Locally conformally Kähler manifolds

lecture 2: Vaisman theorem

Misha Verbitsky

HSE and IUM, Moscow

February 17, 2014

Complex manifolds (reminder)

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I : TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X, Y] \in T^{1,0}M$. In this case *I* is called **a complex structure operator**. A manifold with an integrable almost complex structure is called **a complex manifold**.

THEOREM: (Newlander-Nirenberg) This definition is equivalent to the usual one.

REMARK: The commutator defines a $\mathbb{C}^{\infty}M$ -linear map $N := \Lambda^2(T^{1,0}) \longrightarrow T^{0,1}M$, called **the Nijenhuis tensor** of *I*. **One can represent** *N* **as a section of** $\Lambda^{2,0}(M) \otimes T^{0,1}M$.

Kähler manifolds (reminder)

DEFINITION: An Riemannian metric g on an almost complex manifold M is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^2(M)$ is called **the Hermitian** form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d\omega = 0$. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called the Kähler class of M, and ω the Kähler form.

Definition: Let $M = \mathbb{C}P^n$ be a complex projective space, and g a U(n + 1)invariant Riemannian form. It is called **Fubini-Study form on** $\mathbb{C}P^n$. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and averaging with U(n + 1) using the Haar measure on U(n + 1).

EXERCISE: Prove that **the Fubini-Study form is unique** (up to a constant multiplier).

REMINDER: The Hodge decomposition in linear algebra

DEFINITION: Let (V, I) be a space equipped with a complex structure. **The Hodge decomposition** $V \otimes_{\mathbb{R}} \mathbb{C} := V^{1,0} \oplus V^{0,1}$ is defined in such a way that $V^{1,0}$ is a $\sqrt{-1}$ -eigenspace of I, and $V^{0,1}$ a $-\sqrt{-1}$ -eigenspace.

CLAIM: $\Lambda^*(V \oplus W) = \Lambda^*(V) \otimes \Lambda^*(W)$

REMARK: Let $V_{\mathbb{C}} := V \otimes_{\mathbb{R}} \mathbb{C}$. The decomposition $V_{\mathbb{C}} = V^{1,0} \oplus V^{0,1}$ induces $\Lambda^*_{\mathbb{C}}(V) = \Lambda^*_{\mathbb{C}}(V^{0,1}) \otimes \Lambda^*_{\mathbb{C}}(V^{1,0})$, giving

$$\wedge^{d} V_{\mathbb{C}} = \bigoplus_{p+q=d} \wedge^{p} V^{1,0} \otimes \wedge^{q} V^{0,1}.$$

We denote $\Lambda^{p}V^{1,0} \otimes \Lambda^{q}V^{0,1}$ by $\Lambda^{p,q}V$. The resulting decomposition $\Lambda^{n}V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^{p,q}V$ is called **the Hodge decomposition of the Grassmann algebra**.

REMINDER: Cauchy-Riemann equation and Hodge decomposition

The (p,q)-decomposition is defined on differential forms on complex manifold, in a similar way.

DEFINITION: Let (M, I) be a complex manifold A differential form $\eta \in \Lambda^1(M)$ is of type (1,0) if $I(\eta) = \sqrt{-1}\eta$, and of type (0,1) if $I(\eta) = -\sqrt{-1}\eta$. The corresponding vector bundles are denoted by $\Lambda^{1,0}(M)$ and $\Lambda^{0,1}(M)$.

REMARK: Cauchy-Riemann equations can be written as $df \in \Lambda^{1,0}(M)$. That is, a function $f \in C^{\infty}_{\mathbb{C}}(M)$ is holomorphic if and only if $df \in \Lambda^{1,0}(M)$.

REMARK: Let (M, I) be a complex manifold, and $z_1, ..., z_n$ holomorphic coordinate system in $U \subset M$, with z_i being holomorphic functions on U. Then $dz_1, ..., dz_n$ generate the bundle $\Lambda^{1,0}(M)$, and $d\overline{z}_1, ..., d\overline{z}_n$ generate $\Lambda^{0,1}(M)$.

