Complex geometry

lecture 15: Poincaré-Dolbeault-Grothendieck lemma

Misha Verbitsky

HSE, room 306, 16:20,

November 11, 2020

Complex geometry, lecture 15

M. Verbitsky

Weight decomposition for T^n -action (reminder)

EXERCISE: Consider the *n*-dimensional torus T^n as a Lie group, $T^n = U(1)^n$. **Prove that any finite-dimensional Hermitian representation of** T^n **is a direct sum of 1-dimensional representations,** with action of T^n given by $\rho(t_1, ..., t_n)(x) = \exp(2\pi\sqrt{-1} \sum_{i=1}^n p_i t_i)x$, for some $p_1, ..., p_n \in \mathbb{Z}^n$, called **the weights** of the 1-dimensional representation.

DEFINITION: Let V be a Hermitian space (possibly infinitely-dimensional) equipped with an action of T^n , and $V_{\alpha} \subset V$ weight α representations, $\alpha \in \mathbb{Z}^n$. The direct sum $\bigoplus_{\alpha \in \mathbb{Z}^n} V_{\alpha}$ is called **the weight decomposition** for V if it is dense in V.

THEOREM: Let W be a Hermitian vector space. Then the Fourier series provide the weight decomposition on $L^2(T^n, W)$.

THEOREM: Let W be a Hermitian representation of T^n . Then W admits a weight decomposition $V = \bigoplus_{\alpha \in \mathbb{Z}^n} W_{\alpha}$.

Proof: We realize W as a subrepresentation in $L^2(T^n, W)$, and use the Fourier series to obtain the weight decomposition of $L^2(T^n, W)$.

M. Verbitsky

Weight decomposition for T^n -action on differential forms (reminder)

REMARK: Let M be a manifold with the T^n -action, and

$$\Lambda^*(M) = \bigoplus_{\alpha \in \mathbb{Z}^n} \Lambda^*(M)_{p_1, \dots, p_k}$$

be the weight decomposition on the differential forms. Then the **de Rham differential preserves each term** $\Lambda^*(M)_{p_1,...,p_k}$. Indeed, *d* **commutes with the action of the Lie algebra of** T^n , and $\Lambda^*(M)_{p_1,...,p_k}$ are its eigenspaces.

REMARK: Let $\alpha = \sum \alpha_{p_1,...,p_k}$ be the weight decomposition. The forms $\alpha_{p_1,...,p_k}$ are obtained by averaging

$$e^{2\pi\sqrt{-1}\sum_{i=1}^{n}p_{i}t_{i}}\alpha = \operatorname{Av}_{T^{n}}e^{2\pi\sqrt{-1}\sum_{i=1}^{n}-p_{i}t_{i}}\alpha$$

hence they are smooth.

THEOREM: Let M be a smooth manifold, and T^n a torus acting on M by diffeomorphisms. Denote by $\Lambda^*(M)^{T^n}$ the complex of T^n -invariant differential forms. Then the natural embedding $\Lambda^*(M)^{T^n} \hookrightarrow \Lambda^*(M)$ induces an isomorphism on de Rham cohomology.

Constant forms on a torus (reminder)

DEFINITION: Let $T^n = (S^1)^n$ be a compact torus equipped with a action on itself by shifts, and $\Lambda^*_{const}(M)$. the space of T^n -invariant forms on T^n . These forms are called **constant differential forms**. Clearly, **constant forms have constant coefficients in the usual (flat) coordinates on the torus.**

THEOREM: The natural embedding $\Lambda^*_{const}(T^n) \hookrightarrow \Lambda^*(T^n)$ induces an isomorphism $\Lambda^*_{const}(T^n) = H^*(T^n)$.

Proof: The embedding $\Lambda^*_{\text{const}}(T^n) = \Lambda^*(T^n)^{T_n} \hookrightarrow \Lambda^*(T^n)$ induces an isomorphism on cohomology, however, all constant forms are closed, hence $H^*(\Lambda^*_{\text{const}}(T^n), d) = \Lambda^*_{\text{const}}(T^n)$.

