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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1. The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,

one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-

erator. A manifold with an integrable almost complex structure is called a

complex manifold.

THEOREM: (Newlander-Nirenberg)

This definition is equivalent to the usual one.

REMARK: The commutator defines a C∞M-linear map

N := Λ2(T1,0)−→ T0,1M , called the Nijenhuis tensor of I. One can rep-

resent N as a section of Λ2,0(M)⊗ T0,1M.
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Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =
−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ2(M) is called the Hermitian
form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if
dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler
class of M , and ω the Kähler form.

Definition: Let M = CPn be a complex projective space, and g a U(n + 1)-
invariant Riemannian form. It is called Fubini-Study form on CPn. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-
aging with U(n+ 1) using the Haar measure on U(n+ 1).

EXERCISE: Prove that the Fubini-Study form is unique (up to a constant
multiplier).
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Examples of Kähler manifolds.

Remark: For any x ∈ CPn, the stabilizer St(x) is isomorphic to U(n). Fubini-

Study form on TxCPn = Cn is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, dω|x is a U(n)-invariant 3-

form on Cn, but such a form must vanish, because − Id ∈ U(n)

REMARK: The same argument works for all symmetric spaces.

DEFINITION: An almost complex submanifold X ⊂ M of an almost

complex manifold (M, I) is a smooth submanifold which satisfies I(TX) ⊂ TX.

EXERCISE: Let X ⊂M be an almost complex submanifold of (M, I), where

I is integrable. Prove that (X, I|TX ) is a complex manifold.

DEFINITION: In this situation, X is called a complex submanifold of M .

Corollary: Every projective manifold (complex submanifold of CPn) is

Kähler. Indeed, a restriction of a closed form is again closed.
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Menagerie of complex geometry

Usually, in algebraic geometry one deals with projective manifolds. There are

two wider classes one has to consider necessarily when studying projective

ones.

1. Moishezon manifolds are those which are birational to projective. Tran-

scendence degree of a field k(M) of global meromorphic function on a

compact complex manifold M satisfies k(M) 6M; as shown by Moishezon,

equality here means that M is Moishezon.

To study birational category, one has necessarily to include Moishezon mani-

folds. Any Kähler Moishezon manifold is projective (Moishezon).

2. Small deformations of Kähler manifolds often result in non-projective

Kähler ones (even for a torus and a K3).
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Fujiki class C manifolds

A class which includes Moishezon and Kähler is called Fujiki class C. A

manifold is Fujiki class C if it is bimeromorphic to a Kähler manifold. As

shown by Fujiki, Fujiki class C manifolds are closed under all natural operations

which occur in algebraic geometry (such as taking moduli spaces or images).

A Kähler minimal model program would imply that any Kähler manifold

admits a sequence of bimeromorphic fibrations with fibers which are either

projective, hyperkähler or tori, hence the class of Kähler manifolds is prob-

ably very restricted. It is known that a fundamental group of Kähler

manifold is very special.

By contrast, the class of complex manifolds is extremely huge.

6



Kähler manifolds, lecture 1 M. Verbitsky

Menagerie of complex geometry II

THEOREM: (Taubes, Panov-Petrunin)

For any finitely generated, finitely presented group Γ, there exists a com-

pact, complex 3-dimensional manifold M with π1(M) = Γ.

CONJECTURE: Let (M, I) be an almost complex manifold, dimCM > 3.

Then I can be deformed to a complex structure.

REMARK: (Non-)existence of a complex structure is highly non-trivial

even in the simplest cases, such as S6 (which is clearly almost complex).

REMARK: We know that non-Kähler complex manifolds are much more

abundant than Kähler, except in complex dimension 2, where non-Kähler

manifolds are a few and much better understood than projective ones. How-

ever, it’s very hard to come with examples of compact, non-Kähler

complex manifolds.
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Examples of non-Kähler manifolds

These listed below (and iterated fibrations of these) are pretty much all ex-
amples known.

EXAMPLE: (Linear) Hopf manifold is Cn\0/〈A〉, where A is an invertible
linear map with all eigenvalues |αi| < 1. It’s diffeomorphic to S2n−1 × S1,
hence non-Kähler (Kähler manifolds have even b2k−1 Betti numbers). It is
locally conformally Kähler (LCK).

EXAMPLE: All complex subvarieties of a Hopf manifolds are LCK. For
this reason, they are non-Kähler (Vaisman).

EXAMPLE: Twistor space is a certain CP1-fibration over a Riemannian 4-
manifold. All such manifolds are rationally connected (connected by rational
curves), but never Kähler except CP3 and flag space (Hitchin). Theorem of
Taubes is proved by constructing a twistor space with prescribed fundamental
group.

EXAMPLE: Homogeneous and locally homogeneous manifolds (such as nil-
manifolds) are often non-Kähler.