EXERCISE: Prove this.

REMINDER: The Hodge decomposition on a complex manifold

DEFINITION: Let (M, I) be a complex manifold, $\{U_i\}$ its covering, and and $z_1, ..., z_n$ holomorphic coordinate system on each covering patch. The bundle $\wedge^{p,q}(M, I)$ of (p,q)-forms on (M, I) is generated locally on each coordinate patch by monomials $dz_{i_1} \wedge dz_{i_2} \wedge ... \wedge dz_{i_p} \wedge d\overline{z}_{i_{p+1}} \wedge ... \wedge dz_{i_{p+q}}$. The Hodge decomposition is a decomposition of vector bundles:

$$\Lambda^d_{\mathbb{C}}(M) = \bigoplus_{p+q=d} \Lambda^{p,q}(M).$$

EXERCISE: Prove that the **de Rham differential on a complex manifold has only two Hodge components**:

$$d(\Lambda^{p,q}(M)) \subset \Lambda^{p+1,q}(M) \oplus \Lambda^{p,q+1}(M).$$

DEFINITION: Let $d = d^{0,1} + d^{1,0}$ be the Hodge decomposition of the de Rham differential on a complex manifold, $d^{0,1} : \Lambda^{p,q}(M) \longrightarrow \Lambda^{p,q+1}(M)$ and $d^{1,0} : \Lambda^{p,q}(M) \longrightarrow \Lambda^{p+1,q}(M)$. The operators $d^{0,1}$, $d^{1,0}$ are denoted $\overline{\partial}$ and ∂ and called **the Dolbeault differentials**.

EXERCISE: Show that $\partial^2 = 0$ is equivalent to integrability of the complex structure.

Supercommutator (reminder)

DEFINITION: A supercommutator of pure operators on a graded vector space is defined by a formula $\{a, b\} = ab - (-1)^{\tilde{a}\tilde{b}}ba$.

DEFINITION: A graded associative algebra is called **graded commutative** (or "supercommutative") if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector space \mathfrak{g}^* equipped with a bilinear graded map $\{\cdot, \cdot\}$: $\mathfrak{g}^* \times \mathfrak{g}^* \longrightarrow \mathfrak{g}^*$ which is graded anticommutative: $\{a, b\} = -(-1)^{\tilde{a}\tilde{b}}\{b, a\}$ and satisfies the super Jacobi identity $\{c, \{a, b\}\} = \{\{c, a\}, b\} + (-1)^{\tilde{a}\tilde{c}}\{a, \{c, b\}\}$

EXAMPLE: Consider the algebra $End(A^*)$ of operators on a graded vector space, with supercommutator as above. Then $End(A^*)$, $\{\cdot, \cdot\}$ is a graded Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying $\{d, d\} = 0$, and L an even or odd element. Then $\{\{L, d\}, d\} = 0$.

Proof:
$$0 = \{L, \{d, d\}\} = \{\{L, d\}, d\} + (-1)^{\tilde{L}} \{d, \{L, d\}\} = 2\{\{L, d\}, d\}.$$

The twisted differential *d^c* (reminder)

DEFINITION: The **twisted differential** is defined as $d^c := I dI^{-1}$.

CLAIM: Let (M, I) be a complex manifold. Then $\partial := \frac{d + \sqrt{-1} d^c}{2}$, $\overline{\partial} := \frac{d - \sqrt{-1} d^c}{2}$ are the Hodge components of d, $\partial = d^{1,0}$, $\overline{\partial} = d^{0,1}$.

Proof: The Hodge components of *d* are expressed as $d^{1,0} = \frac{d+\sqrt{-1} d^c}{2}$, $d^{0,1} = \frac{d-\sqrt{-1} d^c}{2}$. Indeed, $I(\frac{d+\sqrt{-1} d^c}{2})I^{-1} = \sqrt{-1}\frac{d+\sqrt{-1} d^c}{2}$, hence $\frac{d+\sqrt{-1} d^c}{2}$ has Hodge type (1,0); the same argument works for $\overline{\partial}$.

