TM a real vector
field. It is called holomorphic if LieX(I) = 0, that is, if the corresponding
flow of diffeomorphisms is holomorphic.

CLAIM: Let (M, I) be a complex manifold, and X ∈ TM a holomorphic vector
field. Then Xc := I(X) is also holomorphic, and commutes with X.

LEMMA: Let X be a holomorphic vector field, and Xc = I(X). Then
{dc, iX} = −LieXc.

Proof: Using {IdI−1, iX} = I{d, I−1iXI}I−1, we obtain {dc, iX} = −I{d, iXc}I−1 =
I LieXc I−1. However, Xc is holomorphic, hence I LieXc I−1 = LieXc.

PROPOSITION: Let X be a holomorphic vector field, and Xc = I(X).
Then {∂, iX} = 1

2(LieX −
√
−1 LieXc).

Proof: ∂ = 1
2(d+

√
−1 dc), hence

{∂, iX} =
1

2
LieX +

√
−1 {dc, iX} =

1

2
(LieX −

√
−1 LieXc).
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Dolbeault cohomology of an elliptic curve (reminder)

PROPOSITION: Let X = C/Z2 be an elliptic curve, and Λ∗(X) =
⊕
α∈Z2 Λ∗(X)p1,p2

its weight decomposition under the T2-action. Consider the space T2-invariant

forms Λ∗(X)T
2

= Λ∗(X)0,0. Then the natural embedding Λ∗(X)T
2
↪→

Λ∗(X) induces an isomorphism of Dolbeault cohomology.

Proof: Let α ∈ Λ∗(X)p1,p2 be a ∂-closed form, with (p, q) 6= (0,0). Suppose,

for example, that p 6= 0, and X is the generator of the corresponding compo-

nent of the Lie algebra such that LieX α = p
√
−1 α. Since Xc belongs to the

same Lie algebra, we have LieXc(α) = vα, where v ∈
√
−1 R. Then

√
−1 p+ v

2
α =

1

2
(LieX −

√
−1 LieXc)α = {∂, iX}α = ∂iXα, (∗ ∗ ∗)

hence α is ∂-exact. This implies that ∂ has no cohomology on⊕
p1,p2 6=(0,0)

Λ∗(X)p1,p2.
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Dolbeault cohomology of a disk

COROLLARY: Let K ⊂ C be a compact subset, K0 its interior, and η ∈
Λ0,1(K0) a form smoothly extending to a neighbourhood of K. Then η is

∂-exact.

Proof: Choosing an appropriate lattice Z2 ⊂ C, we may assume that K is a

subset of an elliptic curve X. Since η extends to a neighbourhood of K, we

can use partition of unity to extend it to a smooth form η̃ on X. Applying

the weight decomposition η̃ =
∑
α∈Z2 ηα, we obtain that the form η − η0,0 is

∂-exact. However, the constant part η0,0 = const · dz ∧ dz = const · ∂(zdz) (for

(1,1)-form) or η0,0 = const · dz = const · ∂(z) for (0,1)-form is also ∂-exact.

7



Complex geometry, lecture 15 M. Verbitsky

Poincaré-Dolbeault-Grothendieck lemma

DEFINITION: Polydisc Dn is a product of n discs D ⊂ C.

THEOREM: (Poincaré-Dolbeault-Grothendieck lemma)

Let η ∈ Λp,q(Dn), q > 0, be a ∂-closed form on a polydisc, smoothly extended

to a neighbourhood of its closure Dn ⊂ Cn. Then η is ∂-exact.

We proved it for n = 1. Now we prove it for all n.
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∂-homotopy operator on T2

From now on, 1-dimensional complex torus is always C/Z[
√
−1 ] and the

n-dimensional complex torus T2n is a product of n copies of T2 =
C/Z[

√
−1 ].

CLAIM: Let µ ∈ Λp,q(M)a,b be a form of weight (a, b) on a torus T2 =
C/Z[

√
−1 ], and X the coordinate vector field along the real axis. Then

{∂, iX}(µ) = 1
2(b+

√
−1 a).

Proof: {∂, iX} = 1
2(LieX −

√
−1 LieXc), and Xc is the coordinate vector field

along the imaginary axis, acting on µ by multiplication by
√
−1 b.

