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LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, dimCM > 1. Then M

is called locally conformally Kähler (LCK) if dω = ω∧ θ, where θ is a closed

1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kähler iff it admits a

Kähler form taking values in a positive, flat vector bundle L, called the weight

bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M̃ −→M

are elements of the group AutM(M̃). When M̃ is a universal cover, one

has AutM(M̃) = π1(M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-

versal cover M̃ is equipped with a Kähler form ω̃, and the deck transform acts

on M̃ by Kähler homotheties.

THEOREM: These three definitions are equivalent.
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Conical Kähler manifolds (reminder)

DEFINITION: Let (X, g) be a Riemannian manifold, and C(X) := X ×R>0,
with the metric t2g + dt2, where t is a coordinate on R>0. Then C(X) is
called Riemannian cone of X. Multiplicative group R>0 acts on C(X) by
homotheties, (m, t)−→ (m,λt).

DEFINITION: Let (X, g) be a Riemannian manifold, C(X) := X × R>0

its Riemannian cone, and hλ the homothety action. Assume that (X, g) is
equipped with a complex structure, in such a way that g is Kähler, and hλ
acts holomorphically. Then C(X) is called a conical Kähler manifold. In
this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic
structure on C(X), and hλ acting by homotheties. In particular, Sasakian
manifolds are contact. Sasakian geometry is an odd-dimensional coun-
terpart to Kähler geometry

EXAMPLE: Let L be a positive holomorphic line bundle on a projective
manifold. Then the total space of its unit S1-fibration is Sasakian.

S. Sasaki, ”On differentiable manifolds with certain structures which are closely related to

almost contact structure”, Tohoku Math. J. 2 (1960), 459-476.
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Contact manifolds (reminder)

All manifolds are assumed to be oriented here.

Definition 1: Let C(S) = (S × R>0) be a cone, equipped with the standard

action hλ(x, t) = (x, λt). Assume that C(S) is equipped with a symplectic

form ω such that h∗λω = λ2ω. Then S is called contact manifold.

Definition 2: Let S be an odd-dimensional manifold, and B ⊂ TS an ori-

ented sub-bundle of codimension 1, with Frobenius form Λ2B
Φ−→ TS/B

non-degenerate. Then S is called contact manifold, B ⊂ TS the contact

bundle.

Definition 3: Let S be manifold of dimension 2k + 1, B ⊂ TS an oriented

sub-bundle of codimension 1. Assume that for any nowhere vanishing 1-form

θ ∈ Λ1S, the form θ ∧ (dθ)k is a non-degenerate volume form. Then (S,B) is

called a contact manifold, and θ a contact form.

THEOREM: These three definitions are equivalent.
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Reeb field (reminder)

DEFINITION: A Sasakian manifold is a contact manifold S with a Rie-

mannian structure, such that the symplectic cone C(S) with its Riemannian

metric is Kähler.

DEFINITION: Let S be a Sasakian manifold, ω the Kähler form on C(S),

and r = t ddt the homothety vector field. Then LieIr t = 〈dt, Ir〉 = 0, hence

iR is tangent to S ⊂ C(S). This vector field (denoted by Reeb) is called the

Reeb field of a Sasakian manifold.

REMARK: The Reeb field is dual to the contact form θ = ωyr.

THEOREM: The Reeb field acts on a Sasakian manifold by contact

isometries.

DEFINITION: A Sasakian manifold is called regular if the Reeb field gen-

erates a free action of S1, quasiregular if all orbits of Reeb are closed, and

irregular otherwise.
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Examples of Sasakian manifolds.

Example: Let X ⊂ CPn be a complex submanifold, and CX ⊂ Cn+1\0 the
corresponding cone. The cone CX is obviously Kähler and homogeneous,
hence the intersection CX ∩ S2n−1 is Sasakian. This intersection is an S1-
bundle over X. This construction gives many interesting contact manifolds,
including Milnor’s exotic 7-spheres, which happen to be Sasakian.

REMARK: In other words, a link of a homogeneous singularity is always
Sasakian.

REMARK: Every quasiregular Sasakian manifold is obtained this way,
for some Kähler metric on Cn+1 (Ornea-V., arXiv:math/0609617 ).

REMARK: All 3-dimensional Sasakian manifolds are quasiregular (H. Geiges,
1997, F. Belgun, 2000).

REMARK: Every Sasakian manifold is diffeomorphic to a quasiregular
one (Ornea-V., arXiv:math/0306077).

REMARK: Every regular (quasiregular) Sasakian manifold is a total
space of an S1-bundle over a Kähler manifold (orbifold).
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Vaisman manifolds

EXAMPLE: For any given λ ∈ R>1, the quotient C(X)/hλ of a conical

Kähler manifold is locally conformally Kähler.

DEFINITION: An LCK manifold (M, g, ω, θ) is called Vaisman if ∇θ = 0,

where ∇ is the Levi-Civita connection associated with g.