CLAIM: On a complex manifold, one has $d^c = [\mathcal{W}, d]$.

Proof: Clearly, $[\mathcal{W}, d^{1,0}] = \sqrt{-1} d^{1,0}$ and $[\mathcal{W}, d^{0,1}] = -\sqrt{-1} d^{0,1}$. Adding these equations, obtain $d^c = [\mathcal{W}, d]$.

COROLLARY: $\{d, d^c\} = \{d, \{d, W\}\} = 0$ (Lemma 1).

REMARK: Clearly, $d = \partial + \overline{\partial}$, $d^c = -\sqrt{-1} (\partial - \overline{\partial})$, $dd^c = -d^c d = 2\sqrt{-1} \partial \overline{\partial}$.

Holomorphic forms

DEFINITION: A (p, 0)-form η on a complex manifold M is called **holomorphic**, if $\overline{\partial}\eta = 0$.

DEFINITION: Let $\Omega^1 M \subset \Lambda^1 M$ be a sheaf over M generated by fdg, where f, g are holomorphic. This sheaf is called **the sheaf of holomorphic differentials** on M.

CLAIM: The sheaf of holomorphic *p*-forms coincides with $\Lambda^p_{\mathcal{O}_M} \Omega^1 M$, where \mathcal{O}_M is the sheaf of holomorphic functions.

Proof: Clearly, all sections of $\bigwedge_{\mathcal{O}_M}^p \Omega^1 M$ are holomorphic. Conversely, any (p, 0)-form can be written locally as $\eta = \sum_{I = \{i_1, \dots, i_p\}} \alpha_I dz_{i_1} \wedge dz_{i_2} \wedge \dots \wedge dz_{i_p}$, where z_i are holomorphic coordinates. Then $\overline{\partial}\eta = \sum \overline{\partial}\alpha_I dz_{i_1} \wedge dz_{i_2} \wedge \dots \wedge dz_{i_p} = 0$ implies that $\overline{\partial}\alpha_I$, because $\bigwedge^{p,1}(M) = \bigwedge^{p,0}(M) \otimes \bigwedge^{0,1}(M)$, hence for any basis e_I in $\bigwedge^{p,0}(M)$ and any $\{g_I\} \in \bigwedge^{0,1}(M)$,

$$\sum_{I} g_{I} \wedge e_{I} = 0 \Leftrightarrow \text{ all } g_{I} = 0.$$

EXERCISE: Prove that on a compact Kähler manifold, any holomorphic form is closed.

Holomorphic 1-forms and first cohomology

LEMMA: Let θ be an exact holomorphic 1-form on a compact manifold. Then $\theta = 0$.

Proof: $\theta = df$, where f is a function satisfying $\overline{\partial}\eta = 0$, hence holomorphic. Then f = const by maximum principle.

DEFINITION: A (0, p)-form η is called **antiholomorphic** if $\overline{\eta}$ is holomorphic.

The following result is implied by the Hodge theory.

THEOREM: Let (M, I) be a compact Kähler manifold, and $[\theta] \in H^2(M, \mathbb{C})$ is a cohomology class. Then $[\theta]$ can be represented by a form $\theta = \theta^{1,0} + \theta^{0,1}$, where $\theta^{1,0}$ is holomorphic and $\theta^{0,1}$ antiholomorphic.

EXERCISE: Prove this statement for compact complex curves.

Positive (1,1)-forms

DEFINITION: A positive (1,1)-form is a real (1,1)-form on a complex manifold which can be written as $\eta = \sum_i \alpha_i \theta_i \wedge I(\theta_i)$, where θ_i are real 1-forms, and α_i positive functions.

REMARK: Hermitian forms are clearly positive. Moreover, the cone of positive forms is a closure of the cone of Hermitian forms. **One may think of positive forms as of positive semi-definite Hermitian forms.**

DEFINITION: Hermitian forms are called **strictly positive**.