DEFINITION: Given µ =
∑
a,b∈Z2 µa,b define

P (µ) :=
∑

(a,b)6=(0,0)

2(b+
√
−1 a)−1µa,b.

The operator P commutes with all operators which commute with the

T2-action on itself: with d, dc, iX, iXc, etc.

COROLLARY: Then {∂, P iX}) = µ − µ0,0. In particular, if µ is ∂-closed,

we also have ∂P (iX(µ)) = µ− µ0.
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Homotopy operator γk on T2n

Let U ⊂ T2n be a polydisk. Since U is contractible, all constant (p, q)-forms
on a torus with q > 0 are ∂-exact on U : ∂zi = ∂(zi), which can be well defined
on U because it is contractible.

For any disk U ⊂ T2, fix a cutoff function ρε which is 1 on U and 0 outside of a
contractible ε-neighbourhood of U . Consider the map Q : Λp,1(T2)−→ Λp,0(T2)
taking µ to µ0,0 and replacing any constant summand of form α∧∂zi by ρεziα.

CLAIM: In these assumptions, we have {∂, γ}(µ) = µ on U for any form
µ ∈ Λp,1(T2), where γ(α) = P (iX(α)) +Q(µ).

Proof: If µ0,0 = 0, we have Q(µ) = 0, and this expression becomes {∂, P (iX)}) =
µ− µ0,0 proven above. If µ = µ0,0, it becomes ∂(Q(µ))|U = µ.

Corollary 1: Let U ⊂ T2n be a polydisk, and ρε a cutoff function which is 1
on U and 0 outside of a contractible ε-neighbourhood of U . We chose ρε in
such a way that Lied/dxi(ρε) = 0 at any point (x1, ..., xn) such that |xi| < 1.
Let γk denote the operator γ along the k-th component in T2n = (T2)n, and
∂k the ∂ along this component. Then {∂k, γk}(µ) = µ on U for any form µ

divisible by dzk, and {∂k, γl}|U = 0 for l 6= k.
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Poincaré-Dolbeault-Grothendieck lemma

THEOREM: (Poincaré-Dolbeault-Grothendieck lemma)

Let η ∈ Λ0,p(Dn) be a ∂-closed form on a polydisc, smoothly extended to a

neighbourhood of its closure Dn ⊂ Cn. Then η is ∂-exact.

We prove the following version of Poincaré-Dolbeault-Grothendieck.

THEOREM: Let U ⊂ T2n be a sufficiently small polydisk, and µ ∈ Λp,q(T2n)

a form with q > 0 which is ∂-closed on U . Then there exists α ∈ Λp,q−1(T2n)

such that ∂α = µ on U.

Proof. Step 1: Let ∂i : Λp,q(Tn)−→ Λp,q+1(Tn) be the operator α−→ dzi ∧
d
dzi
α, where zi is i-th coordinate on Tn. Then ∂ =

∑
i ∂i. Denote by γi the

homotopy operator defined above. If α = dzi ∧ β, one has {∂i, γi}(α) = α. If

α contains no monomials divisible by dzi, one has

∂i{∂i, γi}(α) = ∂iγi∂i(α) = {∂i, γi}∂iα = ∂iα,

hence ∂i(α − {∂i, γi})|U = 0. This implies that im
[
{∂i, γi} − Id

]∣∣∣
U

lies in the

space Ri(U) of forms without dzi in monomial decomposition and with

all coefficients holomorphic as functions on zi.
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Poincaré-Dolbeault-Grothendieck lemma (2)

THEOREM: Let U ⊂ T2n be a sufficiently small polydisk, and µ ∈ Λp,q(T2n)
a form with q > 0 which is ∂-closed on U . Then there exists α ∈ Λp,q−1(T2n)
such that ∂α = µ on U.

Proof. Step 1: Let ∂i : Λp,q(Dn)−→ Λp,q+1(Dn) be the operator α−→ dzi ∧
d
dzi
α, and γi the homotopy defined above. Then im

[
{∂i, γi} − Id

]
|U lies in the

space Ri(U) of forms without dzi in monomial decomposition and with all
coefficients holomorphic as functions on zi.

