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Complex manifolds (reminder)

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1. The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,

one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-

erator. A manifold with an integrable almost complex structure is called a

complex manifold.

THEOREM: (Newlander-Nirenberg)

This definition is equivalent to the usual one.

REMARK: The commutator defines a C∞M-linear map

N := Λ2(T1,0)−→ T0,1M , called the Nijenhuis tensor of I. One can rep-

resent N as a section of Λ2,0(M)⊗ T0,1M.
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Kähler manifolds (reminder)

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =
−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ2(M) is called the Hermitian
form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if
dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler
class of M , and ω the Kähler form.

Definition: Let M = CPn be a complex projective space, and g a U(n + 1)-
invariant Riemannian form. It is called Fubini-Study form on CPn. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-
aging with U(n+ 1) using the Haar measure on U(n+ 1).

EXERCISE: Prove that the Fubini-Study form is unique (up to a constant
multiplier).
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REMINDER: The Hodge decomposition in linear algebra

DEFINITION: Let (V, I) be a space equipped with a complex structure.

The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1 is defined in such a way

that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a −

√
−1 -eigenspace.

CLAIM: Λ∗(V ⊕W ) = Λ∗(V )⊗ Λ∗(W )

REMARK: Let VC := V ⊗R C. The decomposition VC = V 1,0 ⊕ V 0,1 induces

Λ∗C(V ) = Λ∗C(V 0,1)⊗ Λ∗C(V 1,0), giving

ΛdVC =
⊕

p+q=d

ΛpV 1,0 ⊗ ΛqV 0,1.

We denote ΛpV 1,0 ⊗ ΛqV 0,1 by Λp,qV . The resulting decomposition ΛnVC =⊕
p+q=nΛp,qV is called the Hodge decomposition of the Grassmann al-

gebra.
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REMINDER: Cauchy-Riemann equation and Hodge decomposition

The (p, q)-decomposition is defined on differential forms on complex manifold,

in a similar way.

DEFINITION: Let (M, I) be a complex manifold A differential form η ∈
Λ1(M) is of type (1,0) if I(η) =

√
−1η, and of type (0,1) if I(η) = −

√
−1η.

The corresponding vector bundles are denoted by Λ1,0(M) and Λ0,1(M).

REMARK: Cauchy-Riemann equations can be written as df ∈ Λ1,0(M). That

is, a function f ∈ C∞C (M) is holomorphic if and only if df ∈ Λ1,0(M).

REMARK: Let (M, I) be a complex manifold, and z1, ..., zn holomorphic co-

ordinate system in U ⊂ M , with zi being holomorphic functions on U . Then

dz1, ..., dzn generate the bundle Λ1,0(M), and dz1, ..., dzn generate Λ0,1(M).

EXERCISE: Prove this.
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REMINDER: The Hodge decomposition on a complex manifold

DEFINITION: Let (M, I) be a complex manifold, {Ui} its covering, and and
z1, ..., zn holomorphic coordinate system on each covering patch. The bundle
Λp,q(M, I) of (p, q)-forms on (M, I) is generated locally on each coordinate
patch by monomials dzi1 ∧ dzi2 ∧ ... ∧ dzip ∧ dzip+1

∧ ... ∧ dzip+q
. The Hodge

decomposition is a decomposition of vector bundles:

ΛdC(M) =
⊕

p+q=d

Λp,q(M).

EXERCISE: Prove that the de Rham differential on a complex manifold
has only two Hodge components:

d (Λp,q(M)) ⊂ Λp+1,q(M)⊕ Λp,q+1(M).

DEFINITION: Let d = d0,1 + d1,0 be the Hodge decomposition of the de
Rham differential on a complex manifold, d0,1 : Λp,q(M)−→ Λp,q+1(M) and
d1,0 : Λp,q(M)−→ Λp+1,q(M). The operators d0,1, d1,0 are denoted ∂ and ∂

and called the Dolbeault differentials.

EXERCISE: Show that ∂2 = 0 is equivalent to integrability of the com-
plex structure.
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Supercommutator (reminder)

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a, b} = ab− (−1)ã̃bba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g∗ equipped with a bilinear graded map {·, ·} : g∗ × g∗ −→ g∗ which
is graded anticommutative: {a, b} = −(−1)ã̃b{b, a} and satisfies the super
Jacobi identity {c, {a, b}} = {{c, a}, b}+ (−1)ãc̃{a, {c, b}}

EXAMPLE: Consider the algebra End(A∗) of operators on a graded vector
space, with supercommutator as above. Then End(A∗), {·, ·} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d, d} =
0, and L an even or odd element. Then {{L, d}, d} = 0.

Proof: 0 = {L, {d, d}} = {{L, d}, d}+ (−1)L̃{d, {L, d}} = 2{{L, d}, d}.
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The twisted differential dc (reminder)

DEFINITION: The twisted differential is defined as dc := IdI−1.

CLAIM: Let (M, I) be a complex manifold. Then ∂ := d+
√
−1 dc

2 , ∂ :=
d−
√
−1 dc

2 are the Hodge components of d, ∂ = d1,0, ∂ = d0,1.

Proof: The Hodge components of d are expressed as d1,0 = d+
√
−1 dc

2 , d0,1 =
d−
√
−1 dc

2 . Indeed, I(d+
√
−1 dc

2 )I−1 =
√
−1d+

√
−1 dc

2 , hence d+
√
−1 dc

2 has Hodge

type (1,0); the same argument works for ∂.

CLAIM: On a complex manifold, one has dc = [W, d].

Proof: Clearly, [W, d1,0] =
√
−1d1,0 and [W, d0,1] = −

√
−1d0,1. Adding these

equations, obtain dc = [W, d].

COROLLARY: {d, dc} = {d, {d,W}} = 0 (Lemma 1).

