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Complex manifolds (reminder)

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM —s TM which satisfies I2 = —Idpy,.

T he eigenvalues of this operator are ++/—1. The corresponding eigenvalue
decomposition is denoted TM = T%1M ¢ T1.0(M1).

DEFINITION: An almost complex structure is integrable if VX,Y € Tl’OM,
one has [X,Y] € TVOM. In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
T his definition is equivalent to the usual one.

REMARK: The commutator defines a C*°M-linear map
N := AN2(T10) — 70.1 07, called the Nijenhuis tensor of I. One can rep-
resent N as a section of A29(M) @ TO:1 1.
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Kahler manifolds (reminder)

DEFINITION: An Riemannian metric g on an almost complex manifiold M
is called Hermitian if g(Iz,Iy) = g(z,y). In this case, g(z, Iy) = g(Iz, [%y) =
—qg(y, Iz), hence w(x,y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form w € A2(M) is called the Hermitian
form of (M, 1,gq).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I,w) is called Kahler if
dw = 0. The cohomology class [w] € H2(M) of a form w is called the Kahler
class of M, and w the Kahler form.

Definition: Let M = CP"™ be a complex projective space, and g a U(n 4+ 1)-
invariant Riemannian form. It is called Fubini-Study form on CP"™. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-
aging with U(n 4+ 1) using the Haar measure on U(n + 1).

EXERCISE: Prove that the Fubini-Study form is unique (up to a constant
multiplier).
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REMINDER: The Hodge decomposition in linear algebra

DEFINITION: Let (V,I) be a space equipped with a complex structure.
The Hodge decomposition V @i C := V1.0 ¢ V0.1 is defined in such a way
that V1.0 is a /=1 -eigenspace of I, and V91 3 —/—T1 -eigenspace.

CLAIM: A*(V & W) = A*(V) @ A*(W)

REMARK: Let Vg := V ®@g C. The decomposition Vg = V1.0 ¢ V0.1 induces
ANE(V) = AE(VOY) @ AL (VD) giving

ANVe= @ AvIOgaIvol,
We denote APV1.0 @ A9Vl by APV . The resulting decomposition A"Vp =

Dp+g=n NP4V is called the Hodge decomposition of the Grassmann al-
gebra.
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REMINDER: Cauchy-Riemann equation and Hodge decomposition

The (p, q)-decomposition is defined on differential forms on complex manifold,
in a similar way.

DEFINITION: Let (M,I) be a complex manifold A differential form n €

AL(M) is of type (1,0) if I(n) =+/—1n, and of type (0,1) if I(n) = —v/—1n.
The corresponding vector bundles are denoted by ALO(Ar) and A%L(M).

REMARK: Cauchy-Riemann equations can be written as df € ALO(M). That
is, a function f € C2°(M) is holomorphic if and only if df € A}O(M).

REMARK: Let (M,I) be a complex manifold, and zq,..., zn holomorphic co-
ordinate system in U C M, with z; being holomorphic functions on U. Then
dz1, ...,dzp, generate the bundle ALO(M), and dz1, ..., dz, generate AO-1(\1).

EXERCISE: Prove this.
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REMINDER: The Hodge decomposition on a complex manifold

DEFINITION: Let (M,I) be a complex manifold, {U;} its covering, and and
z1, ..., 2zn, holomorphic coordinate system on each covering patch. The bundie
AP4(M,T) of (p,q)-forms on (M,I) is generated locally on each coordinate
patch by monomials dz;; A dzj, A ... A dzz-p A dzz-pﬂ Ao A dzipﬂ. The Hodge
decomposition is a decomposition of vector bundles:

NA(M) = @ API(M).
p+q=d

EXERCISE: Prove that the de Rham differential on a complex manifold
has only two Hodge components:

d (AP4(M)) c APTLa(M) @ APITL (M.

DEFINITION: Let d = d%! 4+ 410 be the Hodge decomposition of the de
Rham differential on a complex manifold, d%1 : AP9(M) — AP4T1(M) and
d10 : APA(M) — APTLA(M). The operators d91, d1:0 are denoted & and 8
and called the Dolbeault differentials.

EXERCISE: Show that 82 = 0 is equivalent to integrability of the com-
plex structure.
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Supercommutator (reminder)

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a,b} = ab — (—1)%ba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g* equipped with a bilinear graded map {-,-} : g¢* x g* — g* which
is graded anticommutative: {a,b} = —(—1)?{b,a} and satisfies the super
Jacobi identity {c, {a,b}} = {{c,a},b} + (—1)%{a, {c, b}}

EXAMPLE: Consider the algebra End(A*) of operators on a graded vector
space, with supercommutator as above. Then End(A*),{-,-} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d,d} =
0, and L an even or odd element. Then {{L,d},d} = 0.

Proof: 0= {L,{d,d}} = {{L,d},d} + (—=1)2{d, {L,d}} = 2{{L,d},d}. m
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The twisted differential d¢ (reminder)

DEFINITION: The twisted differential is defined as d¢ := IdI 1.

CLAIM: Let (M,I) be a complex manifold. Then § := TV 1d& 5 .—
d=vV=1d" are the Hodge components of d, § = d'9, 9 = d01.

Proof: The Hodge components of d are expressed as d1:0 = ‘H‘VQ_l d” 40,1 —
d=V_1d Indeed, 1(4FV L) -1 = =TV 14 pence TV 14 has Hodge

type (1,0); the same argument works for 9. m
CLAIM: On a complex manifold, one has d¢ = [W,d].