THEOREM: Let M be a Vaisman manifold, M̃ its covering; the pullback of

the Lee form θ to M̃ is denoted by the same letter θ. Assume that dψ = θ on

M̃ (such ψ exists, for example, if M̃ is a universal cover of M). Consider the

form ω̃ := e−ψω. Then (M̃, ω̃) is a Kähler manifold, isometric to a cone.

Proof: From Lecture 3, we know that ω̃ is locally a conical Kähler metric.

Let θ] be the Lee field, dual to θ. Then Lieθ] ψ = 2ψ, hence the space of

orbits of etθ
]
-action is identified with S := ψ−1(c). This gives M̃ = C(S).

Now we shall prove a global version of this result.
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Structure theorem for Vaisman manifolds

THEOREM: Every Vaisman manifold is obtained as C(X)/Z, where X is

Sasakian, Z =

〈
(x, t) 7→ (ϕ(x), qt)

〉
, q > 1, and ϕ is a Sasakian automorphism

of X. Moreover, the triple (X,ϕ, q) is unique.

REMARK: This gives a Riemannian submersion M −→ S1 with Sasakian
fibers.

Proof. Step 1: Since θ] is parallel and Killing, M = X × R locally. Fix
x0 ∈M . Then the projection M = X × R to R is induced by x−→

∫
γx0,x

θ, for
γx0,x some path connecting x and x0. Therefore, M = X ×R whenever θ is
exact.

DEFINITION: A monodromy group Mon(M) of an LCK manifold M is
the smallest group Γ such that M = M̃/Γ and M̃ is Kähler.

REMARK: This is equivalent to the pullback of θ being exact.

REMARK: Monodromy group is an image of π1(M) in R>0 under a map
associating to any γ ∈ π1(M) ⊂ Aut(M̃) the number γ∗ω̃

ω̃ .
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The proof of Structure theorem for Vaisman manifolds

Proof. Step 2: Let γ1, ..., γk ∈ H1(M,Z) be generators of homology, and

αi
∫
γi
θ the corresponding periods. One has a map M −→ R/〈α1, ..., αk〉, with a

commutative diagram

M̃ −→ My y
R −→ R/〈α1, ..., αk〉

with vertical lines x−→
∫
γx0,x

θ. The Riemannian submersion to S1 will be

obtained if R/〈α1, ..., αk〉 = S1.

Step 3: Let G ⊂ π1(M) be the group generated by all γ ∈ π1(M) such that∫
γ θ = 0. Then Γ = π1(M)/G is the monodromy group of M. Therefore,

R/〈α1, ..., αk〉 = S1 ⇐⇒ Mon(M) = Z.
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Computation of the monodromy group of a Vaisman manifold

DEFINITION: Lee field on a Vaisman manifold is the vector field θ] dual

to the Lee form. Since locally a Vaisman manifold is a cone over Sasakian

(as shown in Lecture 3), θ] acts on M by holomorphic isometries, and on

M̃ by non-isometric homotheties.

The following theorem finishes the proof of Structure Theorem.

THEOREM: Let (M,ω, θ) be a compact LCK manifold, and X a vector field

acting on M by isometries and on M̃ by non-isometric homotheties. Then

Mon(M) = Z.

This theorem is proven later today.

REMARK: Let G be a group obtained as a closure of one-parametric group

etX, t ∈ R. Since X acts by isometries, G is a compact torus, G = (S1)k.
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Computation of the monodromy group, part 2

CLAIM: Let (M,ω, θ) be a compact LCK manifold, and X a vector field

acting on M by isometries and on M̃ by non-isometric homotheties. Let

G = (S1)k be the group obtained as a closure of one-parametric group etX,

t ∈ R. Consider the group G̃ of pairs f̃ ∈ Aut(M̃), f ∈ G, making the following

diagram commutative.

M̃
f̃−→ M̃

π

y yπ
M

f−→ M

Then G̃ ∼= (S1)k−1 × R.

REMARK: From this claim, the isomorphism Mon(M) = Z follows im-

mediately. Indeed, Mon(M) ⊂ ker p : G̃−→G.
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Computation of the monodromy group of a Vaisman manifold (part 2)

Proof of G̃ ∼= (S1)k−1 × R.

Step 1: G̃ is a covering of G, and the kernel of this projection is G̃ ∩
Mon(M).

Step 2: Let G̃0 ⊂ G̃ be a subgroup acting on M̃ by isometries. Since G̃

acts on M̃ by homotheties, G̃0 has codimension 1. Moreover, G̃0 cannot

intersect Mon(M) and it maps injectively to Aut(M) ∼= (S1)k.

Step 3: We obtain that G̃0
∼= (S1)k−1 (it’s codimension 1).