Holomorphic vector fields (reminder)

DEFINITION: Let (M, I) be a complex manifold, and $X \in TM$ a real vector field. It is called **holomorphic** if $\text{Lie}_X(I) = 0$, that is, if the corresponding flow of diffeomorphisms is holomorphic.

CLAIM: Let (M, I) be a complex manifold, and $X \in TM$ a holomorphic vector field. Then $X^c := I(X)$ is also holomorphic, and commutes with X.

LEMMA: Let X be a holomorphic vector field, and $X^c = I(X)$. Then $\{d^c, i_X\} = -\operatorname{Lie}_{X^c}$.

Proof: Using $\{IdI^{-1}, i_X\} = I\{d, I^{-1}i_XI\}I^{-1}$, we obtain $\{d^c, i_X\} = -I\{d, i_{X^c}\}I^{-1} = I \text{Lie}_{X^c}I^{-1}$. However, X^c is holomorphic, hence $I \text{Lie}_{X^c}I^{-1} = \text{Lie}_{X^c}$.

PROPOSITION: Let X be a holomorphic vector field, and $X^c = I(X)$. Then $\{\overline{\partial}, i_X\} = \frac{1}{2}(\text{Lie}_X - \sqrt{-1} \text{Lie}_{X^c})$.

Proof: $\overline{\partial} = \frac{1}{2}(d + \sqrt{-1} d^c)$, hence $\{\overline{\partial}, i_X\} = \frac{1}{2} \operatorname{Lie}_X + \sqrt{-1} \{d^c, i_X\} = \frac{1}{2} (\operatorname{Lie}_X - \sqrt{-1} \operatorname{Lie}_{X^c}).$

Dolbeault cohomology of an elliptic curve (reminder)

PROPOSITION: Let $X = \mathbb{C}/\mathbb{Z}^2$ be an elliptic curve, and $\Lambda^*(X) = \bigoplus_{\alpha \in \mathbb{Z}^2} \Lambda^*(X)_{p_1,p_2}$ its weight decomposition under the T^2 -action. Consider the space T^2 -invariant forms $\Lambda^*(X)^{T^2} = \Lambda^*(X)_{0,0}$. Then the natural embedding $\Lambda^*(X)^{T^2} \hookrightarrow$ $\Lambda^*(X)$ induces an isomorphism of Dolbeault cohomology.

Proof: Let $\alpha \in \Lambda^*(X)_{p_1,p_2}$ be a $\overline{\partial}$ -closed form, with $(p,q) \neq (0,0)$. Suppose, for example, that $p \neq 0$, and X is the generator of the corresponding component of the Lie algebra such that $\text{Lie}_X \alpha = p\sqrt{-1} \alpha$. Since X^c belongs to the same Lie algebra, we have $\text{Lie}_{X^c}(\alpha) = v\alpha$, where $v \in \sqrt{-1} \mathbb{R}$. Then

$$\frac{\sqrt{-1} p + v}{2} \alpha = \frac{1}{2} (\operatorname{Lie}_X - \sqrt{-1} \operatorname{Lie}_{X^c}) \alpha = \{\overline{\partial}, i_X\} \alpha = \overline{\partial} i_X \alpha, \quad (* * *)$$

hence α is $\overline{\partial}$ -exact. This implies that $\overline{\partial}$ has no cohomology on

 $\bigoplus_{p_1,p_2\neq(0,0)}\Lambda^*(X)_{p_1,p_2}.$

Dolbeault cohomology of a disk

COROLLARY: Let $K \subset \mathbb{C}$ be a compact subset, K^0 its interior, and $\eta \in \Lambda^{0,1}(K^0)$ a form smoothly extending to a neighbourhood of K. Then η is $\overline{\partial}$ -exact.

