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LCK manifolds, lecture 6 M. Verbitsky

LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, dimCM > 1. Then M

is called locally conformally Kähler (LCK) if dω = ω∧ θ, where θ is a closed

1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kähler iff it admits a

Kähler form taking values in a positive, flat vector bundle L, called the weight

bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M̃ −→M

are elements of the group AutM(M̃). When M̃ is a universal cover, one

has AutM(M̃) = π1(M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-

versal cover M̃ is equipped with a Kähler form ω̃, and the deck transform acts

on M̃ by Kähler homotheties.

THEOREM: These three definitions are equivalent.
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Conical Kähler manifolds (reminder)

DEFINITION: Let (X, g) be a Riemannian manifold, and C(X) := X ×R>0,

with the metric t2g + dt2, where t is a coordinate on R>0. Then C(X) is

called Riemannian cone of X. Multiplicative group R>0 acts on C(X) by

homotheties, (m, t)−→ (m,λt).

DEFINITION: Let (X, g) be a Riemannian manifold, C(X) := X × R>0

its Riemannian cone, and hλ the homothety action. Assume that (X, g) is

equipped with a complex structure, in such a way that g is Kähler, and hλ
acts holomorphically. Then C(X) is called a conical Kähler manifold. In

this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic

structure on C(X), and hλ acting by homotheties. In particular, Sasakian

manifolds are contact. Sasakian geometry is an odd-dimensional coun-

terpart to Kähler geometry

EXAMPLE: Let L be a positive holomorphic line bundle on a projective

manifold. Then the total space of its unit S1-fibration is Sasakian.
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Contact manifolds (reminder)

All manifolds are assumed to be oriented here.

Definition 1: Let C(S) = (S × R>0) be a cone, equipped with the standard

action hλ(x, t) = (x, λt). Assume that C(S) is equipped with a symplectic

form ω such that h∗λω = λ2ω. Then S is called contact manifold.

Definition 2: Let S be an odd-dimensional manifold, and B ⊂ TS an ori-

ented sub-bundle of codimension 1, with Frobenius form Λ2B
Φ−→ TS/B

non-degenerate. Then S is called contact manifold, B ⊂ TS the contact

bundle.

Definition 3: Let S be manifold of dimension 2k + 1, B ⊂ TS an oriented

sub-bundle of codimension 1. Assume that for any nowhere vanishing 1-form

θ ∈ Λ1S, the form θ ∧ (dθ)k is a non-degenerate volume form. Then (S,B) is

called a contact manifold, and θ a contact form.

THEOREM: These three definitions are equivalent.
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Reeb field (reminder)

DEFINITION: A Sasakian manifold is a contact manifold S with a Rie-

mannian structure, such that the symplectic cone C(S) with its Riemannian

metric is Kähler.

DEFINITION: Let S be a Sasakian manifold, ω the Kähler form on C(S),

and r = t ddt the homothety vector field. Then LieIr t = 〈dt, Ir〉 = 0, hence

iR is tangent to S ⊂ C(S). This vector field (denoted by Reeb) is called the

Reeb field of a Sasakian manifold.

REMARK: The Reeb field is dual to the contact form θ = ωyr.

THEOREM: The Reeb field acts on a Sasakian manifold by contact

isometries.

DEFINITION: A Sasakian manifold is called regular if the Reeb field gen-

erates a free action of S1, quasiregular if all orbits of Reeb are closed, and

irregular otherwise.
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Vaisman manifolds (reminder)

EXAMPLE: For any given λ ∈ R>1, the quotient C(X)/hλ of a conical

Kähler manifold is locally conformally Kähler.

DEFINITION: An LCK manifold (M, g, ω, θ) is called Vaisman if ∇θ = 0,

where ∇ is the Levi-Civita connection associated with g.

THEOREM: Let M be a Vaisman manifold, M̃ its covering; the pullback of

the Lee form θ to M̃ is denoted by the same letter θ. Assume that dψ = θ on

M̃ (such ψ exists, for example, if M̃ is a universal cover of M). Consider the

form ω̃ := e−ψω. Then (M̃, ω̃) is a Kähler manifold, isometric to a cone.

