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REMINDER: The Hodge decomposition on a complex manifold

DEFINITION: Let (M, I) be a complex manifold, {Ui} its covering, and and
z1, ..., zn holomorphic coordinate system on each covering patch. The bundle
Λp,q(M, I) of (p, q)-forms on (M, I) is generated locally on each coordinate
patch by monomials dzi1 ∧ dzi2 ∧ ... ∧ dzip ∧ dzip+1

∧ ... ∧ dzip+q
. The Hodge

decomposition is a decomposition of vector bundles:

ΛdC(M) =
⊕

p+q=d

Λp,q(M).

EXERCISE: Prove that the de Rham differential on a complex manifold
has only two Hodge components:

d (Λp,q(M)) ⊂ Λp+1,q(M)⊕ Λp,q+1(M).

DEFINITION: Let d = d0,1 + d1,0 be the Hodge decomposition of the de
Rham differential on a complex manifold, d0,1 : Λp,q(M)−→ Λp,q+1(M) and
d1,0 : Λp,q(M)−→ Λp+1,q(M). The operators d0,1, d1,0 are denoted ∂ and ∂

and called the Dolbeault differentials.

EXERCISE: Show that ∂2 = 0 is equivalent to integrability of the com-
plex structure.
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The twisted differential dc (reminder)

DEFINITION: The twisted differential is defined as dc := IdI−1.

CLAIM: Let (M, I) be a complex manifold. Then ∂ := d+
√
−1 dc

2 , ∂ :=
d−
√
−1 dc

2 are the Hodge components of d, ∂ = d1,0, ∂ = d0,1.

Proof: The Hodge components of d are expressed as d1,0 = d+
√
−1 dc

2 , d0,1 =
d−
√
−1 dc

2 . Indeed, I(d+
√
−1 dc

2 )I−1 =
√
−1d+

√
−1 dc

2 , hence d+
√
−1 dc

2 has Hodge

type (1,0); the same argument works for ∂.

CLAIM: {d, dc} = 0.

REMARK: Clearly, d = ∂ + ∂, dc = −
√
−1 (∂ − ∂), ddc = −dcd = 2

√
−1 ∂∂.
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LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, dimCM > 1. Then M

is called locally conformally Kähler (LCK) if dω = ω∧ θ, where θ is a closed

1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kähler iff it admits a

Kähler form taking values in a positive, flat vector bundle L, called the weight

bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M̃ −→M

are elements of the group AutM(M̃). When M̃ is a universal cover, one

has AutM(M̃) = π1(M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-

versal cover M̃ is equipped with a Kähler form ω̃, and the deck transform acts

on M̃ by Kähler homotheties.

THEOREM: These three definitions are equivalent.
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Holomorphic vector bundles

DEFINITION: A (smooth) vector bundle on a smooth manifold is a locally

trivial sheaf of C∞M-modules.

DEFINITION: A holomorphic vector bundle on a complex manifold is a

locally trivial sheaf of OM-modules.

REMARK: A section b of a bundle B is often denoted as b ∈ B.

CLAIM: Let B be a holomorphic vector bundle. Consider the sheaf BC∞ :=

B ⊗OM C∞M . It is clearly locally trivial, hence BC∞ is a smooth vector

bundle.

DEFINITION: BC∞ is called a smooth vector bundle underlying B.

5



Kähler manifolds, lecture 4 M. Verbitsky

A holomorphic structure operator

DEFINITION: Let d = d0,1 + d1,0 be the Hodge decomposition of the de

Rham differential on a complex manifold, d0,1 : Λp,q(M)−→ Λp,q+1(M) and

d1,0 : Λp,q(M)−→ Λp+1,q(M). The operators d0,1, d1,0 are denoted ∂ and ∂

and called the Dolbeault differentials.

REMARK: From d2 = 0, one obtains ∂
2

= 0 and ∂2 = 0.

REMARK: The operator ∂ is OM-linear.

DEFINITION: Let B be a holomorphic vector bundle, and ∂ : BC∞ −→BC∞⊗
Λ0,1(M) an operator mapping b ⊗ f to b ⊗ ∂f , where b ∈ B is a holomorphic

section, and f a smooth function. This operator is called a holomorphic

structure operator on B. It is correctly defined, because ∂ is OM-linear.