Proof: Choosing an appropriate lattice $\mathbb{Z}^2 \subset \mathbb{C}$, we may assume that K is a subset of an elliptic curve X. Since η extends to a neighbourhood of K, we can use partition of unity to extend it to a smooth form $\tilde{\eta}$ on X. Applying the weight decomposition $\tilde{\eta} = \sum_{\alpha \in \mathbb{Z}^2} \eta_{\alpha}$, we obtain that the form $\eta - \eta_{0,0}$ is $\overline{\partial}$ -exact. However, the constant part $\eta_{0,0} = \operatorname{const} \cdot dz \wedge d\overline{z} = \operatorname{const} \cdot \overline{\partial}(\overline{z}dz)$ (for (1,1)-form) or $\eta_{0,0} = \operatorname{const} \cdot d\overline{z} = \operatorname{const} \cdot \overline{\partial}(\overline{z})$ for (0,1)-form is also $\overline{\partial}$ -exact.

Poincaré-Dolbeault-Grothendieck lemma

DEFINITION: Polydisc D^n is a product of n discs $D \subset \mathbb{C}$.

THEOREM: (Poincaré-Dolbeault-Grothendieck lemma)

Let $\eta \in \Lambda^{p,q}(D^n)$, q > 0, be a $\overline{\partial}$ -closed form on a polydisc, smoothly extended to a neighbourhood of its closure $\overline{D^n} \subset \mathbb{C}^n$. Then η is $\overline{\partial}$ -exact.

We proved it for n = 1. Now we prove it for all n.

$\overline{\partial}$ -homotopy operator on T^2

From now on, 1-dimensional complex torus is always $\mathbb{C}/\mathbb{Z}[\sqrt{-1}]$ and the *n*-dimensional complex torus T^{2n} is a product of *n* copies of $T^2 = \mathbb{C}/\mathbb{Z}[\sqrt{-1}]$.

CLAIM: Let $\mu \in \Lambda^{p,q}(M)_{a,b}$ be a form of weight (a,b) on a torus $T^2 = \mathbb{C}/\mathbb{Z}[\sqrt{-1}]$, and X the coordinate vector field along the real axis. Then $\{\overline{\partial}, i_X\}(\mu) = \frac{1}{2}(b + \sqrt{-1}a)$.

Proof: $\{\overline{\partial}, i_X\} = \frac{1}{2}(\text{Lie}_X - \sqrt{-1} \text{Lie}_{X^c})$, and X^c is the coordinate vector field along the imaginary axis, acting on μ by multiplication by $\sqrt{-1} b$.

DEFINITION: Given $\mu = \sum_{a,b \in \mathbb{Z}^2} \mu_{a,b}$ define

$$P(\mu) := \sum_{(a,b) \neq (0,0)} 2(b + \sqrt{-1} a)^{-1} \mu_{a,b}.$$

The operator *P* commutes with all operators which commute with the T^2 -action on itself: with *d*, d^c , i_X , i_{X^c} , etc.

COROLLARY: Then $\{\overline{\partial}, Pi_X\}) = \mu - \mu_{0,0}$. In particular, if μ is $\overline{\partial}$ -closed, we also have $\overline{\partial}P(i_X(\mu)) = \mu - \mu_0$.

M. Verbitsky

Homotopy operator γ_k on T^{2n}

Let $U \subset T^{2n}$ be a polydisk. Since U is contractible, all constant (p,q)-forms on a torus with q > 0 are $\overline{\partial}$ -exact on U: $\overline{\partial}\overline{z}_i = \overline{\partial}(\overline{z}_i)$, which can be well defined on U because it is contractible.

For any disk $U \subset T^2$, fix a cutoff function ρ_{ε} which is 1 on U and 0 outside of a contractible ε -neighbourhood of \overline{U} . Consider the map $Q : \Lambda^{p,1}(T^2) \longrightarrow \Lambda^{p,0}(T^2)$ taking μ to $\mu_{0,0}$ and replacing any constant summand of form $\alpha \wedge \overline{\partial}\overline{z}_i$ by $\rho_{\varepsilon}\overline{z}_i\alpha$.

CLAIM: In these assumptions, we have $\{\overline{\partial}, \gamma\}(\mu) = \mu$ on U for any form $\mu \in \Lambda^{p,1}(T^2)$, where $\gamma(\alpha) = P(i_X(\alpha)) + Q(\mu)$.

