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LCK manifolds (reminder)

DEFINITION: Let (M, I,w) be a Hermitian manifold, dim¢ M > 1. Then M
is called locally conformally Kahler (LCK) if dw = w A8, where 6 is a closed
1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kahler iff it admits a
Kahler form taking values in a positive, flat vector bundle L, called the weight
bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M — M
are elements of the group Auty/(M). When M is a universal cover, one
has Aut,;(M) = 1 (M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-
versal cover M is equipped with a Kidhler form &, and the deck transform acts
on M by Kihler homotheties.

THEOREM: These three definitions are equivalent.
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Conical Kahler manifolds (reminder)

DEFINITION: Let (X, g) be a Riemannian manifold, and C(X) := X x R>9,
with the metric t2g + dt?, where ¢ is a coordinate on R>0. Then C(X) is
called Riemannian cone of X. Multiplicative group R>° acts on C(X) by
homotheties, (m,t) — (m, At).

DEFINITION: Let (X,g) be a Riemannian manifold, C(X) := X x R>0
its Riemannian cone, and h, the homothety action. Assume that (X, g) is
equipped with a complex structure, in such a way that g is Kahler, and h)
acts holomorphically. Then C(X) is called a conical Kahler manifold. In
this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic
structure on C(X), and h), acting by homotheties. In particular, Sasakian
manifolds are contact. Sasakian geometry is an odd-dimensional coun-
terpart to Kahler geometry

EXAMPLE: Let L be a positive holomorphic line bundle on a projective
manifold. Then the total space of its unit Sl_fibration is Sasakian.

S. Sasaki, "On differentiable manifolds with certain structures which are closely related to
almost contact structure”, Tohoku Math. J. 2 (1960), 459-476.
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Contact manifolds (reminder)
All manifolds are assumed to be oriented here.

Definition 1: Let C(S) = (S x R”0) be a cone, equipped with the standard
action hy(z,t) = (z,At). Assume that C(S) is equipped with a symplectic
form w such that hjw — \2w. Then S is called contact manifold.

Definition 2: Let S be an odd-dimensional manifold, and B C T'S an ori-
ented sub-bundle of codimension 1, with Frobenius form A2B i> TS/B
non-degenerate. Then S is called contact manifold, B C T'S the contact

bundle.

Definition 3: Let S be manifold of dimension 2k + 1, B C T'S an oriented
sub-bundle of codimension 1. Assume that for any nowhere vanishing 1-form
6 € ALS, the form 6 A (d9)* is a non-degenerate volume form. Then (S, B) is
called a contact manifold, and 6 a contact form.

THEOREM: These three definitions are equivalent.
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Reeb field (reminder)

DEFINITION: A Sasakian manifold is a contact manifold S with a Rie-
mannian structure, such that the symplectic cone C(S) with its Riemannian
metric is Kahler.

DEFINITION: Let S be a Sasakian manifold, w the Kahler form on C(S),
and r = t% the homothety vector field. Then Liej,.t = (dt,Ir) = 0, hence
iR is tangent to S C C(S). This vector field (denoted by Reeb) is called the
Reeb field of a Sasakian manifold.

REMARK: The Reeb field is dual to the contact form 0 = wur.

THEOREM: The Reeb field acts on a Sasakian manifold by contact
iIsometries.

DEFINITION: A Sasakian manifold is called regular if the Reeb field gen-
erates a free action of Sl, quasiregular if all orbits of Reeb are closed, and
irregular otherwise.
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Examples of Sasakian manifolds.

Example: Let X C¢ CP™ be a complex submanifold, and CX C CC”+1\O the
corresponding cone. The cone CX is obviously Kahler and homogeneous,
hence the intersection ¢ X N S2"—1 ijs Sasakian. This intersection is an S!-
bundle over X. This construction gives many interesting contact manifolds,
including Milnor’s exotic 7-spheres, which happen to be Sasakian.

REMARK: In other words, a link of a homogeneous singularity is always
Sasakian.

REMARK: Every quasiregular Sasakian manifold is obtained this way,
for some Kihler metric on C"*t1 (Ornea-V., arXivimath/0609617 ).

REMARK: All 3-dimensional Sasakian manifolds are quasiregular (H. Geiges,
1997, F. Belgun, 2000).

REMARK: Every Sasakian manifold is diffeomorphic to a quasiregular
one (Ornea-V., arXivimath/0306077).

