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Weight decomposition for T"-action (reminder)

EXERCISE: Consider the n-dimensional torus T" as a Lie group, T" = U(1)".
Prove that any finite-dimensional Hermitian representation of 7" is a
direct sum of 1-dimensional representations, with action of T™ given by
p(t1,....tn)(x) = exp(2mv/—1 Y, pit;)z, for some p1,...,pn € Z", called the
weights of the 1-dimensional representation.

DEFINITION: Let V be a Hermitian space (possibly infinitely-dimensional)
equipped with an action of T™, and V, C V weight o representations, o € Z".
The direct sum @P,c7zn Vo is called the weight decomposition for V if it is
dense in V.

THEOREM: Let W be a Hermitian vector space. Then the Fourier series
provide the weight decomposition on L2(T", W). =

THEOREM: Let W be a Hermitian representation of 7. Then W admits

L ———

a weight decomposition V = @, c7n Wa.

Proof: We realize W as a subrepresentation in L2(T", W), and use the Fourier

series to obtain the weight decomposition of L2(T", W). m
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Weight decomposition for T"-action on differential forms (reminder)

REMARK: Let M be a manifold with the T™-action, and

—~

/\*(M) — @QGZHA*(M)plr”apk

be the weight decomposition on the differential forms. Then the de Rham
differential preserves each term A*(M)p,...p.. Indeed, d commutes with
the action of the Lie algebra of T, and A*(M)p,,...p, are its eigenspaces.

REMARK: Let a = } ap,,..p, be the weight decomposition. The forms
apq,...,p, @re obtained by averaging

e27‘(‘\/—1 Z?:]_ pitia — AVTn 627‘(‘\/—1 Z?:l _pitia
hence they are smooth.
THEOREM: Let M be a smooth manifold, and T™ a torus acting on M by
diffeomorphisms. Denote by /\*(M)Tn the complex of T™-invariant differen-

tial forms. Then the natural embedding A*(M)T" < A*(M) induces an
iIsomorphism on de Rham cohomology.
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Constant forms on a torus (reminder)

DEFINITION: Let 7" = (S1)” be a compact torus equipped with a action on
itself by shifts, and A} ,(M). the space of T"-invariant forms on T™. These
forms are called constant differential forms. Clearly, constant forms have

constant coefficients in the usual (flat) coordinates on the torus.

THEOREM: The natural embedding A%,,(T") — A*(T") induces an iso-
morphism A% (T") = H*(T").

Proof: The embedding A% (T7) = A*(T™)In — A*(T™) induces an iso-
morphism on cohomology, however, all constant forms are closed, hence
H*(Nonst (1), d) = Nonst (T7) . m



Complex geometry, lecture 15 M. Verbitsky

Holomorphic vector fields (reminder)

DEFINITION: Let (M,I) be a complex manifold, and X € TM a real vector
field. It is called holomorphic if Liex(I) = 0, that is, if the corresponding
flow of diffeomorphisms is holomorphic.

CLAIM: Let (M, I) be a complex manifold, and X € TM a holomorphic vector
field. Then X¢:= I(X) is also holomorphic, and commutes with X.

LEMMA: Let X be a holomorphic vector field, and X¢ = I(X). Then
{dc,iX} = — LieXc.

Proof: Using {IdI~1,ix} = I{d, I LixI}I~1, we obtain {d% iy} = —I{d,ixc}[~1 =
I LiexeI~1. However, X¢ is holomorphic, hence I LiexcI~1 = Lieyc. m

PROPOSITION: Let X be a holomorphic vector field, and X¢ = I(X).
Then {9,ix} = 3(Liex —v/—1 Liexe).

Proof: 0 = %(d + +v/—1d°), hence
_ 1 1
{8,@'X} = 5 Liex +v—1 {dc,iX} = E(LieX —v —1 LieXc).
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Dolbeault cohomology of an elliptic curve (reminder)

PROPOSITION: Let X = C/Z? be an elliptic curve, and A*(X) = D72 N (X)p1,po
its weight decomposition under the T2-action. Consider the space T2-invariant
forms A*(X)T° = A*(X)po. Then the natural embedding A*(X)T° <
A*(X) induces an isomorphism of Dolbeault cohomology.