Proof: If $\mu_{0,0} = 0$, we have $Q(\mu) = 0$, and this expression becomes $\{\overline{\partial}, P(i_X)\}) = \mu - \mu_{0,0}$ proven above. If $\mu = \mu_{0,0}$, it becomes $\overline{\partial}(Q(\mu))|_U = \mu$.

Corollary 1: Let $U \subset T^{2n}$ be a polydisk, and ρ_{ε} a cutoff function which is 1 on U and 0 outside of a contractible ε -neighbourhood of \overline{U} . We chose ρ_{ε} in such a way that $\operatorname{Lie}_{d/dx_i}(\rho_{\varepsilon}) = 0$ at any point $(x_1, ..., x_n)$ such that $|x_i| < 1$. Let γ_k denote the operator γ along the k-th component in $T^{2n} = (T^2)^n$, and $\overline{\partial}_k$ the $\overline{\partial}$ along this component. Then $\{\overline{\partial}_k, \gamma_k\}(\mu) = \mu$ on U for any form μ divisible by $d\overline{z}_k$, and $\{\overline{\partial}_k, \gamma_l\}|_U = 0$ for $l \neq k$.

Poincaré-Dolbeault-Grothendieck lemma

THEOREM: (Poincaré-Dolbeault-Grothendieck lemma) Let $\eta \in \Lambda^{0,p}(D^n)$ be a $\overline{\partial}$ -closed form on a polydisc, smoothly extended to a neighbourhood of its closure $\overline{D^n} \subset \mathbb{C}^n$. Then η is $\overline{\partial}$ -exact.

We prove the following version of Poincaré-Dolbeault-Grothendieck.

THEOREM: Let $U \subset T^{2n}$ be a sufficiently small polydisk, and $\mu \in \Lambda^{p,q}(T^{2n})$ a form with q > 0 which is $\overline{\partial}$ -closed on U. Then there exists $\alpha \in \Lambda^{p,q-1}(T^{2n})$ such that $\overline{\partial}\alpha = \mu$ on U.

Proof. Step 1: Let $\overline{\partial}_i : \Lambda^{p,q}(T^n) \longrightarrow \Lambda^{p,q+1}(T^n)$ be the operator $\alpha \longrightarrow d\overline{z}_i \land \frac{d}{d\overline{z}_i}\alpha$, where z_i is *i*-th coordinate on T^n . Then $\overline{\partial} = \sum_i \overline{\partial}_i$. Denote by γ_i the homotopy operator defined above. If $\alpha = d\overline{z}_i \land \beta$, one has $\{\overline{\partial}_i, \gamma_i\}(\alpha) = \alpha$. If α contains no monomials divisible by $d\overline{z}_i$, one has

$$\overline{\partial}_i \{\overline{\partial}_i, \gamma_i\}(\alpha) = \overline{\partial}_i \gamma_i \overline{\partial}_i(\alpha) = \{\overline{\partial}_i, \gamma_i\} \overline{\partial}_i \alpha = \overline{\partial}_i \alpha,$$

hence $\overline{\partial}_i (\alpha - \{\overline{\partial}_i, \gamma_i\})|_U = 0$. This implies that $\operatorname{im} \left[\{\overline{\partial}_i, \gamma_i\} - \operatorname{Id}\right]|_U$ lies in the space $R_i(U)$ of forms without $d\overline{z}_i$ in monomial decomposition and with all coefficients holomorphic as functions on z_i .

Poincaré-Dolbeault-Grothendieck lemma (2)

THEOREM: Let $U \subset T^{2n}$ be a sufficiently small polydisk, and $\mu \in \Lambda^{p,q}(T^{2n})$ a form with q > 0 which is $\overline{\partial}$ -closed on U. Then there exists $\alpha \in \Lambda^{p,q-1}(T^{2n})$ such that $\overline{\partial}\alpha = \mu$ on U.

