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LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, dimCM > 1. Then M

is called locally conformally Kähler (LCK) if dω = ω∧ θ, where θ is a closed

1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kähler iff it admits a

Kähler form taking values in a positive, flat vector bundle L, called the weight

bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M̃ −→M

are elements of the group AutM(M̃). When M̃ is a universal cover, one

has AutM(M̃) = π1(M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-

versal cover M̃ is equipped with a Kähler form ω̃, and the deck transform acts

on M̃ by Kähler homotheties.

THEOREM: These three definitions are equivalent.
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Conical Kähler manifolds

DEFINITION: Let (X, g) be a Riemannian manifold, and C(X) := X ×R>0,
with the metric t2g + dt2, where t is a coordinate on R>0. Then C(X) is
called Riemannian cone of X. Multiplicative group R>0 acts on C(X) by
homotheties, (m, t)−→ (m,λt).

DEFINITION: Let X be a Riemannian manifold, (M, g) = C(X) := X ×R>0

its Riemannian cone, and hλ the standard homothety action. Assume that
(M, g) is equipped with a complex structure, in such a way that g is Kähler,
and hλ acts holomorphically. Then C(X) is called a conical Kähler manifold.
In this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic
structure on C(X), and hλ acting by homotheties. In particular, Sasakian
manifolds are contact. Sasakian manifold are related to contact in the
same way as Kähler manifolds are related to symplectic.

EXAMPLE: Any odd-dimensional sphere is Sasakian (check this!).

EXAMPLE:
(we will have a discussion of this example in the next lecture)
Let L be a positive holomorphic line bundle on a projective manifold. Then
the total space of its unit S1-fibration in L is Sasakian.
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Vaisman manifolds

EXAMPLE: For any given λ ∈ R>1, the quotient C(X)/hλ of a conical
Kähler manifold is locally conformally Kähler.

DEFINITION: A compact LCK manifold is called structurally Vaisman, if
its is obtained as a quotient of a conical Kähler manifold C(X) by Z acting
on C(X) by holomorphic homotheties.

DEFINITION: An LCK manifold (M, g, ω, θ) is called Vaisman if ∇θ = 0,
where ∇ is the Levi-Civita connection associated with g.

THEOREM: (Structure Theorem)
A compact LCK manifold M is Vaisman if and only if it is structurally
Vaisman.

REMARK: Locally, this statement is true without compactness of M.
To prove it globally on M , one needs first to show that the monodromy of
the weight local system is Z; this needs compactness.

In this lecture, I will prove the local statement; a global version of the structure
theorem will be proven later in the lectures.
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Levi-Civita connection (reminder)

DEFINITION: The torsion of a connection Λ1 ∇−→ Λ1M ⊗ Λ1M is a map

Alt ◦∇ − d, where Alt : Λ1M ⊗ Λ1M −→ Λ2M is exterior multiplication. It is a

map T∇ : Λ1M −→ Λ2M .

EXERCISE: Prove that torsion is a C∞M-linear.

REMARK: The dual operator x, y −→∇xY −∇yX − [X,Y ] is also called the

torsion of ∇. It is a map Λ2TM −→ TM .

EXERCISE: Prove that these two tensors are dual.

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ is

called orthogonal if ∇(g) = 0. It is called Levi-Civita if it is torsion-free.

THEOREM: (“the main theorem of differential geometry”)

For any Riemannian manifold, the Levi-Civita connection exists,

and it is unique.
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Vaisman structure on conical Kähler manifolds

Let us prove the implication

(Structure Vaisman) ⇒ (Vaisman).

THEOREM: Let (M̃, g̃, ω̃) = X×R>0 be a conical Kähler manifold, Z = 〈γ〉 a

group acting on M̃ = C(X) by Kähler homotheties, and t : C(X)−→ R>0 the

projection map. Then the form ω := t−2ω̃ is an LCK form on M := M̃〈γ〉,
its Lee form is t−1dt, and ∇θ = 0. Here ∇ is the Levi-Civita connection

on (M, g), and g = t−2g̃.

Proof: t−2g̃ is the product metric on C(X) = X × R, where z = log t is

the coordinate on R and dz = t−1dt the unit covector. To find θ, notice

that

dω = d(t−2ω̃) = −t−3dt ∧ ω̃ = −t−1dt ∧ ω = −dz ∧ ω.

Then ∇(dz) = 0, because it is the unit covector on the R component of

(C(X), g) = X × R.
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Levi-Civita connection and Kähler geometry (reminder)

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then

the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form ω is

closed.