REMARK: Every regular (quasiregular) Sasakian manifold is a total
space of an Sl-bundle over a Kahler manifold (orbifold).
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Vaisman manifolds

EXAMPLE: For any given A € R>!, the quotient C(X)/h, of a conical
Kahler manifold is locally conformally Kahler.

DEFINITION: An LCK manifold (M, g,w,0) is called Vaisman if V6 = 0,
where V is the Levi-Civita connection associated with g.

THEOREM: Let M be a Vaisman manifold, M its covering:; the pullback of
the Lee form 0 to M is denoted by the same letter §. Assume that diy = 0 on
M (such 1 exists, for example, if M is a universal cover of M). Consider the
form & := e Yw. Then (M,&) is a Kahler manifold, isometric to a cone.

Proof: From Lecture 3, we know that @ is locally a conical Kahler metric.
Let 6% be the Lee field, dual to 6. Then Lieyy v = 2¢, hence the space of

orbits of et?*_action is identified with S := yv~1(c). This gives M = C(S). m

Now we shall prove a global version of this result.
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Structure theorem for Vaisman manifolds

THEOREM: Every Vaisman manifold is obtained as C(X)/Z, where X is
Sasakian, Z = <(:c,t) > (go(x),qt)>, g > 1, and ¢ is a Sasakian automorphism
of X. Moreover, the triple (X, ¢, q) is unique.

REMARK: This gives a Riemannian submersion M — S1 with Sasakian
fibers.

Proof. Step 1: Since o is parallel and Killing, M = X x R locally. Fix
xg € M. Then the projection M = X xR to R is induced by x — f7 0, for
Yzo,2 SOME path connecting = and zg. Therefore, M = X xR whenever ¢ is
exact.

DEFINITION: A monodromy group Mon(M) of an LCK manifold M is
the smallest group I such that M = M/l and M is Kd&hler.

REMARK: This is equivalent to the pullback of 6 being exact.

REMARK: Monodromy group is an image of 7r1(M) in R0 under a map
associating to any v € 71 (M) C Aut(M) the number 7 W
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The proof of Structure theorem for Vaisman manifolds

Proof. Step 2: Let ~q,....,7: € H1(M,Z) be generators of homology, and
o f%_G the corresponding periods. One has a map M — R/{aq, ..., a), with a
commutative diagram

M — M

R — R/{aq,...,ap)
with vertical lines z — [, ¢. The Riemannian submersion to S* will be
obtained if R/(aq,...,a;) = ST.

Step 3: Let G C m1(M) be the group generated by all v € 71 (M) such that
Jv0=0. Then I' = m1(M)/G is the monodromy group of M. Therefore,
R/{at,...,ap) = St <= Mon(M) = Z.
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Computation of the monodromy group of a Vaisman manifold

DEFINITION: Lee field on a Vaisman manifold is the vector field 6% dual
to the Lee form. Since locally a Vaisman manifold is a cone over Sasakian
(as shown in Lecture 3), 6% acts on M by holomorphic isometries, and on

~

M by non-isometric homotheties.

T he following theorem finishes the proof of Structure Theorem.
THEOREM: Let (M,w,0) be a compact LCK manifold, and X a vector field
acting on M by isometries and on M by non-isometric homotheties. Then
Mon(M) = Z.

T his theorem is proven later today.

REMARK: Let G be a group obtained as a closure of one-parametric group

e!X, t € R. Since X acts by isometries, G is a compact torus, G = (S1)~.
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Computation of the monodromy group, part 2

CLAIM: Let (M,w,0) be a compact LCK manifold, and X a vector field
acting on M by isometries and on M by non-isometric homotheties. Let
G = (Sl)k be the group obtained as a closure of one-parametric group etX,
t € R. Consider the group G of pairs f € Aut(M), f € G, making the following
diagram commutative.

~

s

T T

M m

Then G £ (SHk-1 x R.

REMARK: From this claim, the isomorphism Mon(M) = Z follows im-
mediately. Indeed, Mon(M) C kerp: G — G.
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Computation of the monodromy group of a Vaisman manifold (part 2)
Proof of G = (sH)kF—1 x R.

Step 1: G is a covering of G, and the kernel of this projection is G N
Mon(M).

Step 2: Let Go C G be a subgroup acting on M by isometries. Since G
acts on M by homotheties, Gg has codimension 1. Moreover, Gg cannot
intersect Mon(M) and it maps injectively to Aut(M) = (S1)~.

Step 3: We obtain that Gy = (S1H)%~1 (it’s codimension 1).