Proof: Let a € A*(X)p,p, be a 0-closed form, with (p,q) # (0,0). Suppose,
for example, that p # 0, and X is the generator of the corresponding compo-
nent of the Lie algebra such that Liexy a = pv/—1 «. Since X¢ belongs to the
same Lie algebra, we have Lieyc(a) = va, where v € /—1R. Then

v—1p+ ’Ua
2
hence a is 9-exact. This implies that © has no cohomology on

D AN Xprp

p1,p27#(0,0)

1 _ _
= E(LleX —/—1 LieXc)C\{ = {6, ’LX}Oé — 87;X057 (* * *)
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Dolbeault cohomology of a disk

COROLLARY: Let K C C be a compact subset, K9 its interior, and n €
AOL(KO) a form smoothly extending to a neighbourhood of K. Then 7 is
0-exact.

Proof: Choosing an appropriate lattice 72 C C, we may assume that K is a
subset of an elliptic curve X. Since n extends to a neighbourhood of K, we
can use partition of unity to extend it to a smooth form n on X. Applying
the weight decomposition 1 = >_ .72 7a, We obtain that the form n —ngg is
0-exact. However, the constant part ng g = const - dz A dz = const - 9(Zdz) (for
(1,1)-form) or ng o = const - dz = const - d(z) for (0,1)-form is also 9-exact. m
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Poincaré-Dolbeault-Grothendieck lemma
DEFINITION: Polydisc D" is a product of n discs D C C.

THEOREM: (Poincaré-Dolbeault-Grothendieck lemma)
Let n € AP4(D"™), q > 0, be a d-closed form on a polydisc, smoothly extended
to a neighbourhood of its closure D"* C C*. Then n is 0-exact.

We proved it for n = 1. Now we prove it for all n.
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O-homotopy operator on 72

From now on, 1-dimensional complex torus is always C/Z[v/—1] and the
n-dimensional complex torus 72" is a product of n copies of T2 =

C/Z[V=T].

CLAIM: Let p € AP4(M),;, be a form of weight (a,b) on a torus T2 =
C/Z[v—11], and X the coordinate vector field along the real axis. Then

{8,ix}(pw) = 3(b+ v~T1a).

Proof: {9,ix} = %(LieX —+/—1 Liexe¢), and X°¢ is the coordinate vector field
along the imaginary axis, acting on p by multiplication by /—156. =

DEFINITION: Given u = 3", ,c72 tqp define

P(p):= > 20b+v=1a) tugy.
(a,b)7#(0,0)
The operator P commutes with all operators which commute with the
T2-action on itself: with d, d° iy, iye, etc.

COROLLARY: Then {9, Pix}) = pu— pupo. In particular, if p is d-closed,

we also have 0P(ix(n)) = pu — po. =
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Homotopy operator . on T2"

Let U C T2" be a polydisk. Since U is contractible, all constant (p, q)-forms
on a torus with ¢ > 0 are 9-exact on U: 9z; = 9(%;), which can be well defined
on U because it is contractible.

For any disk U C T2, fix a cutoff function pe wWhich is 1 on U and O outside of a
contractible e-neighbourhood of U. Consider the map Q : AP-1(T2) — AP,O(T2)
taking p to ug o and replacing any constant summand of form aNOZ; by peZ;a.

CLAIM: In these assumptions, we have {9,v}(x) = p on U for any form
pe APH(T?), where y(a) = P(ix(a)) + Q(u).

Proof: If 490 = 0, we have Q(u) = 0, and this expression becomes {9, P(ix)}) =
©— po,0 Proven above. If = pg o, it becomes 9(Q(w))|y = p. =

Corollary 1: Let U C T2 pe a polydisk, and p. a cutoff function which is 1
on U and O outside of a contractible e-neighbourhood of U. We chose p: in
such a way that Lied/dxi(pg) = 0 at any point (z1,...,xn) such that |z;| < 1.
Let v, denote the operator v along the k-th component in T2n — (TQ)”, and
0 the 0 along this component. Then {0;,v.}(x) = on U for any form
divisible by dz,, and {0,v}|y =0 for | # k. m
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Poincaré-Dolbeault-Grothendieck lemma

THEOREM: (Poincaré-Dolbeault-Grothendieck lemma)
Let n € AOP(D™) be a d-closed form on a polydisc, smoothly extended to a
neighbourhood of its closure D*» C C*. Then n is d-exact.

We prove the following version of Poincaré-Dolbeault-Grothendieck.