Step 2: Let Ri denote the space of forms α on T2n such that α|U belongs
to the space Ri(U) defined above. Properties of γi:
(1). im

[
{∂i, γi}− Id

]
⊂ Ri. (2). {∂i, γj}|U = 0, if i 6= j. (3). the restriction[

{∂i, γi}
]∣∣∣Ri vanishes on U. (4). γi(Rj) ⊂ Rj, ∂i(Rj) ⊂ Rj for all i 6= j.

Property (1) is proven in Step 1, property (2) and (4) follow because γi is
independent from the zj-coordinate for all j 6= i. Finally, (3) follows because
for all forms α without dzi in its monomial decomposition one has {γi, ∂}(α) =
γi(∂i(α)).

Step 3: Properties (1), (3) and (4) give
[
{∂i, γi} − Id

]
(Ri1 ∩Ri2 ∩ ... ∩Rik) ⊂

Ri ∩ Ri1 ∩ Ri2 ∩ ... ∩ Rik for i /∈ {i1, i2, ..., ik}, and {∂i, γi}
∣∣∣∣Ri1∩Ri2∩...∩Rik = 0

otherwise.
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Poincaré-Dolbeault-Grothendieck lemma (3)

Step 3: Properties (1), (3) and (4) give
[
{∂i, γi} − Id

]
(Ri1 ∩Ri2 ∩ ... ∩Rik) ⊂

Ri ∩ Ri1 ∩ Ri2 ∩ ... ∩ Rik for i /∈ {i1, i2, ..., ik}, and {∂i, γi}
∣∣∣∣Ri1∩Ri2∩...∩Rik = 0

otherwise.

Step 4: Let γ :=
∑
i γi. Since {∂i, γj} = 0 for i 6= j, Step 3 gives[

{∂, γ} − (n− k) Id
]
(Ri1 ∩Ri2 ∩ ... ∩Rik) ⊂

∑
i 6=i1,i2,...,ik

Ri ∩Ri1 ∩Ri2 ∩ ... ∩Rik

Step 5: Let W0 = Λ∗(T2n), and Wk ⊂ Wk−1 the subspace generated by all
Ri1∩Ri2∩ ...∩Rik for i1 < i2 < ... < ik. Step 4 implies

[
{∂, γ}−(n−k) Id

]∣∣∣Wk
⊂

Wk+1.

Step 6: Wn is the space of (p,0)-forms holomorphic on U , and it does not
contain any (p, q)-forms for q > 0. Using induction in d = n − k, we can
assume that any ∂-closed (p, q)-form in Wk+1 is ∂-exact when q > 0.
To prove PDG-lemma, it would suffice to prove the same for any ∂-
closed form α ∈ Wk. Step 5 gives (n− k)α− {∂, γ}(α) = (n− k)α− ∂γ(α) ∈
Wk+1, and this form is ∂-exact by the induction assumption. This gives
(n− k)α− ∂γ(α) = ∂η, hence α is ∂-exact.
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Hartogs theorem

THEOREM: Let f be a holomorphic function on Cn\K, where K ⊂ Cn is a
compact, and n > 1. Then f can be extended to a holomorphic function
on Cn.

Proof. Step 1: Replacing K by a bigger compact, we can assume that f

is smoothly extended to a small neighbourhood of the closure M\K. Then
f can be extended to a smooth function on Cn, holomorphic outside of K.
Then α := ∂f̃ is a ∂-closed (0,1)-form with compact support.

Step 2: Using the standard open embedding of Cn to CPn, we may consider
α as a ∂-closed (0,1)-form on CPn. Since H1(CPn) = 0, this gives α = ∂ϕ,
where ϕ is a continuous function on CPn. In particular, ϕ is bounded on
Cn ⊂ CPn.

Step 3: Since ∂ϕ vanishes outside of K, the function ϕ is holomorphic outside
of K. Since bounded holomorphic functions on C are constant, ϕ is constant
on any affine line not intersecting K.

Step 4: This implies that ϕ = const on the union of all affine lines not inter-
secting K. Since n > 1, the complement of this set is compact. Substracting
constant if necessary, we obtain that ϕ is a function with compact support.

Step 5: ∂(f̃ −ϕ) = α−α = 0, hence f̃ −ϕ is holomorphic. However, ϕ has
compact support, and therefore f = f̃ − ϕ outside of a compact.
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Algebra of supersymmetry of a Kähler manifold: reminder

Let (M, I, g) be a Kaehler manifold, ω its Kaehler form. On Λ∗(M), the
following operators are defined.