REMARK: The kernel of ∂ coincides with the set of holomorphic sections

of B.
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The ∂-operator on vector bundles

DEFINITION: A ∂-operator on a smooth bundle is a map V
∂−→ Λ0,1(M)⊗

V , satisfying ∂(fb) = ∂(f)⊗ b+ f∂(b) for all f ∈ C∞M, b ∈ V .

REMARK: A ∂-operator on B can be extended to

∂ : Λ0,i(M)⊗ V −→ Λ0,i+1(M)⊗ V,

using ∂(η ⊗ b) = ∂(η)⊗ b+ (−1)η̃η ∧ ∂(b), where b ∈ V and η ∈ Λ0,i(M).

REMARK: If ∂ is a holomorphic structure operator, then ∂
2

= 0.

THEOREM: Let ∂ : V −→ Λ0,1(M) ⊗ V be a ∂-operator, satisfying ∂
2

= 0.

Then B := ker ∂ ⊂ V is a holomorphic vector bundle of the same rank.

REMARK: This statement is a vector bundle analogue of Newlander-Nirenberg

theorem.

DEFINITION: ∂-operator ∂ : V −→ Λ0,1(M) ⊗ V on a smooth manifold is

called a holomorphic structure operator, if ∂
2

= 0.
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Connections and holomorphic structure operators

DEFINITION: let (B,∇) be a smooth bundle with connection and a holo-

morphic structure ∂ B −→ Λ0,1(M) ⊗ B. Consider a Hodge decomposition of

∇, ∇ = ∇0,1 +∇1,0,

∇0,1 : V −→ Λ0,1(M)⊗ V, ∇1,0 : V −→ Λ1,0(M)⊗ V.

We say that ∇ is compatible with the holomorphic structure if ∇0,1 = ∂.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth

complex vector bundle equipped with a Hermitian metric and a holomorphic

structure.

DEFINITION: A Chern connection on a holomorphic Hermitian vector

bundle is a connection compatible with the holomorphic structure and pre-

serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-

nection exists, and is unique.
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Curvature of a holomorphic line bundle

REMARK: When speaking of a “curvature of a holomorphic bundle”,

one usually means the curvature of a Chern connection.

REMARK: Let B be a holomorphic Hermitian line bundle, and b its non-

degenerate holomorphic section. Denote by η a (1,0)-form which satisfies

∇1,0b = η ⊗ b. Then d|b|2 = Re g(∇1,0b, b) = Re η|b|2. This gives ∇1,0b =
∂|b|2
|b|2 b = 2∂ log |b|b.

REMARK: Then ΘB(b) = 2∂∂ log |b|b, that is, ΘB = −2∂∂ log |b|.

REMARK: The 2-form 2∂∂ log |b| is independent from the choice of a

holomorphic section b. Indeed, let b1 = bf , where f is a non-vanishing

holomorphic function. Then

∂∂ log(|b1|2) = 2∂∂ log(|b|) + ∂∂ log(ff) = 2∂∂ log(|b|) + ∂∂ log f + ∂∂ log f.

The last two terms vanish, because a logarithm of a holomorphic function is

also holomorphic, and logarithm of an antiholomorphic function is antiholo-

morphic.
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Kähler potentials and plurisubharmonic functions

DEFINITION: A real-valued smooth function on a complex manifold is

called plurisubharmonic (psh) if the (1,1)-form ddcf is positive, and strictly

plurisubharmonic if ddcf is an Hermitian form.

REMARK: Since ddcf is always closed, it is also Kähler when it is strictly

positive.

DEFINITION: Let (M, I, ω) be a Kähler manifold. Kähler potential is a

function f such that ddcf = ω.

REMARK: Locally, Kähler potentials always exist. This is a non-trivial

theorem which follows from Poincare-Dolbeault-Grothendieck lemma.

EXAMPLE: z −→ |z|2 is a Kähler potential for the usual (flat) Hermitian

metric on Cn.
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Positive line bundles

DEFINITION: Let L be a holomorphic Hermitian line bundle, and Θ ∈
Λ1,1(M) the curvature of its Chern connection. L is called positive if

√
−1 Θ

is a strictly positive form.

REMARK: In this case it is also Kähler; indeed, ddc log |h| is closed.

EXERCISE: Prove that the bundle O(1) on CPn equipped with the nat-
ural U(n + 1)-equivariant metric is positive, and its curvature is the
Fubini-Study form.