REMARK: Clearly, d = ∂ + ∂, dc = −
√
−1 (∂ − ∂), ddc = −dcd = 2

√
−1 ∂∂.
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Holomorphic forms

DEFINITION: A (p,0)-form η on a complex manifold M is called holomor-
phic, if ∂η = 0.

DEFINITION: Let Ω1M ⊂ Λ1M be a sheaf over M generated by fdg, where
f, g are holomorphic. This sheaf is called the sheaf of holomorphic differ-
entials on M .

CLAIM: The sheaf of holomorphic p-forms coincides with ΛpOMΩ1M,
where OM is the sheaf of holomorphic functions.

Proof: Clearly, all sections of ΛpOMΩ1M are holomorphic. Conversely, any
(p,0)-form can be written locally as η =

∑
I={i1,...,ip}

αIdzi1 ∧ dzi2 ∧ ... ∧ dzip,

where zi are holomorphic coordinates. Then ∂η =
∑
∂αIdzi1∧dzi2∧...∧dzip = 0

implies that ∂αI, because Λp,1(M) = Λp,0(M)⊗ Λ0,1(M), hence for any basis
eI in Λp,0(M) and any {gI} ∈ Λ0,1(M),∑

I

gI ∧ eI = 0⇔ all gI = 0.

EXERCISE: Prove that on a compact Kähler manifold, any holomorphic
form is closed.
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Holomorphic 1-forms and first cohomology

LEMMA: Let θ be an exact holomorphic 1-form on a compact manifold.

Then θ = 0.

Proof: θ = df , where f is a function satisfying ∂η = 0, hence holomorphic.

Then f = const by maximum principle.

DEFINITION: A (0, p)-form η is called antiholomorphic if η is holomorphic.

The following result is implied by the Hodge theory.

THEOREM: Let (M, I) be a compact Kähler manifold, and [θ] ∈ H2(M,C) is

a cohomology class. Then [θ] can be represented by a form θ = θ1,0+θ0,1,

where θ1,0 is holomorphic and θ0,1 antiholomorphic.

EXERCISE: Prove this statement for compact complex curves.
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Positive (1,1)-forms

DEFINITION: A positive (1,1)-form is a real (1,1)-form on a complex

manifold which can be written as η =
∑
iαiθi∧I(θi), where θi are real 1-forms,

and αi positive functions.

REMARK: Hermitian forms are clearly positive. Moreover, the cone of pos-

itive forms is a closure of the cone of Hermitian forms. One may think of

positive forms as of positive semi-definite Hermitian forms.

DEFINITION: Hermitian forms are called strictly positive.

CLAIM: Let (M, I) be a complex manifold, and η a real (1,1)-form. Then

for each 2-dimensional real subspace W ⊂ TxM such that I(W ) = W , the

restriction of η to W is proportional to its volume form with non-

negative coefficient. Conversely, if η|W is non-negative for all such W ,

the η is positive.

Proof: A (1,1)-form is Hermitian if and only if η(x, I(x)) > 0 for each x; it is

positive if and only if η(x, I(x)) > 0.

11



Kähler manifolds, lecture 2 M. Verbitsky

Mass of a positive (1,1)-form

DEFINITION: Let (M, I, ω) be a Hermitian manifold, dimCM = n. Mass of

positive (1,1)-form η is a volume form η ∧ ωn−1.

THEOREM: (normal form for a pair of Hermitian forms)

Let g be a Hermitian metric on V , h a pseudo-Hermitian form. Then there

exists an orthonormal (with respect to g) basis x1, I(x1), x2, I(x2), ..., xn, I(xn)

in V ∗ such that h =
∑
aixi ∧ I(xi).

CLAIM: Let (M, I, ω) be a Hermitian manifold, x1, I(x1), x2, I(x2), ..., xn, I(xn)

an orthonormal basis in Λ1(M,R), and η =
∑
iαixi ∧ I(xi) a positive (1,1)-

form (such a basis always exists because of a normal form theorem). Then

η ∧ ωn−1 =
∑
αiω

n.

COROLLARY: Mass of a positive form is always a (not strictly) positive

volume form. A positive form vanishes if and only if its mass vanishes.
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LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, dimCM > 1. Then M

is called locally conformally Kähler (LCK) if dω = ω∧ θ, where θ is a closed

1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kähler iff it admits a

Kähler form taking values in a positive, flat vector bundle L, called the weight

bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M̃ −→M

are elements of the group AutM(M̃). When M̃ is a universal cover, one

has AutM(M̃) = π1(M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-

versal cover M̃ is equipped with a Kähler form ω̃, and the deck transform acts

on M̃ by Kähler homotheties.

THEOREM: These three definitions are equivalent.
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Vaisman’s theorem

THEOREM: Let (M,ω, θ) be a compact LCK manifold, such that θ is not

cohomologous to 0. Then M does not admit a Kähler structure.

Proof. Step 1: Let dω = ω∧θ, θ′ = θ+dϕ. Then d(eϕω) = eϕω∧θ+eϕω∧dϕ =

eϕω∧ θ′. This means that we can replace the triple (M,ω, θ) by (M, eϕω, θ′)
for any 1-form θ′ cohomologous to θ.

Step 2: Assume that M admits a Kähler structure. Then θ is cohomolo-

gous to a sum of a holomorphic and antiholomorphic form. Replacing ω in

its conformal class as in Step 1, we may assume that θ is a sum of a

holomorphic and antiholomorphic form.

Step 3: Then ddcθ =
√
−1 d∂θ = 0, giving ddc(ωn−1) = ωn−1∧ θ∧ I(θ). Then

0 =
∫
M ddc(ωn−1) =

∫
Mass(θ ∧ I(θ)), hence θ ∧ I(θ) = 0.
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