THEOREM: Let U C T2™ be a sufficiently small polydisk, and u € AP:4(T2")
a form with ¢ > 0 which is d-closed on U. Then there exists o € AP:4—1(72n)
such that o = p on U.

Proof. Step 1: Let 9; : APY(T™) —s AP4T1(T™) be the operator a — dz; A

%a, where z; is i-th coordinate on 7. Then 0 = Y ,0;. Denote by ~; the
homotopy operator defined above. If a = dz; A 8, one has {9;,v;}(a) = a. If

a contains no monomials divisible by dz;, one has

0i{0;, vi} () = 0;7;0;(a) = {0;,v;} 00 = O,
hence d;(a — {9;,%})|y = 0. This implies that im [{9;,7;} — Id”U lies in the
space R;(U) of forms without dz; in monomial decomposition and with

all coefficients holomorphic as functions on z;.
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Poincaré-Dolbeault-Grothendieck lemma (2)

THEOREM: Let U C T2™ be a sufficiently small polydisk, and pu € AP:4(T2")
a form with ¢ > 0 which is 8-closed on U. Then there exists a € AP4—1(12m)
such that 6o = p on U.

Proof. Step 1: Let §; : AP4(D") —s AP4T1(D") be the operator o —» dz; A
d‘i «, and ~; the homotopy defined above. Then im [{82,%} Id]|U lies in the
space R;(U) of forms without dz; in monomial decomposition and with all
coefficients holomorphic as functions on z;.

Step 2: Let R; denote the space of forms a on T2" such that «|; belongs
to the space R;(U) defined above. Properties of ~;:
(1). im [{82-,%}—Id] C R;. (2). {9s,7}Hlu =0, ifi# 5. (3). the restriction

{52-,%-}”31. vanishes on U. (4). v;(R;) C Rj, 9;(R;) C R; for all i # j.
roperty (1) is proven in Step 1, property (2) and (4) follow because ~; is

independent from the z;-coordinate for all j # i. Finally, (3) follows because

for all forms a without dz; in its monomial decomposition one has {v;,0}(a) =

7i(0; ().
Step 3: Properties (1), (3) and (4) give [{5@%} —Id} (Riy; "R, N...NR;, ) C

R; N Ril M Rig M...N Rik for ¢« ¢ {iq,ip,...,9;}, and {57;,"}/7;}
otherwise.

RilﬂRiQQ---ﬂRik =0
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Poincaré-Dolbeault-Grothendieck lemma (3)

Step 3: Properties (1), (3) and (4) give [{51-,%} —Id} (RiyNR;;N..NR;) C

R; N Ril M Rig M ... N Rik for ¢« ¢ {i1,10,...,7;}, and {5@,’)@}
otherwise.

Ry NRi,N..NR;, = O

Step 4: Let v:=3;~;. Since {9;,v;} =0 for i # j, Step 3 gives
{0,7} - (n—kK)Id|(Ry "Ry NoNR)C Y RiNRy NRiy NN R;,

1711,8D, .l

Step 5: Let Wy = A*(T?"), and W), C W),_1 the subspace generated by all
Ri, NR;,N...NR;, for iy <ip < ... <ij. Step 4 implies [{9,~}—(n—k) Id”Wk C
Wk_l_l.

Step 6: W, is the space of (p,0)-forms holomorphic on U, and it does not
contain any (p,q)-forms for ¢ > 0. Using induction in d = n — k, we can
assume that any od-closed (p,q)-form in Wy, is 9-exact when ¢ > 0.
To prove PDG-lemma, it would suffice to prove the same for any o-
closed form o € Wj. Step 5 gives (n — k)a — {9,v}(a) = (n — k)a — 0v(a) €
W41, and this form is 0-exact by the induction assumption. This gives
(n — k)a— 0v(a) = 0n, hence « is 9-exact. =
13
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Hartogs theorem

THEOREM: Let f be a holomorphic function on C"\ K, where K C C" is a
compact, and n > 1. Then f can be extended to a holomorphic function
on C",

Proof. Step 1: Replacing K by a bigger compact, we can assume that f
is smoothly extended to a small neighbourhood of the closure M\K. Then
f can be extended to a smooth function on C", holomorphic outside of K.
Then o := 0f is a d-closed (0, 1)-form with compact support.

Step 2: Using the standard open embedding of C" to CP"™, we may consider
a as a 0-closed (0,1)-form on CP". Since HY(CP™) = 0, this gives a = 9,
where ¢ is a continuous function on CP™. In particular, ¢ is bounded on
Cr c CcpP™.