Proof. Step 1: Let $\overline{\partial}_i : \Lambda^{p,q}(D^n) \longrightarrow \Lambda^{p,q+1}(D^n)$ be the operator $\alpha \longrightarrow d\overline{z}_i \land \frac{d}{d\overline{z}_i} \alpha$, and γ_i the homotopy defined above. Then im $\left[\{\overline{\partial}_i, \gamma_i\} - \mathrm{Id}\right]|_U$ lies in the space $R_i(U)$ of forms without $d\overline{z}_i$ in monomial decomposition and with all coefficients holomorphic as functions on z_i .

Step 2: Let R_i denote the space of forms α on T^{2n} such that $\alpha|_U$ belongs to the space $R_i(U)$ defined above. Properties of γ_i : (1). im $[\{\overline{\partial}_i, \gamma_i\} - \text{Id}] \subset R_i$. (2). $\{\overline{\partial}_i, \gamma_j\}|_U = 0$, if $i \neq j$. (3). the restriction $[\{\overline{\partial}_i, \gamma_i\}]|_{R_i}$ vanishes on U. (4). $\gamma_i(R_j) \subset R_j$, $\overline{\partial}_i(R_j) \subset R_j$ for all $i \neq j$. Property (1) is proven in Step 1, property (2) and (4) follow because γ_i is independent from the z_j -coordinate for all $j \neq i$. Finally, (3) follows because for all forms α without $d\overline{z}_i$ in its monomial decomposition one has $\{\gamma_i, \overline{\partial}\}(\alpha) = \gamma_i(\overline{\partial}_i(\alpha))$.

Step 3: Properties (1), (3) and (4) give $\left[\{\overline{\partial}_i, \gamma_i\} - \mathrm{Id}\right] (R_{i_1} \cap R_{i_2} \cap ... \cap R_{i_k}) \subset R_i \cap R_{i_1} \cap R_{i_2} \cap ... \cap R_{i_k}$ for $i \notin \{i_1, i_2, ..., i_k\}$, and $\{\overline{\partial}_i, \gamma_i\} \Big|_{R_{i_1} \cap R_{i_2} \cap ... \cap R_{i_k}} = 0$ otherwise.

Poincaré-Dolbeault-Grothendieck lemma (3)

Step 3: Properties (1), (3) and (4) give $\left[\{\overline{\partial}_i, \gamma_i\} - \mathrm{Id}\right](R_{i_1} \cap R_{i_2} \cap ... \cap R_{i_k}) \subset R_i \cap R_{i_1} \cap R_{i_2} \cap ... \cap R_{i_k}$ for $i \notin \{i_1, i_2, ..., i_k\}$, and $\{\overline{\partial}_i, \gamma_i\}\Big|_{R_{i_1} \cap R_{i_2} \cap ... \cap R_{i_k}} = 0$ otherwise.

Step 4: Let
$$\gamma := \sum_{i} \gamma_{i}$$
. Since $\{\overline{\partial}_{i}, \gamma_{j}\} = 0$ for $i \neq j$, Step 3 gives
 $\left[\{\overline{\partial}, \gamma\} - (n-k) \operatorname{Id}\right](R_{i_{1}} \cap R_{i_{2}} \cap \ldots \cap R_{i_{k}}) \subset \sum_{i \neq i_{1}, i_{2}, \ldots, i_{k}} R_{i} \cap R_{i_{1}} \cap R_{i_{2}} \cap \ldots \cap R_{i_{k}}$

Step 5: Let $W_0 = \Lambda^*(T^{2n})$, and $W_k \subset W_{k-1}$ the subspace generated by all $R_{i_1} \cap R_{i_2} \cap \ldots \cap R_{i_k}$ for $i_1 < i_2 < \ldots < i_k$. **Step 4 implies** $\left[\{\overline{\partial}, \gamma\} - (n-k) \operatorname{Id} \right] |_{W_k} \subset W_{k+1}$.