REMARK: Let L be a positive line bundle on M , Tot(L)
π−→ M its total

space, Tot∗(L) be the space of non-zero vectors in L, and ψ a function on
Tot∗(L) defined by ψ(v) = |v|2. Then ddc logψ =

√
−1 π∗ΘL, where ΘL is

the curvature of L. Indeed, on fibers of L, ψ = |z|2, and ddc logψ vanishes.

CLAIM: The semipositive form ddc logψ on Tot∗(L) has one zero eigen-
value (along the fibers) and the rest is positive.

COROLLARY: ddcψ =
√
−1ψπ∗ΘL+dψ∧I(dψ), hence this form is strictly

positive.
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Regular Vaisman manifolds (reminder)

THEOREM: (Kodaira theorem)

Let X be a compact complex manifold. Then X is projective if and only if

it admits a positive line bundle.

DEFINITION: Let X be a complex manifold, and L a positive line bundle on

X. Consider the C∗-bundle Tot∗(L) with the Kähler metric ω̃ = ddcψ defined

above. Fox λ ∈ C, |λ| > 1, and let M := Tot∗(L)/x ∼ λx be the corresponding

quotient. Clearly, the map x−→ λx is a Kähler homothety on (Tot∗(L), ddcψ),

hence M is an LCK manifold, Such a manifold is called regular Vaisman

manifold.

REMARK: A regular Vaisman manifold is smoothly fibered on X; the fibers

are elliptic curves C∗/x ∼ λx.

REMARK: The classical Hopf manifold Cn\0/x ∼ λx is an example of a

regular Vaisman manifold, with X = CPn−1.

REMARK: By Kodaira theorem, all regular Vaisman manifolds admit a

holomorphic embedding to classical Hopf manifolds.
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Conical Kähler manifolds (reminder)

DEFINITION: Let (X, g) be a Riemannian manifold, and C(X) := X ×R>0,
with the metric t2g + dt2, where t is a coordinate on R>0. Then C(X) is
called Riemannian cone of X. Multiplicative group R>0 acts on C(X) by
homotheties, (m, t)−→ (m,λt).

DEFINITION: Let (X, g) be a Riemannian manifold, C(X) := X × R>0

its Riemannian cone, and hλ the homothety action. Assume that (X, g) is
equipped with a complex structure, in such a way that g is Kähler, and hλ
acts holomorphically. Then C(X) is called a conical Kähler manifold. In
this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic
structure on C(X), and hλ acting by homotheties. In particular, Sasakian
manifolds are contact. Sasakian manifold are related to contact in the
same way as Kähler manifolds are related to symplectic.

EXAMPLE: Any odd-dimensional sphere is Sasakian (check this!).

EXAMPLE: Let L be a positive holomorphic line bundle on a projective
manifold. Then the total space of its unit S1-fibration is Sasakian.
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Contact manifolds: three equivalent definitions

All manifolds are assumed to be oriented here.

Definition 1: Let C(S) = (S × R>0) be a cone, equipped with the standard

action hλ(x, t) = (x, λt). Assume that C(S) is equipped with a symplectic

form ω such that h∗λω = λ2ω. Then S is called contact manifold.

Definition 2: Let S be an odd-dimensional manifold, and B ⊂ TS an ori-

ented sub-bundle of codimension 1, with Frobenius form Λ2B
Φ−→ TS/B

non-degenerate. Then S is called contact manifold, B ⊂ TS the contact

bundle.

Definition 3: Let S be manifold of dimension 2k + 1, B ⊂ TS an oriented

sub-bundle of codimension 1. Assume that for any nowhere vanishing 1-form

θ ∈ Λ1S, the form θ ∧ (dθ)k is a non-degenerate volume form. Then (S,B) is

called a contact manifold, and θ a contact form.

THEOREM: These three definitions are equivalent.

See the proof further on in this lecture.
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Basic forms (reminder)

DEFINITION: Let M be a manifold, B ⊂ TM a sub-bundle, θ ∈ ΛiM a

differential form. It is called basic with respect to B if for each b ∈ B, one

has θyb = 0 and Lieb θ = 0.

DEFINITION: A sub-bundle B ⊂ TM is called involutive if [B,B] ⊂ B.

THEOREM: “Frobenius theorem”

Let B ⊂ TM be an involutive sub-bundle. Then for each point x ∈M there

exists a neighbourhood U 3 x and a smooth projection π : U −→N such

that B = ker π.

THEOREM: Let M be a manifold, B ⊂ TM an involutive sub-bundle, θ ∈
ΛiM a differential form. Then the following are equivalent.