This explains importance of LCK manifolds (defined below).
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Connections

Notation: Let M be a smooth manifold, TM its tangent bundle, ΛiM the
bundle of differential i-forms, C∞M the smooth functions. The space of

sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle B is a map B
∇−→ Λ1M⊗B

which satisfies

∇(fb) = df ⊗ b+ f∇b

for all b ∈ B, f ∈ C∞M .

REMARK: A connection ∇ on B gives a connection B∗ ∇∗−→ Λ1M ⊗ B∗ on
the dual bundle, by the formula

d(〈b, β〉) = 〈∇b, β〉+ 〈b,∇∗β〉

These connections are usually denoted by the same letter ∇.

REMARK: For any tensor bundle B1 := B∗⊗B∗⊗ ...⊗B∗⊗B ⊗B ⊗ ...⊗B a

connection on B defines a connection on B1 using the Leibniz formula:

∇(b1 ⊗ b2) = ∇(b1)⊗ b2 + b1 ⊗∇(b2).
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Curvature of a connection

Let M be a manifold, B a bundle, ΛiM the differential forms, and ∇ :
B −→B ⊗ Λ1M a connection. We extend ∇ to B ⊗ ΛiM

∇−→ B ⊗ Λi+1M

in a natural way, using the formula

∇(b⊗ η) = ∇(b) ∧ η + b⊗ dη,
and define the curvature Θ∇ of ∇ as ∇ ◦∇ : B −→B ⊗ Λ2M .

CLAIM: This operator is C∞M-linear.

REMARK: We shall consider Θ∇ as an element of Λ2M ⊗EndB, that is, an
EndB-valued 2-form.

REMARK: Given vector fields X,Y ∈ TM , the curvature can be written in
terms of a connection as follows

Θ∇(b) = ∇X∇Y b−∇Y∇XB −∇[X,Y ]b.

CLAIM: Suppose that the structure group of B is reduced to its subgroup G,
and let ∇ be a connection which preserves this reduction. This is the same
as to say that the connection form takes values in Λ1⊗ g(B). Then Θ∇ lies
in Λ2M ⊗ g(B).
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Local systems

DEFINITION: A local system is a locally constant sheaf of vector spaces.

THEOREM: A local system with fiber B at x ∈ M gives a homomorphism

π1(M,x)−→ Aut(B). This correspondence gives an equivalence of cat-

egories.

Proof: The etale space of a local system is a covering of M , and the mon-

odromy map from π1(M,x) to permutatons of B is by construction linear.

To obtain a converse correspondence, let π : M̃ −→M be the universal cover,

and X := M̃ ×B/π1(M) be a quotient where π1(M) acts on M̃ ×B diagonally.

Let y ∈ M and U 3 y be a neighbourhood for which π−1(U) is a union of

several copies U . Then X is a product B×U . This gives a local trivialization

of ϕ : X −→M . The sheaf of locally trivial sections of ϕ is locally trivial,

and the corresponding monodromy map is π1(M,x)−→ Aut(B) the one we

started from.
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Flat bundles

DEFINITION: A bundle (B,∇) is called flat if its curvature vanishes.

DEFINITION: A section b of (B,∇) is called parallel if ∇(b) = 0.

CLAIM: Let (B,∇) be a flat bundle on M , and B be the sheaf of parallel
sections. Then B is a locally constant sheaf.

Proof: Indeed, through each point passes of the total space of B passes a
unique parallel section, which always exists locally.

THEOREM: This correspondence gives an equivalence of categories of
flat bundles and local systems.

Proof: Let B be a local system, and B := B⊗RC
∞M the corresponding vector

bundle. Any section of B can be written as
∑
fibi, where bi are sections of B,

and fi ∈ C∞M . Write ∇(
∑
fibi) :=

∑
dfi ⊗ bi. Clearly, this connection is flat,

and the corresponding sheaf of parallel sections os B.

DEFINITION: Define the B-valued de Rham differential on d∇Λi(M)⊗B −→ Λi+1(M)⊗
B as d∇(η ⊗ b) := dη ⊗ b+ (−1)η̃η ∧∇b. It is easy to check that d2

∇ = 0.

EXERCISE: Show that the cohomology of the complex (Λ∗M ⊗B, d∇) are equal to the

cohomology of the local system B := ker∇.
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LCS manifolds

DEFINITION: Let L be an oriented real line bundle (one-dimensional bundle)

on M , equipped with a flat connection, and ω ∈ Λ2(M) ⊗ L an L-valued

differential form. We say that (M,ω,L) is locally conformally symplectic

(LCS) if d∇ω = 0. In this situation L is called the weight bundle of (M,ω),

or conformal weight.

CLAIM: An oriented real line bundle L can be smoothly trivialized.

Proof: Choose a Riemannian metric on L. Then the set of of positive unit

vectors is a nowhere degenerate section of L.