Step 6: W_n is the space of (p, 0)-forms holomorphic on U, and it does not contain any (p,q)-forms for q > 0. Using induction in d = n - k, we can assume that any $\overline{\partial}$ -closed (p,q)-form in W_{k+1} is $\overline{\partial}$ -exact when q > 0. To prove PDG-lemma, it would suffice to prove the same for any $\overline{\partial}$ -closed form $\alpha \in W_k$. Step 5 gives $(n - k)\alpha - \{\overline{\partial}, \gamma\}(\alpha) = (n - k)\alpha - \overline{\partial}\gamma(\alpha) \in W_{k+1}$, and this form is $\overline{\partial}$ -exact by the induction assumption. This gives $(n - k)\alpha - \overline{\partial}\gamma(\alpha) = \overline{\partial}\eta$, hence α is $\overline{\partial}$ -exact.

Hartogs theorem

THEOREM: Let f be a holomorphic function on $\mathbb{C}^n \setminus K$, where $K \subset \mathbb{C}^n$ is a compact, and n > 1. Then f can be extended to a holomorphic function on \mathbb{C}^n .

Proof. Step 1: Replacing K by a bigger compact, we can assume that f is smoothly extended to a small neighbourhood of the closure $\overline{M\setminus K}$. Then f can be extended to a smooth function on \mathbb{C}^n , holomorphic outside of K. **Then** $\alpha := \overline{\partial} \tilde{f}$ is a $\overline{\partial}$ -closed (0, 1)-form with compact support.

Step 2: Using the standard open embedding of \mathbb{C}^n to $\mathbb{C}P^n$, we may consider α as a $\overline{\partial}$ -closed (0,1)-form on $\mathbb{C}P^n$. Since $H^1(\mathbb{C}P^n) = 0$, this gives $\alpha = \overline{\partial}\varphi$, where φ is a continuous function on $\mathbb{C}P^n$. In particular, φ is bounded on $\mathbb{C}^n \subset \mathbb{C}P^n$.

Step 3: Since $\overline{\partial}\varphi$ vanishes outside of K, the function φ is holomorphic outside of K. Since bounded holomorphic functions on \mathbb{C} are constant, φ is constant on any affine line not intersecting K.

Step 4: This implies that $\varphi = \text{const}$ on the union of all affine lines not intersecting *K*. Since n > 1, the complement of this set is compact. Substracting constant if necessary, we obtain that φ is a function with compact support.

Step 5: $\overline{\partial}(\tilde{f} - \varphi) = \alpha - \alpha = 0$, hence $\tilde{f} - \varphi$ is holomorphic. However, φ has compact support, and therefore $f = \tilde{f} - \varphi$ outside of a compact.

Algebra of supersymmetry of a Kähler manifold: reminder

Let (M, I, g) be a Kaehler manifold, ω its Kaehler form. On $\Lambda^*(M)$, the following operators are defined.

0. d, d^* , Δ , because it is Riemannian.

1. $L(\alpha) := \omega \wedge \alpha$

- 2. $\Lambda(\alpha) := *L * \alpha$. It is easily seen that $\Lambda = L^*$.
- 3. The Weil operator $W|_{\Lambda^{p,q}(M)} = \sqrt{-1} (p-q)$

THEOREM: These operators generate a Lie superalgebra \mathfrak{a} of dimension (5|4), acting on $\Lambda^*(M)$. Moreover, the Laplacian Δ is central in \mathfrak{a} , hence \mathfrak{a} also acts on the cohomology of M.

The odd part of this algebra generates "odd Heisenberg algebra" $\langle d, d^c, d^*, (d^c)^*, \Delta \rangle$, with the only non-zero anticommutator $\{d, d^*\} = \{d^c, (d^c)^*\} = \Delta$.

The even part of this algebra contains an $\mathfrak{sl}(2)$ -triple $\langle L, \Lambda, H \rangle$ acting on $\mathfrak{a}^{\text{odd}}$ as on a direct sum of two weight 1 representations ("Kodaira relations"). The Weil element commutes with $\langle L, \Lambda, H, \Delta \rangle$ and acts on $\mathfrak{a}^{\text{odd}}$ via $[W, d] = d^c$, $[W, d^*] = (d^c)^*$.

Inverting $\overline{\partial}$ using the Hodge theory

CLAIM: Let β be a $\overline{\partial}$ -exact form, and $\gamma := \Delta^{-1}\overline{\partial}^*\beta$. Then $\overline{\partial}(\gamma) = \beta$.