Step 3: Since dp vanishes outside of K, the function ¢ is holomorphic outside
of K. Since bounded holomorphic functions on C are constant, ¢ is constant
on any affine line not intersecting K.

Step 4: This implies that ¢ = const on the union of all affine lines not inter-
secting K. Since n > 1, the complement of this set is compact. Substracting
constant if necessary, we obtain that ¢ is a function with compact support.

Step 5: O(f—¢) =a—a =0, hence f— ¢ is holomorphic. However, ¢ has

compact support, and therefore f = f — ¢ outside of a compact. =
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Algebra of supersymmetry of a Kahler manifold: reminder

Let (M,I,g) be a Kaehler manifold, w its Kaehler form. On A*(M), the
following operators are defined.

0. d, d*, A\, because it is Riemannian.

1. L(a) (= wA«

2. N(a) ;= L x . It is easily seen that A = L*.
3. The Weil operator W‘,\p,q(M) =+v—-1(p—q)

THEOREM: These operators generate a Lie superalgebra a of dimen-
sion (5|4), acting on A*(M). Moreover, the Laplacian A is central in a, hence
a also acts on the cohomology of M.

The odd part of this algebra generates “odd Heisenberg algebra” (d, d¢, d*, (d°)*, A),
with the only non-zero anticommutator {d,d*} = {d¢, (d°)*} = A.

The even part of this algebra contains an s((2)-triple (L, A, H) acting on a°99 as
on a direct sum of two weight 1 representations (“Kodaira relations”). The
Weil element commutes with (L,A, H, A) and acts on a°99 via [W,d] = d<,
(W, d*] = (d°)*.
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Inverting 0 using the Hodge theory
CLAIM: Let 8 be a d-exact form, and ~ := A~15"8. Then 9(») = 8.

Proof: Indeed,
'8 =10,0" (A 19"B) = 50y
because (87)2 = 0 and A~1 commutes with 8. However, kerd" is orthogonal

to im 8, hence 5*|im5 is injective. Then 883 =8"0~ implies 3 =09v. =

REMARK: Similarly, for any d-exact form 3, one has 3 = A—1d*g.
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dd°-lemma

THEOREM: Let n be a form on a compact Kahler manifold, satisfying one
of the following conditions.

(1). n is an exact (p,q)-form. (2). n is d-exact, d°-closed.

(3). n is 0-exact, O-closed.

Then n € imdd® = im 90.

Proof: Notice immediately that in all three cases 7 is closed and orthogonal
to the kernel of A, hence its cohomology class vanishes.

Since n is exact, it lies in the image of A. Operator G = A1 is defined
on im A = ker A+ and commutes with d, d°.

In case (1), n is d-exact, and I(n) = 7 is d-closed, hence 7 is d-exact, d°-closed
like in (2).

Then n = da, where a := Gad*n. Since GaA and d* commute with d¢, the
form « is d°-closed; since it belongs to IMA =imGp, it is d®-exact, a = d°g3
which gives n = dd°g.

In case (3), we have n = da, where a := GA0*n. Since Ga and 9* commute
with 0, the form « is 0-closed; since it belongs to im A, it is 0-exact, a = 983
which gives n = 003. =
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Massey products

Let a,b,c € A*(M) be closed forms on a manifold M with cohomology classes
[a], [b], [c] satisfying [a][b] = [b][c] = O, and «a,v € A*(M) forms which satisfy
dla) = a ADb, d(v) = bAc. Denote by L[a]7L[c] . H*(M) — H*(M) the
operation of multiplication by the cohomology classes [a], [¢].

Then anc—aA~v is a closed form, and its cohomology class is well-defined
modulo im L[a] + im L[c]

DEFINITION: Cohomology class aAc—a Ay is called Massey product of

a,b, c.
PROPOSITION: On a Kahler manifold, Massey products vanish.

Proof: Let a,b,c be harmonic forms of pure Hodge type, that is, of type (p, q)
for some p,q. Then ab and bc are exact pure forms, hence ab,bc € imdd® by
dd®-lemma. This implies that a := d*Ga(ab) and ~ := d*Ga(bc) are d-exact.
Therefore u:=aAc—aA~ is a d*-exact, d-closed form. Applying dd“-lemma
adain, we obtain that p is dd“-exact, hence its cohomology class vanish.

m
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