THEOREM: Every Vaisman manifold is obtained as C(X)/Z, where X is

Sasakian, Z =

〈
(x, t) 7→ (ϕ(x), qt)

〉
, q > 1, and ϕ is a Sasakian automorphism

of X. Moreover, the triple (X,ϕ, q) is unique.
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Kähler potentials and plurisubharmonic functions (reminder)

DEFINITION: A real-valued smooth function on a complex manifold is

called plurisubharmonic (psh) if the (1,1)-form ddcf is positive, and strictly

plurisubharmonic if ddcf is an Hermitian form.

REMARK: Since ddcf is always closed, it is also Kähler when it is strictly

positive.

DEFINITION: Let (M, I, ω) be a Kähler manifold. Kähler potential is a

function f such that ddcf = ω.

THEOREM: Let S be a Sasakian manifold, C(S) = S × R>0 its cone, t the

coordinate along the second variable, and r = t ddt. Then t2 is a Kähler

potential on C(S). Moreover, the form ddc log t vanishes on 〈r, I(r)〉 and

the rest of its eigenvalues are positive.

Proof. Step 1: 2ω = Lier ω = d(Iθ) = d(tIdt) = ddc(t2) Therefore, t2 is a

Kähler potential.

Step 2: ddc log t2 = ω̃
t2
− dt∧Idt

t2
.
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The fundamental foliation

DEFINITION: Let M be a Vaisman manifold, θ] its Lee field, and Σ a 2-

dimensional real foliation generated by θ], Iθ]. It is called the fundamental

foliation of M . Clearly, Σ is tangent to orbits of the one-parametric group

of automorphisms of the covering M̃ generated by homotheties. Therefore,

Σ is a holomorphic foliaton.

THEOREM: Let M be a compact Vaisman manifold, and Σ ⊂ TM its

fundamental foliation. Then

1. Σ is independent from the choice of the Vaisman metric.

2. There exists a positive, exact (1,1)-form ω0 with Σ = kerω0.

3. For any complex subvariety Z ⊂M, Z is tangent to Σ.

4. For any compact complex subvariety Z ⊂ M, the set of smooth

points of Z is Vaisman.

Proof of (2): Let M̃ = C(X) be the conical Kähler manifold which covers

M , and ψ : M̃ −→ R the function satisfying dψ = θ. Then ω0 := ddcψ is

a pseudo-Hermitian form which vanishes on Σ and positive on TM/Σ

(Theorem 1). Also, ω0 = d(Iθ), hence this form is well defined on M .
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The fundamental foliation (proofs)

1. Σ is independent from the choice of the Vaisman metric.
2. There exists a positive, exact (1,1)-form ω0 with Σ = kerω0.
3. For any complex subvariety Z ⊂M, Z is tangent to Σ.
4. For any compact complex subvariety Z ⊂ M, the set of smooth

points of Z is Vaisman.

Proof of (1): The zero foliation of ω0 is independent from the choice of
the Vaisman metric. Indeed, if tere are two Vaisman structures with ω0 and
ω′0 vanishing on differenc 1-dimensional complex foliations, the sum ω0 + ω′0
would be positive definite. However,

∫
M ω

dimCM
0 vanishes, because ω0 is exact.

Since Σ = kerω0, Σ is independent from the Vaisman structure.

Proof of (3): For any compact subvariety X ⊂ M , the integral
∫
Z ω

dimCM
0

vanishes, because ω0 is exact. Therefore, ω0|TZ has one zero eigenvalue
at each point of Z. This means precisely that Σ ⊂ TZ at this point.

Proof of (4): Since the Lee field is tangent ot Z, the covering Z̃ ⊂ C(S) is
preserved by the homotheties. Therefore it is also a conical Kähler manifold.
Then Z = Z̃/Z is Vaisman.
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Regular Vaisman manifolds

DEFINITION: A Vaisman manifold M is called regular, if the leaves of
the fundamental foliation are orbits of the group (S1)2 freely acting on M ,
quasiregular if these leaves are compact, and irregular otherwise.

THEOREM: A Vaisman manifold is regular if and only if it is a smooth
elliptic fibration over a projective manifold, obtained as a quotient of a
total space of non-zero vectors in a positive bundle by the action of Z mapping
v to λv, with |λ| > 1.