Proof: Indeed,

$$\overline{\partial}^*\beta = \{\overline{\partial}, \overline{\partial}^*\}(\Delta^{-1}\overline{\partial}^*\beta) = \overline{\partial}^*\overline{\partial}\gamma$$

because $(\overline{\partial}^*)^2 = 0$ and Δ^{-1} commutes with $\overline{\partial}^*$. However, ker $\overline{\partial}^*$ is orthogonal to im $\overline{\partial}$, hence $\overline{\partial}^*|_{\operatorname{im}\overline{\partial}}$ is injective. Then $\overline{\partial}^*\beta = \overline{\partial}^*\overline{\partial}\gamma$ implies $\beta = \overline{\partial}\gamma$.

REMARK: Similarly, for any *d*-exact form β , one has $\beta = \Delta^{-1} d^* \beta$.

dd^c-lemma

THEOREM: Let η be a form on a compact Kähler manifold, satisfying one of the following conditions. (1). η is an exact (p,q)-form. (2). η is *d*-exact, d^c -closed.

(3). η is ∂ -exact, $\overline{\partial}$ -closed.

Then $\eta \in \operatorname{im} dd^c = \operatorname{im} \partial\overline{\partial}$.

Proof: Notice immediately that in all three cases η is closed and orthogonal to the kernel of Δ , hence its cohomology class vanishes.

Since η is exact, it lies in the image of Δ . Operator $G_{\Delta} := \Delta^{-1}$ is defined on im $\Delta = \ker \Delta^{\perp}$ and commutes with d, d^c .

In case (1), η is *d*-exact, and $I(\eta) = \overline{\eta}$ is *d*-closed, hence η is *d*-exact, *d^c*-closed like in (2).

Then $\eta = d\alpha$, where $\alpha := G_{\Delta}d^*\eta$. Since G_{Δ} and d^* commute with d^c , the form α is d^c -closed; since it belongs to im $\Delta = \operatorname{im} G_{\Delta}$, it is d^c -exact, $\alpha = d^c\beta$ which gives $\eta = dd^c\beta$.

In case (3), we have $\eta = \partial \alpha$, where $\alpha := G_{\Delta} \partial^* \eta$. Since G_{Δ} and ∂^* commute with $\overline{\partial}$, the form α is $\overline{\partial}$ -closed; since it belongs to im Δ , it is $\overline{\partial}$ -exact, $\alpha = \overline{\partial}\beta$ which gives $\eta = \partial \overline{\partial} \beta$.

Massey products

Let $a, b, c \in \Lambda^*(M)$ be closed forms on a manifold M with cohomology classes [a], [b], [c] satisfying [a][b] = [b][c] = 0, and $\alpha, \gamma \in \Lambda^*(M)$ forms which satisfy $d(\alpha) = a \wedge b$, $d(\gamma) = b \wedge c$. Denote by $L_{[a]}, L_{[c]} : H^*(M) \longrightarrow H^*(M)$ the operation of multiplication by the cohomology classes [a], [c].

Then $\alpha \wedge c - a \wedge \gamma$ is a closed form, and its cohomology class is well-defined modulo im $L_{[a]} + \operatorname{im} L_{[c]}$.

DEFINITION: Cohomology class $\alpha \wedge c - a \wedge \gamma$ is called **Massey product of** a, b, c.

PROPOSITION: On a Kähler manifold, Massey products vanish.

Proof: Let a, b, c be harmonic forms of pure Hodge type, that is, of type (p,q) for some p,q. Then ab and bc are exact pure forms, hence $ab, bc \in \operatorname{im} dd^c$ by dd^c -lemma. This implies that $\alpha := d^*G_{\Delta}(ab)$ and $\gamma := d^*G_{\Delta}(bc)$ are d^c -exact. Therefore $\mu := \alpha \wedge c - a \wedge \gamma$ is a d^c -exact, d-closed form. Applying dd^c -lemma again, we obtain that μ is dd^c -exact, hence its cohomology class vanish.