(ii) One has ∇(I) = 0, where ∇ is the Levi-Civita connection.

REMARK: The implication (ii) ⇒ (i) is clear. Indeed, [X,Y ] = ∇XY −
∇YX, hence it is a (1,0)-vector field when X,Y are of type (1,0), and then I

is integrable. Also, dω = 0, because ∇ is torsion-free, and dω = Alt(∇ω).

The implication (i)⇒ (ii) is proven by the same argument as used to construct

the Levi-Civita connection.

7



Kähler manifolds, lecture 3 M. Verbitsky

Holonomy group (reminder)

DEFINITION: (Cartan, 1923) Let (B,∇) be a vector bundle with connec-
tion over M . For each loop γ based in x ∈ M , let Vγ,∇ : B|x −→B|x be
the corresponding parallel transport along the connection. The holonomy
group of (B,∇) is a group generated by Vγ,∇, for all loops γ. If one takes
all contractible loops instead, Vγ,∇ generates the local holonomy, or the
restricted holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its
restricted holonomy vanishes.

REMARK: If ∇(ϕ) = 0 for some tensor ϕ ∈ B⊗i ⊗ (B∗)⊗j, the holonomy
group preserves ϕ.

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its
Levi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in O(TxM, g|x) = O(n).

EXAMPLE: Holonomy of a Kähler manifold lies in U(TxM, g|x, I|x) = U(n).

REMARK: The holonomy group does not depend on the choice of a
point x ∈M.
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The de Rham splitting theorem (reminder)

COROLLARY: Let M be a Riemannian manifold, and Hol0(M)
ρ−→ End(TxM)

a reduced holonomy representation. Suppose that ρ is reducible: TxM =

V1 ⊕ V2 ⊕ ... ⊕ Vk. Then G = Hol0(M) also splits: G = G1 × G2 × ... × Gk,
with each Gi acting trivially on all Vj with j 6= i.

THEOREM: (de Rham) A complete, simply connected Riemannian manifold

with non-irreducible holonomy splits as a Riemannian product, onto factors

corresponding to irreducible components of the holonomy representation.

Corollary 1: Let X ∈ TM be a vector field saisfying ∇X = 0. Then M

locally splits as a Riemannian manifold: M = M1 × I, where I ⊂ R is

interval equipped with a standard metric.
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The Lee field and conical Kähler structures

The local implication (Vaisman) ⇒ (Structure Vaisman) would follow lo-

cally if we prove

Proposition 1: Let (M,ω, θ) be a Vaisman manifold, and X = θ] the vector

field dual to θ, called the Lee field. Then X is holomorphic.

We deduce the local form of (Vaisman) ⇒ (Structure Vaisman) from

Proposition 1. Choose a cover M̃ −→M such that the pullback of θ is exact:

θ = dψ. Since M is locally a product (Corollary 1), M = (X × R, g0 + dt2),

one has ψ = t, and the manifold (M̃, ψ2g) is a Riemannian cone of X =

ψ−1(c). To obtain that M̃ is a conical Kähler manifold it remains to

show that the standard homotheties of the Riemannian cone act on M̃

holomorphically.

However, these homotheties are obtained by exponentiation of X.

Proposition 1 will be proven later in this lecture.
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Lie derivative

DEFINITION: Let X ∈ TM be a vector field, and etX the corresponding

diffeomorphism flow. For any tensor A ∈ TM⊗i ⊗ T ∗M⊗j, let LieX(A) :=
d
dt|t=0(etX)∗(A). This operation is called the Lie derivative.

CLAIM: The Lie derivative satisfies the following properties.

1. Leibniz identity. LieX(α⊗ β) = LieX(α)⊗ β + α⊗ LieX(β)

2. Contraction. Let Π : TM⊗i ⊗ T ∗M⊗j −→ TM⊗i−k ⊗ T ∗M⊗j−k denote

contraction of k components of the tensor. Then LieX(Π(α)) = Π(LieX(α)).

3. Differential. LieX(f) = DX(f) for any function f ∈ C∞M .

4. Commutator: Liex(Y ) = [X,Y ] for any vector field Y ∈ TM .

5. Cartan formula: Lie(η) = (dη)yX + d(ηyX), for any differential form

η ∈ Λi(M).

Moreover, LieX is uniquely determined by the properties 1-3.
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Killing fields

PROPOSITION: Let g ∈ Sym2 T ∗M be a Riemannian form on TM , X ∈
TM a vector field, ∇ the Levi-Civita connection, and h := LieX(g). Then

h(Y, Z) = g(∇YX,Z) + g(∇ZX,Y ).