0. d, d∗, ∆, because it is Riemannian.

1. L(α) := ω ∧ α

2. Λ(α) := ∗L ∗ α. It is easily seen that Λ = L∗.

3. The Weil operator W
∣∣∣Λp,q(M) =

√
−1 (p− q)

THEOREM: These operators generate a Lie superalgebra a of dimen-
sion (5|4), acting on Λ∗(M). Moreover, the Laplacian ∆ is central in a, hence
a also acts on the cohomology of M.

The odd part of this algebra generates “odd Heisenberg algebra” 〈d, dc, d∗, (dc)∗,∆〉,
with the only non-zero anticommutator {d, d∗} = {dc, (dc)∗} = ∆.

The even part of this algebra contains an sl(2)-triple 〈L,Λ, H〉 acting on aodd as
on a direct sum of two weight 1 representations (“Kodaira relations”). The
Weil element commutes with 〈L,Λ, H,∆〉 and acts on aodd via [W,d] = dc,
[W,d∗] = (dc)∗.
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Inverting ∂ using the Hodge theory

CLAIM: Let β be a ∂-exact form, and γ := ∆−1∂
∗
β. Then ∂(γ) = β.

Proof: Indeed,

∂
∗
β = {∂, ∂∗}(∆−1∂

∗
β) = ∂

∗
∂γ

because (∂
∗
)2 = 0 and ∆−1 commutes with ∂

∗
. However, ker ∂

∗
is orthogonal

to im ∂, hence ∂
∗∣∣∣im ∂ is injective. Then ∂

∗
β = ∂

∗
∂γ implies β = ∂γ.

REMARK: Similarly, for any d-exact form β, one has β = ∆−1d∗β.
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ddc-lemma

THEOREM: Let η be a form on a compact Kähler manifold, satisfying one
of the following conditions.
(1). η is an exact (p, q)-form. (2). η is d-exact, dc-closed.
(3). η is ∂-exact, ∂-closed.
Then η ∈ im ddc = im ∂∂.

Proof: Notice immediately that in all three cases η is closed and orthogonal
to the kernel of ∆, hence its cohomology class vanishes.

Since η is exact, it lies in the image of ∆. Operator G∆ := ∆−1 is defined
on im ∆ = ker ∆⊥ and commutes with d, dc.

In case (1), η is d-exact, and I(η) = η is d-closed, hence η is d-exact, dc-closed
like in (2).

Then η = dα, where α := G∆d
∗η. Since G∆ and d∗ commute with dc, the

form α is dc-closed; since it belongs to im ∆ = imG∆, it is dc-exact, α = dcβ
which gives η = ddcβ.

In case (3), we have η = ∂α, where α := G∆∂
∗η. Since G∆ and ∂∗ commute

with ∂, the form α is ∂-closed; since it belongs to im ∆, it is ∂-exact, α = ∂β
which gives η = ∂∂β.
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Massey products

Let a, b, c ∈ Λ∗(M) be closed forms on a manifold M with cohomology classes

[a], [b], [c] satisfying [a][b] = [b][c] = 0, and α, γ ∈ Λ∗(M) forms which satisfy

d(α) = a ∧ b, d(γ) = b ∧ c. Denote by L[a], L[c] : H∗(M)−→H∗(M) the

operation of multiplication by the cohomology classes [a], [c].

Then α∧c−a∧γ is a closed form, and its cohomology class is well-defined

modulo imL[a] + imL[c].

DEFINITION: Cohomology class α ∧ c− a ∧ γ is called Massey product of

a, b, c.

PROPOSITION: On a Kähler manifold, Massey products vanish.

Proof: Let a, b, c be harmonic forms of pure Hodge type, that is, of type (p, q)

for some p, q. Then ab and bc are exact pure forms, hence ab, bc ∈ im ddc by

ddc-lemma. This implies that α := d∗G∆(ab) and γ := d∗G∆(bc) are dc-exact.

Therefore µ := α∧ c−a∧γ is a dc-exact, d-closed form. Applying ddc-lemma

again, we obtain that µ is ddc-exact, hence its cohomology class vanish.
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