Step 4: Since G̃0 meets every component of G̃, it is connected. Therefore,

G̃ ∼= G̃0 × R ∼= (S1)k−1 × R.
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Kähler potentials and plurisubharmonic functions (reminder)

DEFINITION: A real-valued smooth function on a complex manifold is

called plurisubharmonic (psh) if the (1,1)-form ddcf is positive, and strictly

plurisubharmonic if ddcf is an Hermitian form.

REMARK: Since ddcf is always closed, it is also Kähler when it is strictly

positive.

DEFINITION: Let (M, I, ω) be a Kähler manifold. Kähler potential is a

function f such that ddcf = ω.

Theorem 1: Let S be a Sasakian manifold, C(S) = S × R>0 its cone, t the

coordinate along the second variable, and r = t ddt. Then t2 is a Kähler

potential on C(S). Moreover, the form ddc log t vanishes on 〈r, I(r)〉 and

the rest of its eigenvalues are positive.

Proof. Step 1: 2ω = Lier ω = d(Iθ) = d(tIdt) = ddc(t2) Therefore, t2 is a

Kähler potential.

Step 2: ddc log t2 = ω̃
t2
− dt∧Idt

t2
.

13



LCK manifolds, lecture 5 M. Verbitsky

The fundamental foliation

DEFINITION: Let M be a Vaisman manifold, θ] its Lee field, and Σ a 2-

dimensional real foliation generated by θ], Iθ]. It is called the fundamental

foliation of M . Clearly, Σ is tangent to orbits of the one-parametric group

of automorphisms of the covering M̃ generated by homotheties. Therefore,

Σ is a holomorphic foliaton.

THEOREM: Let M be a compact Vaisman manifold, and Σ ⊂ TM its

fundamental foliation. Then

1. Σ is independent from the choice of the Vaisman metric.

2. There exists a positive, exact (1,1)-form ω0 with Σ = kerω0.

3. For any complex subvariety Z ⊂M, Z is tangent to Σ.

4. For any compact complex subvariety Z ⊂ M, the set of smooth

points of Z is Vaisman.

Proof of (2): Let M̃ = C(X) be the conical Kähler manifold which covers

M , and ψ : M̃ −→ R the function satisfying dψ = θ. Then ω0 := ddcψ is

a pseudo-Hermitian form which vanishes on Σ and positive on TM/Σ

(Theorem 1). Also, ω0 = d(Iθ), hence this form is well defined on M .
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The fundamental foliation (proofs)

1. Σ is independent from the choice of the Vaisman metric.
2. There exists a positive, exact (1,1)-form ω0 with Σ = kerω0.
3. For any complex subvariety Z ⊂M, Z is tangent to Σ.
4. For any compact complex subvariety Z ⊂ M, the set of smooth

points of Z is Vaisman.

Proof of (1): The zero foliation of ω0 is independent from the choice of
the Vaisman metric. Indeed, if tere are two Vaisman structures with ω0 and
ω′0 vanishing on differenc 1-dimensional complex foliations, the sum ω0 + ω′0
would be positive definite. However,

∫
M ω

dimCM
0 vanishes, because ω0 is exact.

Since Σ = kerω0, Σ is independent from the Vaisman structure.

Proof of (3): For any compact subvariety X ⊂ M , the integral
∫
Z ω

dimCM
0

vanishes, because ω0 is exact. Therefore, ω0|TZ has one zero eigenvalue
at each point of Z. This means precisely that Σ ⊂ TZ at this point.

Proof of (4): Since the Lee field is tangent ot Z, the covering Z̃ ⊂ C(S) is
preserved by the homotheties. Therefore it is also a conical Kähler manifold.
Then Z = Z̃/Z is Vaisman.
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Regular Vaisman manifolds

DEFINITION: A Vaisman manifold M is called regular, if the leaves of
the fundamental foliation are orbits of the group (S1)2 freely acting on M ,
quasiregular if these leaves are compact, and irregular otherwise.

THEOREM: A Vaisman manifold is regular if and only if it is a smooth
elliptic fibration over a projective manifold, obtained as a quotient of a
total space of non-zero vectors in a positive bundle by the action of Z mapping
v to λv, with |λ| > 1.

Proof. Step 1: Let M̃ := C(S) be the corresponding conical Kähler manifold.
Clearly, the leaves of Σ are obtained from orbits of the Reeb field on S by the
Lee field acting on C(S) as a standard homothety. Therefore, S is regular.
Step 2: By structure theorem, M = C(S)/Z acting as 〈(x, t) 7→ (ϕ(x), qt)〉,
where q > 1, and ϕ is a Sasakian automorphism of X. The leaves of Σ
intersect with S by a union several copies of S1 numbered by 〈ϕ〉. Regularity
of M implies that ϕ has finite order, and the corresponding group acts
freely on S.
Step 3: Now, S1 := S/〈ϕ〉 is a regular Sasakian manifold, hence it is a space
of unit vectors in a positive line bundle L over X := S1/Reeb.
Step 4: By construction, X is the space of leaves of Σ, hence M̃ is a C∗-
fibration over X.
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