Proof: By contraction property, LieX(g(Y, Z)) = LieX(g)(Y, Z)+g([X,Y ], Z)+

g([X,Z], Y ). Similarly, ∇X(g(Y, Z)) = ∇X(g)(Y, Z) + g(∇XY, Z) + g(∇XZ, Y ).

However, ∇X(g(Y, Z)) = LieX(g(Y, Z)), giving

LieX(g)(Y, Z) = g(∇XY, Z) + g(∇XZ, Y )− g([X,Y ], Z)− g([X,Z], Y ) =

= g(∇YX,Z) + g(∇ZX,Y )

using ∇XY − [X,Y ] = ∇YX, ∇XZ − [X,Z] = ∇ZX.

REMARK: A vector field which satisfies LieX(g) = 0 is called a Killing

vector field. A vector field X is Killing if and only if the diffeomorphisms etX

are isometries.
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Lie derivatives and Levi-Civita connection

THEOREM: Let M be a Riemannian manifold, ∇ the Levi-Civita connection,

and X ∈ TM a vector field. Consider an operator AX(ψ) := ∇X(ψ)− Liex(ψ)

on tensors. Then

1. AX is C∞-linear, satisfies the Leibnitz rule, and commutes with

contraction.

2. On 1-forms and vector fields, AX = ∇(X), where ∇(X) ∈ TM ⊗
Λ1M = End(TM) = End(T ∗M) is understood as an endomorphism of TM

and Λ1M .

Proof. Step 1: Linearity follows from ∇X(fψ) = f∇X(ψ) + LieX f(ψ) and

LieX(fψ) = f LieX(ψ) + LieX f(ψ), and Leibniz and contraction identity from

similar identities for LieX and ∇.

Step 2: Then AX = ∇(X) for Λ1M would follow from a similar identity for

TM .

Step 3: On vector fields, ∇XY − [X,Y ] = ∇YX because ∇ is torsion-free.
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Levi-Civita connection and homothety action

Theorem 1: Let θ be a 1-form on a Riemannian manifold, and X the dual
vector field. Then the following are equivalent.

(i) ∇(X) = λ Id.
(ii) ∇(θ) = λg.
(iii) dθ = 0 and LieX g = −2λg.

Proof. Step 1: ∇(X) = λ Id is clearly equivalent to ∇θ = λg (one is
obtained from another by applying g−1, which is parallel).

Step 2: (ii) and (i) ⇒ (iii): dθ = Alt(∇θ) = 0, since g is symmetric. From
∇(X) = λ Id we obtain ∇Xg − LieX g = λ Id(g) = 2λg.

Step 3: (iii) ⇒ (i): since LieX g = −2λg and ∇Xg = 0, we obtain that
∇(X)(g) = 2λg. This implies that the symmetric part of ∇(X), consid-
ered as a section of End(TM) is equal to λ Id (the antisymmetric part acts
on g trivially). To obtain the antisymmetric part, it is more convenient to
replace ∇(X) by ∇(θ). Then the antisymmetric part of ∇(θ) is equal to
Alt(∇(θ)) = dθ = 0.

Remark 1: In this situation, for each tensor Φ ∈ TM⊗i ⊗ T ∗M⊗j, one has
∇(X)(Φ) = (i− j)λΦ.

14



Kähler manifolds, lecture 3 M. Verbitsky

Lee field on Vaisman manifolds

Proposition 1: Let (M,ω, θ) be a Vaisman manifold, and X = θ] the vector

field dual to θ, called the Lee field. Then X is holomorphic.

Proof. Step 1: Locally, M is a product, M = S×R, with the product metric.

Let M̃ be a covering of M such that the pullback of θ is exact on M̃ , θ = dϕ.

Then ω̃ := e−ϕω is a Kähler form. The corresponding metric g̃ on M̃ a

cone metric, and X acts on (M, g̃) by homotheties.

Step 2: Let ∇W be the Levi-Civita connection on the Kähler manifold

(M̃, g̃, ω̃). It is called Weyl connection. Theorem 1 implies that ∇W (X) =

λ Id, for some constant λ.

Step 3: Since M̃ is Kähler, ∇WX I = 0. By Remark 1, ∇W (X)(I) = 0.

Therefore, Theorem 1 implies that LieX(I) = 0. This is equivalent to

diffeomorphism flow etX preserving the complex structure, and hence to X

being holomorphic.
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