Step 4: Since (?O meets every component of G, it is connected. Therefore,
G2GyxRE(SHF1 xR, =
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Kahler potentials and plurisubharmonic functions (reminder)

DEFINITION: A real-valued smooth function on a complex manifold is
called plurisubharmonic (psh) if the (1,1)-form dd°¢f is positive, and strictly
plurisubharmonic if dd°f is an Hermitian form.

REMARK: Since dd°f is always closed, it is also Kahler when it is strictly
positive.

DEFINITION: Let (M,I,w) be a Kahler manifold. Kahler potential is a
function f such that dd“f = w.

Theorem 1: Let S be a Sasakian manifold, C(S) = S x R>0 its cone, t the
coordinate along the second variable, and r = t%. Then t? is a Kahler
potential on C(S). Moreover, the form dd°logt vanishes on (r, I(r)) and
the rest of its eigenvalues are positive.

Proof. Step 1: 2w = Lie,w = d(I0) = d(tIdt) = dd°(t?) Therefore, t2 is a
Kahler potential.

Step 2: dd°logt? = i — 470l
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The fundamental foliation

DEFINITION: Let M be a Vaisman manifold, 0t its Lee field, and > a 2-
dimensional real foliation generated by 6% 16%. It is called the fundamental
foliation of M. Clearly, > is tangent to orbits of the one-parametric group
of automorphisms of the covering M generated by homotheties. Therefore,
> IS a holomorphic foliaton.

THEOREM: Let M be a compact Vaisman manifold, and > C TM its
fundamental foliation. Then

1. > is independent from the choice of the Vaisman metric.

2. There exists a positive, exact (1,1)-form wg with X = ker wg.

3. For any complex subvariety Z C M, Z is tangent to >..

4. For any compact complex subvariety Z C M, the set of smooth
points of Z is Vaisman.

Proof of (2): Let M = C(X) be the conical Kahler manifold which covers
M, and v : M — R the function satisfying diy = 6. Then wg := ddy is
a pseudo-Hermitian form which vanishes on > and positive on TM/*
(Theorem 1). Also, wg = d(I0), hence this form is well defined on M.
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The fundamental foliation (proofs)

1. > is independent from the choice of the Vaisman metric.

2. There exists a positive, exact (1,1)-form wg with X = ker wg.

3. For any complex subvariety Z C M, Z is tangent to >.

4. For any compact complex subvariety Z C M, the set of smooth
points of Z is Vaisman.

Proof of (1): The zero foliation of wqg is independent from the choice of
the Vaisman metric. Indeed, if tere are two Vaisman structures with wg and
wp vanishing on differenc 1-dimensional complex foliations, the sum wg + wj
would be positive definite. However, [, wS'mCM vanishes, because wq is exact.
Since > = kerwg, 2 is independent from the Vaisman structure.

Proof of (3): For any compact subvariety X C M, the integral fzwg'mCM
vanishes, because wq is exact. Therefore, wg|r, has one zero eigenvalue

at each point of Z. This means precisely that > C T'Z at this point.

Proof of (4): Since the Lee field is tangent ot Z, the covering Z C C(S) is
preserved by the homotheties. Therefore it is also a conical Kahler manifold.
Then Z = Z/7 is Vaisman. =
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Regular Vaisman manifolds

DEFINITION: A Vaisman manifold M is called regular, if the leaves of
the fundamental foliation are orbits of the group (S1)?2 freely acting on M,
quasiregular if these leaves are compact, and irregular otherwise.

THEOREM: A Vaisman manifold is regular if and only if it is a smooth
elliptic fibration over a projective manifold, obtained as a quotient of a
total space of non-zero vectors in a positive bundle by the action of Z mapping
v to \v, with |A| > 1.

Proof. Step 1: Let M := C(S) be the corresponding conical Kihler manifold.
Clearly, the leaves of > are obtained from orbits of the Reeb field on S by the
Lee field acting on C(S) as a standard homothety. Therefore, S is regular.
Step 2: By structure theorem, M = C(S)/Z acting as ((x,t) — (¢(x),qt)),
where ¢ > 1, and ¢ is a Sasakian automorphism of X. The leaves of X
intersect with S by a union several copies of ST numbered by (¢). Regularity
of M implies that ¢ has finite order, and the corresponding group acts
freely on S.
Step 3: Now, S1 := S5/{yp) is a regular Sasakian manifold, hence it is a space
of unit vectors in a positive line bundle L over X := S1/ Reeb.
Step 4: By construction, X is the space of leaves of ¥, hence M is a C*-
fibration over X. m
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