CLAIM: Let (M,ω,L) be an LCS manifold, l a trivialization of L, and θ ∈ Λ1M

the corresponding connection form, ∇(l) = l⊗ θ. Then dωl = −ωl ∧ θ, where

θ is a closed 1-form, and ωl ∈ Λ2(M) is ω considered as a differential form

after the identification L ∼= C∞M provided by l.

Proof: After identifying L and a trivial line bundle, we obtain 0 = d∇(ω) =

d(ω) + ω ∧ θ.
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LCK manifolds

REMARK: We obtained that the following two definitions are equivalent.

1. LCS manifold is a manifold equipped with a non-degenerate 2-form ω

satisfying dω = ω ∧ θ, where θ is a closed 1-form.

2. LCS manifold is a manifold equipped with a non-degenerate, closed 2-form
ω taking values in a flat, oriented line bundle.

DEFINITION: Let (M, I, ω) be a Hermitian manifold, dimCM > 1. Then M

is called locally conformally Kähler (LCK) if dω = ω∧ θ, where θ is a closed
1-form, called the Lee form.

REMARK: Usually one silently assumes that θ is not exact. Indeed, if θ = dϕ,
then d(e−ϕω) = e−ϕdω−e−ϕω∧θ = 0, and e−ϕω is Kähler. In this case (M, I, ω)
is called globally conformally Kähler.

REMARK: As shown above, a manifold is locally conformally Kähler iff
it admits a Kähler form taking values in a positive, flat vector bundle
L, called the weight bundle.

EXERCISE: Prove that dθ = 0 follows from dω = ω ∧ θ when dimCM > 2.
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LCK manifolds and their Kähler covers

CLAIM: Let L be a local system on M , and π : M̃ −→M is a universal cover.

Then π∗L is a trivial local system.

Proof: Indeed, π1(M̃) = 0, hence all local systems on M̃ are trivial.

We obtain that a universal cover of an LCK manifold admits a Kähler form

taking values in a trivial bundle; this means that it is Kähler.

REMARK: Let (M, I, ω, θ) be an LCK manifold, π : M̃ −→M its universal

cover, and ϕ a function satisfying dϕ = π∗θ. Then d(e−ϕπ∗ω) = e−ϕdπ∗ω −
e−ϕπ∗ω ∧ π∗θ = 0, hence the form ω̃ := e−ϕπ∗ω is Kähler.

DEFINITION: Deck transform, or monodromy maps of a covering M̃ −→M

are elements of the group AutM(M̃). When M̃ is a universal cover, one

has AutM(M̃) = π1(M).

REMARK: A deck transform maps π∗θ to itself, hence it maps ϕ to ϕ+ C.

This implies that a deck transform maps ω̃ to eCω̃, acting on M̃ by Kähler

homotheties.
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Kähler homotheties and LCK manifolds

DEFINITION: Let (M,ω) be an LCK manifold, M̃ its Kähler cover, and

π1(M) ∼= AutM(M̃) the deck transform maps. Homothety character is a

homomorphism χ : π1(M)−→ R>0 mapping a deck transform γ ∈ AutM(M̃)

to the number γ∗(ω̃)
ω̃ .

REMARK: Let M be a complex manifold such that its universal cover M̃

is equipped with a Kähler form ω̃, and the deck transform acts on M̃ by

Kähler homotheties. Consider a local system L on M associated with the

homothety character χ : π1(M)−→ R>0, and let ψ be its trivialization. For

each γ ∈ AutM(M̃), one has γ∗ψ
ψ = γ∗(ω̃)

ω̃ . Therefore, ψ−1ω̃ is an AutM(M̃)-

form on M̃ . Denote by ω the corresponding form on M . Then

dω = d(ψω̃) = dψ ∧ ω̃ = d logψ ∧ ω.

We obtained that the form ω satisfies dω = ω∧θ, where θ = d logψ. This

brings one more definition of LCK manifolds.

DEFINITION: An LCK manifold is a complex manifold such that its uni-

versal cover M̃ is equipped with a Kähler form ω̃, and the deck transform acts

on M̃ by Kähler homotheties.
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Examples of LCK manifolds

EXAMPLE: A classical Hopf manifold is H := Cn\0/Z, where Z acts as a

multiplication by a complex number λ, |λ| > 1.

REMARK: Its covering has a usual Kähler form, and the mapping group

acts by homotheties.

OBSERVATION: H is diffeomorphic to S1×S2n−1, and fibered over CPn−1

with fiber C∗/〈λ〉.

OBSERVATION: For any complex submanifold X ⊂ CPn−1, its preimage in

H is a complex manifold.

REMARK: Obviously, any complex submanifold of an LCK manifold is again

LCK. This implies that σ∗X ⊂ H is an LCK manifold.

REMARK: Next lecture I will prove that none of these manifolds admits

a Kähler form, if n > 1.
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