Proof. Step 1: Let M̃ := C(S) be the corresponding conical Kähler manifold.
Clearly, the leaves of Σ are obtained from orbits of the Reeb field on S by the
Lee field acting on C(S) as a standard homothety. Therefore, S is regular.
Step 2: By structure theorem, M = C(S)/Z acting as 〈(x, t) 7→ (ϕ(x), qt)〉,
where q > 1, and ϕ is a Sasakian automorphism of X. The leaves of Σ
intersect with S by a union several copies of S1 numbered by 〈ϕ〉. Regularity
of M implies that ϕ has finite order, and the corresponding group acts
freely on S.
Step 3: Now, S1 := S/〈ϕ〉 is a regular Sasakian manifold, hence it is a space
of unit vectors in a positive line bundle L over X := S1/Reeb.
Step 4: By construction, X is the space of leaves of Σ, hence M̃ is a C∗-
fibration over X.
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Orbispaces

DEFINITION: Groupoid is a category with all morphisms invertible.

DEFINITION: An action of a group on a manifold is rigid if the set of points

with trivial stabilizer is dense.

DEFINITION: An orbispace is a topological space M , equipped with a

structure of a groupoid (the points of M are objects of the groupoid category),

a covering {Ui}, and continuous maps ϕi : Vi −→ Ui, where each Vi is equipped

with a rigid action of a finite group Gi, satisfying the following properties.

1. ϕi : Vi −→ Vi/Gi = Ui is the quotient map.

2. For each x ∈M and Ui 3 x, the group Mor(x, x) is equal to the stabilizer

of x in Gi.

REMARK: An orbispace is a topological space, locally obtained as a quotient,

with the quotient structure remembered via the groupoid structure.
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Orbifolds

DEFINITION: An orbifold is an orbispace (M, {ϕi : Vi −→ Vi/Gi = Ui}),

where all Vi are diffeomorphic to open balls in Rn.

EXAMPLE: Let M = CP1/((x, y) ∼ (x,−y)). This quotient is homeo-

morphic to CP1. However, it is a different orbifold if we consider the

covering induced from CP1/G, G = {±1} and the groupoid structure where

Mor(x, x) = StG(x).

DEFINITION: A smooth orbifold is an orbifold M equipped with a sheaf

of functions C∞M in such a way that for each Ui = Vi/Gi, the corresponding

ring of sections C∞Ui is identified with a ring of Gi-invariant smooth functions

on Vi.

DEFINITION: A Riemannian metric on a smooth orbifold is a Gi-invariant

metric on each Vi, compatible with the gluing maps.
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Complex orbifolds

DEFINITION: A complex orbifold is an orbifold M equipped with a sheaf

of functions OM in such a way that each Vi is an open ball in Cn, and for each

Ui = Vi/Gi, the corresponding ring of sections OUi is identified with a ring of

Gi-invariant holomorphic functions on Vi.

DEFINITION: An underlying complex variety of a complex orbifold is a

complex variety with the topological space M and the structure sheaf OM .

EXAMPLE: Let C∗ act on Cn as

ht(x1, ..., xn) = (ta1x1, t
a2x2, ..., t

anxn).

The quotient (Cn\0)/C∗ is called weighted projective space, and denoted

CPn−1(a1, ..., an).

EXERCISE: Prove that it is an orbifold.
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Projective orbifolds

DEFINITION: A projective orbifold is a complex orbifold with the under-

lying complex variety projective.

DEFINITION: A holomorphic vector bundle on a complex orbifold is a

Gi-equivariant vector bundle on each Vi, equipped with the Gi-invariant gluing

maps satisfying cocycle condition.

THEOREM: (Baily)

Let M be a compact complex orbifold equipped with a holomorphic Hermitian

vector bundle L. Assume that the curvature of L is positive definite on all Vi
(in this case L is called positive). Then M is projective.

W. L. Baily, On the imbedding of V-manifolds in projective spaces, Amer. J. Math. 79

(1957), 403-430.
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Quotients of torus action

THEOREM: Let Tn be a compact torus acting on a manifold M with all

orbits of the same dimension. Then M/Tn is an orbifold.

The proof is futher in these slides.

LEMMA: The set of compact subgroups of Tn is countable.

LEMMA: Let M be a topological space with continuous action of Tn, and

St(x) the stabilizer of x ∈M in Tn. Then the map x−→ St(x) is semicon-

tinuous: for any sequence {xi} ⊂ M , limi xi = x, one has St(x) ⊃ limiSt(xi),

where limiSt(xi) is the set of all limit points of the sequences {ti},
ti ∈ St(xi).

PROPOSITION: For any sequence of compact subgroup of a torus

Ti ⊂ Tn, the limit limi Ti contains all Ti, except a finite number.