CLAIM: Let (M, I) be a complex manifold, and η a real (1,1)-form. Then for each 2-dimensional real subspace $W \subset T_x M$ such that I(W) = W, the restriction of η to W is proportional to its volume form with nonnegative coefficient. Conversely, if $\eta|_W$ is non-negative for all such W, the η is positive.

Proof: A (1,1)-form is Hermitian if and only if $\eta(x, I(x)) > 0$ for each x; it is positive if and only if $\eta(x, I(x)) \ge 0$.

Mass of a positive (1,1)-form

DEFINITION: Let (M, I, ω) be a Hermitian manifold, dim_C M = n. Mass of positive (1,1)-form η is a volume form $\eta \wedge \omega^{n-1}$.

THEOREM: (normal form for a pair of Hermitian forms)

Let g be a Hermitian metric on V, h a pseudo-Hermitian form. Then there exists an orthonormal (with respect to g) basis $x_1, I(x_1), x_2, I(x_2), ..., x_n, I(x_n)$ in V^* such that $h = \sum a_i x_i \wedge I(x_i)$.

CLAIM: Let (M, I, ω) be a Hermitian manifold, $x_1, I(x_1), x_2, I(x_2), ..., x_n, I(x_n)$ an orthonormal basis in $\Lambda^1(M, \mathbb{R})$, and $\eta = \sum_i \alpha_i x_i \wedge I(x_i)$ a positive (1,1)form (such a basis always exists because of a normal form theorem). Then $\eta \wedge \omega^{n-1} = \sum \alpha_i \omega^n$.

COROLLARY: Mass of a positive form is always a (not strictly) positive volume form. **A positive form vanishes if and only if its mass vanishes.**

LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, $\dim_{\mathbb{C}} M > 1$. Then M is called **locally conformally Kähler** (LCK) if $d\omega = \omega \wedge \theta$, where θ is a closed 1-form, called **the Lee form**.

DEFINITION: A manifold is locally conformally Kähler iff it admits a Kähler form taking values in a positive, flat vector bundle *L*, called **the weight bundle**.

DEFINITION: Deck transform, or monodromy maps of a covering $\tilde{M} \longrightarrow M$ are elements of the group $\operatorname{Aut}_{M}(\tilde{M})$. When \tilde{M} is a universal cover, one has $\operatorname{Aut}_{M}(\tilde{M}) = \pi_{1}(M)$.

DEFINITION: An LCK manifold is a complex manifold such that its universal cover \tilde{M} is equipped with a Kähler form $\tilde{\omega}$, and the deck transform acts on \tilde{M} by Kähler homotheties.

THEOREM: These three definitions are equivalent.

Vaisman's theorem

THEOREM: Let (M, ω, θ) be a compact LCK manifold, such that θ is not cohomologous to 0. Then *M* does not admit a Kähler structure.

Proof. Step 1: Let $d\omega = \omega \wedge \theta$, $\theta' = \theta + d\varphi$. Then $d(e^{\varphi}\omega) = e^{\varphi}\omega \wedge \theta + e^{\varphi}\omega \wedge d\varphi = e^{\varphi}\omega \wedge \theta'$. This means that we can replace the triple (M, ω, θ) by $(M, e^{\varphi}\omega, \theta')$ for any 1-form θ' cohomologous to θ .

Step 2: Assume that *M* admits a Kähler structure. Then θ is cohomologous to a sum of a holomorphic and antiholomorphic form. Replacing ω in its conformal class as in Step 1, we may assume that θ is a sum of a holomorphic and antiholomorphic form.

Step 3: Then $dd^c\theta = \sqrt{-1} d\overline{\partial}\theta = 0$, giving $dd^c(\omega^{n-1}) = \omega^{n-1} \wedge \theta \wedge I(\theta)$. Then $0 = \int_M dd^c(\omega^{n-1}) = \int Mass(\theta \wedge I(\theta))$, hence $\theta \wedge I(\theta) = 0$.