Proof: Clearly, [W,d"9] =/=1d10 and [W,d%1] = —v/=1d%1. Adding these
equations, obtain d¢ = [W,d].

COROLLARY: {d,d‘} = {d,{d,W}} =0 (Lemma 1).

REMARK: Clearly, d=0+ 0, d° = —/—1 (0 — 9), dd¢ = —d°d = 2/—1 00.
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Holomorphic forms

DEFINITION: A (p,0)-form n on a complex manifold M is called holomor-
phic, if On = 0.

DEFINITION: Let Q1M c A1 M be a sheaf over M generated by fdg, where
f,g are holomorphic. This sheaf is called the sheaf of holomorphic differ-
entials on M.

CLAIM: The sheaf of holomorphic p-forms coincides with /\%MﬂlM,
where O, is the sheaf of holomorphic functions.

Proof: Clearly, all sections of /\%MQlM are holomorphic. Conversely, any
(p,0)-form can be written locally as n = 3 ajdzi; N dzi, A ... N dzg,
where z; are holomorphic coordinates. Then 9n = ¥ daydz;; Adzi, A...Adz;, = 0
implies that daj, because APL(M) = APO(M) @ AQL(M), hence for any basis
er in APO(M) and any {g;} € A%1(MD),

 grheg=0<« all gy=0.
I
|

EXERCISE: Prove that on a compact Kahler manifold, any holomorphic
form is closed.
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Holomorphic 1-forms and first cohomology

LEMMA: Let 6 be an exact holomorphic 1-form on a compact manifold.
Then 6 = 0.

Proof: § = df, where f is a function satisfying dn = 0, hence holomorphic.
Then f = const by maximum principle. =

DEFINITION: A (0,p)-form n is called antiholomorphic if 77 is holomorphic.
The following result is implied by the Hodge theory.

THEOREM: Let (M, ) be a compact Kahler manifold, and [0] € H2(M,C) is
a cohomology class. Then [0] can be represented by a form 6 = 1.0 4¢9:1,
where 610 is holomorphic and 0%1 antiholomorphic.

EXERCISE: Prove this statement for compact complex curves.
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Positive (1, 1)-forms

DEFINITION: A positive (1,1)-form is a real (1,1)-form on a complex
manifold which can be written as n =3, o;0, A1(0;), where 0; are real 1-forms,
and «; positive functions.

REMARK: Hermitian forms are clearly positive. Moreover, the cone of pos-
itive forms is a closure of the cone of Hermitian forms. One may think of
positive forms as of positive semi-definite Hermitian forms.

DEFINITION: Hermitian forms are called strictly positive.

CLAIM: Let (M,I) be a complex manifold, and n a real (1,1)-form. Then
for each 2-dimensional real subspace W C 1M such that I(W) = W, the
restriction of n to W is proportional to its volume form with non-
negative coefficient. Conversely, if n|yy i1s non-negative for all such W,
the n is positive.

Proof: A (1,1)-form is Hermitian if and only if n(xz,I(x)) > O for each x; it is
positive if and only if n(z,I(z)) > 0. =
11



Kahler manifolds, lecture 2 M. Verbitsky

Mass of a positive (1,1)-form

DEFINITION: Let (M,I,w) be a Hermitian manifold, dimg M = n. Mass of
positive (1,1)-form n is a volume form n A w" 1.

THEOREM: (normal form for a pair of Hermitian forms)

Let g be a Hermitian metric on V, h a pseudo-Hermitian form. Then there
exists an orthonormal (with respect to g) basis z1,I(x1), 2o, [(x2),...,xn, [(xn)
in V* such that h =Y a;x; A I(x;).

CLAIM: Let (M, I,w) be a Hermitian manifold, z1,I(x1), x>, I(x3), ..., zn, I(xn)
an orthonormal basis in AL(M,R), and n = ¥, a;x; A I(z;) a positive (1,1)-
form (such a basis always exists because of a normal form theorem). Then
nAwr ™l =3 awn.

COROLLARY: Mass of a positive form is always a (not strictly) positive
volume form. A positive form vanishes if and only if its mass vanishes.
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LCK manifolds (reminder)

DEFINITION: Let (M, I,w) be a Hermitian manifold, dim¢ M > 1. Then M
is called locally conformally Kahler (LCK) if dw = w A8, where 6 is a closed
1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kahler iff it admits a
Kahler form taking values in a positive, flat vector bundle L, called the weight
bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M — M
are elements of the group Auty/(M). When M is a universal cover, one
has Aut,;(M) = 1 (M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-
versal cover M is equipped with a Kidhler form &, and the deck transform acts
on M by Kihler homotheties.

THEOREM: These three definitions are equivalent.
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Vaisman’s theorem

THEOREM: Let (M,w,0) be a compact LCK manifold, such that 8 is not
cohomologous to 0. Then M does not admit a Kahler structure.

Proof. Step 1: Let dw = wA0, 0/ = 0+dp. Then d(efw) = ePwAO+ePwNdp =
ePw A 0. This means that we can replace the triple (M, w,0) by (M, e%w,0")
for any 1-form ¢’ cohomologous to 6.

Step 2: Assume that M admits a Kahler structure. Then 6 is cohomolo-
gous to a sum of a holomorphic and antiholomorphic form. Replacing w in
its conformal class as in Step 1, we may assume that 6 is a sum of a
holomorphic and antiholomorphic form.

Step 3: Then dd®@ = /—1d00 = 0, giving dd°(w" 1) = w1 AOAT(0). Then
0 = [3;dd(w™ 1) = [Mass(0 AI(0)), hence 6 AT(H) =0. m
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