EXERCISE: Prove this!
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Subgroups of a torus

PROPOSITION: For any sequence of compact subgroup of a torus

Ti ⊂ Tn, the limit limi Ti contains all Ti, except a finite number.

Proof. Step 1: LEMMA:

Let X,Y be subsets of a metric space, and δ(X,Y ) := supx∈X d(x, Y ). Fix

a flat Riemannian metric on a compact torus Tn. Then for any compact

subgroup G ⊂ Tn there exists a positive number ε(G) such that δ(G1, G) >

ε(G) unless G1 ⊂ G.

To see this, take ε(G) = 2
3R, where R is a metric diameter of a smallest circle

in the decomposition Tn/G = (S1)k, where Tn/G is considered with a flat

metric induced from Tn. Then δ(G1, G) 6 δ(0, G1/(G1 ∩G)) 6 ε(G).

Step 2: Each Ti is a closure of a set {αi,2αi,3αi, ...}, where αi is a sufficiently

general point in Ti. Then T∞ := limi Ti is the set of all limit points of {nαm},
n,m ∈ Z>0. Therefore, for all n,m, except finitely many, d(nαm, T∞) < ε(T∞),

giving δ(Tm, T∞) < ε(T∞) and Tm ⊂ T∞.
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Stratification associated with a torus action

COROLLARY: Let Tn be a compact torus acting on a topological space.

Consider a function x
ψ−→ St(x). Then there exist a stratification of M

by closed strata Mi such that Ψ is constant on a complement of Mi by

smaller strata, and Ψ(Mi) ⊃ Ψ(Mj) whenever Mj ⊃Mi.

Proof: Consider the set A of all compact subgroups of Tn, and let Mα :=

{x ∈M | Ψ(x) ⊃ α}, where α ∈ A. By semicontinuity, Mα is closed for each

α. Relation Ψ(Mi) ⊃ Ψ(Mj) for smaller strata follows from the proposition

above.
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Quotient orbifolds

THEOREM: Let Let G = Tn be a torus acting on a complex manifold G

by biholomorphic maps, and Mi the corresponding stratification. Let H0 :=

St(x), where x is a general point of a maximal stratum. Then the quotient

M/G is an orbifold, and for each x ∈ M/G, the corresponding group

Mor(x, x) is equal to St(x)/H0.

Proof. Step 1: All orbits of G are smooth. Indeed, the Zariski tangent space

to an orbit has constant dimension, because it is a quotient of the Lie algebra

of G by Lie(H0), and a variety with Zariski tangent space of constant

dimension is smooth.

Step 2: Define a section of an action of G at x ∈M as a smooth submanifold

S 3 x defined locally in some neighbourhood of x, transversal to the orbit G ·x
and having complementary dimension. Clearly, a section exists at each

x ∈M.
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Quotient orbifolds (cont.)

THEOREM: Let Let G = Tn be a torus acting on a complex manifold G

by biholomorphic maps, and Mi the corresponding stratification. Let H0 :=

St(x), where x is a general point of a maximal stratum. Then the quotient

M/G is an orbifold, and for each x ∈ M/G, the corresponding group

Mor(x, x) is equal to St(x)/H0.

Step 3: A section at x can be always chosen St(x)-invariant. To see

that, chose a G-invariant metric, let W ⊂ TxM be an orthogonal complement

of the tangent space to G ·x, and S the union of all geodesics passing through

x and tangent to W ,

Step 4: Let Hx := St(x). Take a tubular neighbourgood U of an orbit G · x
given by

U :=
⋃

g∈G/Hx
gS.

For S sufficiently small, this gives a decomposition U = S×(G/Hx). Therefore,

S ∩ gS = ∅ for all g /∈ Hx. This implies that the map S −→M is a finite

quotient map, with M locally isomorphic to S/(Hx/H0).
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Sasakian and Vaisman manifolds and their projective orbifolds

COROLLARY: Let M be a quasiregilar Vaisman manifold, Σ its fundamental

foliation, and M/Σ the quotient space. Them X := M/Σ is a projective

orbifold.

Proof: X is an orbifold as proven above. Since it is a quotient of a complex

space by a complex group action, X is a complex orbifold. By construction,

the corresponding conical Kähler manifold M̃ is a total space of C∗-bundle

L (in the orbifold sense). The standard local argument implies that the

curvature of L gives a Kähler orbifold metric on X. Baily’s theorem implies

that X is projective.