(i) η is basic.

(ii) for any open subset U ⊂ M and a projection π : U −→N such

that B = ker π, one has η = π∗η′ for some η′ ∈ ΛiN.
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Contact manifolds: three equivalent definitions (proofs)

Definition 2: Let S be an odd-dimensional manifold, and B ⊂ TS an ori-

ented sub-bundle of codimension 1, with Frobenius form Λ2B
Φ−→ TS/B

non-degenerate. Then S is called contact manifold, B ⊂ TS the contact

bundle.

Definition 3: Let S be manifold of dimension 2k + 1, B ⊂ TS an oriented

sub-bundle of codimension 1. Assume that for any nowhere vanishing 1-form

θ ∈ Λ1S, the form θ ∧ (dθ)k is a non-degenerate volume form. Then (S,B) is

called a contact manifold, and θ a contact form.

Proof. Step 1: (2) ⇔ (3):

for each x, y ∈ B, dθ(x, y) = θ([x, y]) = Φ(x, y). Therefore, the Frobenius form

Λ2B
Φ−→ TS/B can be expressed as 〈Φ(x, y), θ〉 = dθ(x, y). Non-degeneracy

of θ∧(dθ)k on TM is equivalent to non-degeneracy of dθ = Φ on B = ker θ.

Therefore, 〈Φ(x, y), θ〉 = dθ(x, y) is of maximal rank if and only if θ ∧ (dθ)k is

non-degenerate.
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Contact manifolds: three equivalent definitions (proofs, part two)

Definition 1: Let C(S) = (S × R>0) be a cone, equipped with the standard

action hλ(x, t) = (x, λt). Assume that C(S) is equipped with a symplectic

form ω such that h∗λω = λ2ω. Then S is called contact manifold.

Step 2: (3) ⇒ (1):

Let M
π−→ S be the space of positive vectors in the oriented 1-dimensional

bundle L := TS/B, which is trivialized by the form θ, V ∈ TM a unit vertical

vector field, and t : M −→ R a map which associates θ(v) to a point (s, v) ∈M ,

s ∈ S, v ∈ L|x. Let T := tπ∗θ ∈ Λ1M , and let ω := dT . Consider the vector field

r = tV ∈ TM . Clearly, Lier T = 2T , giving Lier dT = 2dT . To prove that M

is a symplectic cone of S, it remains to show that dT is symplectic.

Step 3: (3) ⇒ (1), second part:

Since ker dt = π∗S, any vector field X ∈ TS can be naturally lifted to a

vector field π−1(X) ∈ ker dt ⊂ TM . For each Y := π−1(y), x, y ∈ B, one

has dT (X,Y ) = T ([X,Y ]) = T (π−1([x, y])), hence dT is non-degenerate

on π−1(B). Also, dT yV = T , and ker T = 〈π−1B, V 〉, hence dT is non-

degenerate on the symplectic orthogonal complement to π−1B.
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Contact manifolds: three equivalent definitions (proofs, part three)

Definition 1: Let C(S) = (S × R>0) be a cone, equipped with the standard

action hλ(x, t) = (x, λt). Assume that C(S) is equipped with a symplectic

form ω such that h∗λω = λ2ω. Then S is called contact manifold.

Definition 3: Let S be manifold of dimension 2k + 1, B ⊂ TS an oriented

sub-bundle of codimension 1. Assume that for any nowhere vanishing 1-form

θ ∈ Λ1S, the form θ ∧ (dθ)k is a non-degenerate volume form. Then (S,B) is

called a contact manifold, and θ a contact form.

Step 4: (1) ⇒ (3):

Let M = C(S) = S × R>0, and t ∈ C∞M the standard coordinate along R>0.

Consider the vector field r := t ddt, and the form θ := ωyr. Since θyr = 0 and

Lier t
−1θ = d(t−1θ)yr + d(θyr) = t−1θ − t−1θ + d(1) = 0,

the form t−1θ is basic with respect to the projection C(S)−→ S. This

gives a form θ on S. Finally, (dθ)k+1 is non-degenerate because dθ is sym-

plectic. Therefore, (dθ)k+1yr = (k + 1)(dθ)k ∧ θ is non-degenerate on S.
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Reeb field

DEFINITION: A Sasakian manifold is a contact manifold S with a Rie-

mannian structure, such that the symplectic cone C(S) with its Riemannian

metric is Kähler.

DEFINITION: Let S be a Sasakian manifold, ω the Kähler form on C(S),

and r = t ddt the homothety vector field. Then LieIr t = 〈dt, Ir〉 = 0, hence

iR is tangent to S ⊂ C(S). This vector field (denoted by Reeb) is called the

Reeb field of a Sasakian manifold.

REMARK: The Reeb field is dual to the contact form θ = ωyr.

THEOREM: The Reeb field acts on a Sasakian manifold by contact

isometries.

(see the next slide)

DEFINITION: A Sasakian manifold is called regular if the Reeb field gen-

erates a free action of S1, quasiregular if all orbits of Reeb are closed, and

irregular otherwise.
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Reeb field acts by contact isometries

THEOREM: The Reeb field acts on a Sasakian manifold by contact
isometries.

Proof. Step 1: Let (C(S), ω) be the cone of a Sasakian manifold with its
Kähler form, and t the standard coordinate function. A holomorphic vector
field is a vector field v such that its diffeomorphism flow etv is holomorphic.
The homothety vector field r = d ddt is holomorphic, because Lier ω̃ = 2ω̃,
Lier g = 2g, giving Lier I = Lier gω−1 = 0.

Step 2: If X is a holomorphic vector field, then IX is also holomorphic.
To see this, chose (locally) a Kähler metric; then LieX(I) = A(I), where
A = ∇(X) acts by the formula A(I)(v) = A(Iv) − IA(v). Therefore, X is
holomorphic if and only if ∇(X) is complex linear. Since ∇(I) = 0, one
has ∇(IX) = I(∇(X)), hence ∇(X) is complex linear ⇔ ∇(IX) is complex
linear. Then Reeb acts on C(X) holomorphically.

Step 3: LieReeb ω = d(ω̃yIr) = d(tdt) = 0. Therefore, LieReeb ω = 0. Since
LieReeb I = 0 as well, this implies that Reeb is Killing.

Step 4: Contact sub-bundle B ⊂ TS is defined as kerωy ddt; since the Reeb
field preserves t and ω, it preserves the contact sub-bundle.
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Regular Sasakian manifolds

DEFINITION: A Sasakian manifold is called regular if the Reeb field gen-
erates a free action of S1, quasiregular if all orbits of Reeb are closed, and
irregular otherwise.

THEOREM: Let S be a regular Sasakian manifold. Then there exists a
Kähler manifold X and a positive holomorphic Hermitian line bundle L
such that S is the space of unit vectors in L.

Proof. Step 1: Let X = S/Reeb. This quotient is well defined and smooth,
because Reeb is regular. Then X = C(S)/C∗, where the C∗-action is generated
by r = t ddt, I(r), hence holomorphic. Therefore, X is a complex manifold
(it’s a quotient of a complex manifold by holomorphic action of a Lie group)

Proof. Step 2: Since 2ω = dθ = d(tIdt) = ddc(t2), the function t2 gives a
Kähler potential on the cone of S. The form ddc log t2 = ω

t −
dt∧Idt
t2

vanishes
on 〈r, I(r)〉 and the rest of its eigenvalues are positive. Therefore, ddc log t2

is basic with respect to 〈r, I(r)〉, and is equal to a pullback of a Kähler
form ωX on X.

Proof. Step 3: Consider a holomorphic Hermitian line bundle obtained from
a C∗-bundle C(S)−→X. Clearly, S is its space of unit vectors. Its curvature
is expressed by ddc log |v| = ωX, hence this line bundle is positive.

21



Kähler manifolds, lecture 4 M. Verbitsky

Quasiregular Sasakian manifold: an example

EXAMPLE: Let M = C2\0 = C(S3) considered as a conical Kähler manifold

with the standard structure, and M1 = M/G, where G = Z/4 is generated by

τ(x, y) = (y,−x). Since τ2 = −1, the action of G on M is free. Therefore,

M1 is also a conical Kähler manifold.

CLAIM: M1 is quasiregular, but not regular.

Proof: Free orbits are those which satisfy (tx, ty) 6= (y,−x) for each t ∈
U(1) = {λ ∈ C | |λ| = 1}, t 6= 1. A non-free orbit gives tx = y, ty = −x = t2x,

hence t = ±
√
−1 and x = ±y.

REMARK: For each quasiregular Sasakian manifold S, the quotient

S/Reeb is a Kähler orbifold. Then S is a space of unit vectors in a positive

line bundle, considered in the orbifold category.
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