COROLLARY: Let S be a quasiregular Sasakian manifold, and Reeb its Reeb

field. Then X := S/Reeb is a projective orbifold, and S is a total space of

U(1)-bundle over X associated with a positive holomorphic line bundle.

Proof: S × S1 is Vaisman, and the corresponding fundamental foliation is

TS1 × Reeb.
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Conical Kähler structures and homotheties

Proposition 1: Let (M,ω) be a conical Kähler manifold, and X a vector field

acting on M by holomorphic, non-isometric homotheties, such that IX also

acts by homotheties, and etX is defined for any real t. Then

(a) ddcϕ = ω, where ϕ = |X|2.

(b) Let SX := ϕ−1(1). Then SX is Sasakian,

and M is isometric to C(SX).

(c) SX is quasiregular if and only if the action of X integrates to a

holomorphic C∗-action.

Proof. Step 1: Since X, IX act by homotheties, one has a character

χ : 〈X, IX〉 −→ R such that LieZ ω = χ(Z)ω. Replacing X by some linear

combination of X, IX if necessary, we may assume that IX acts by

isometries. Rescaling, we may assume that LieX g = 2g.

Step 2: Define X[ := g(X, ·) (“the dual 1-form”). Then dX[ = LieIX ω = 0

and 2X[ = LieX(X[) = d〈X,X[〉 = d|X|2.

Step 3: LieX ω = 2ω, which gives 2ω = d(ωyX) = d(IX[) = 2dId|x|2 (last

equation is proven in Step 2). This proves Proposition 1 (a).
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Conical Kähler structures and homotheties (cont.)

Proposition 1: Let (M,ω) be a conical Kähler manifold, and X a vector field

acting on M by holomorphic, non-isometric homotheties, such that IX also

acts by homotheties, and etX is defined for any real t. Then

(a) ddcϕ = ω, where ϕ = |X|2.

(b) Let SX := ϕ−1(1). Then SX is Sasakian,

and M is isometric to C(SX).

(c) SX is quasiregular if and only if the action of X integrates to a

holomorphic C∗-action.

Step 4: Let M −→ SX map m to an intersection of etXm and SX. This gives

a decomposition M = SX × R>0, compatible with the conical metric on

SX ×R>0 = C(SX), as shown in the last lecture using the Vaisman manifolds

local decomposition into a product.

Step 5: Let C be the group generated by etX , etIX. Clearly, C = R>0×{etIX}.
The Reeb orbits on SX are orbits of etIX, hence they are compact if and

only if {etIX} is compact, equivalently, iff C = C∗.
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Conical Kähler structures and C∗-action

REMARK: For each holomorphic isometry h of a Vaisman manifold, h lifts
to a conformal automorphism of its Kähler covering. However, a conformal
automorphism of a Kähler manifold is a homothety, because d(fω) =
df ∧ ω, and this may vanish only when df = 0.

Theorem 1: Let C(S) be a conical Kähler manifold, ht the corresponding
homothety action, and X its vector field. Then there exists a vector field
X1 arbitrarily close to X acting on C(S) by holomorphic homotheties, with
IX1 also acting by homotheties, such that the action of X1 integrates to
C∗-action on C(S).

Proof: Fix some λ > 1, and let M := C(S)/hλ be the corresponding Vaisman
manifold, where ht acts isometrically. Consider the Lie group G ⊂ Iso(M)
obtained as the closure of {ht}. For each vector field X1 ∈ Lie(G), X1 acts
on M by holomorphic isometries, hence it acts on C(S) by homotheties;
non-isometrically when X1 is sufficiently close to X.

Choosing X ′ ∈ Lie(G) rational and sufficiently close to X, we obtain an
isometry of M which integrates to a T2-action on M and to non-isometric
C∗-action on its cone.

REMARK: By Proposition 1, his gives a new cone structure on C(S).
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Density of quasiregular Vaisman manifolds

COROLLARY: Let C(S) be a conical Kähler manifold, with S compact.

Then C(S) is holomorphically isometric to a total space of non-zero

sections of a positive line bundle over a projective orbifold.

COROLLARY: Any compact Vaisman manifold (M, I) admits a defor-

mation (M, I ′) which is quasi-regular. Moreover, I ′ can be chosen arbitrarily

close to I.

Proof: Take the conical Kähler manifold C(S), and replace the homothety

vector field X by a quasiregular one X ′. Then take a quotient C(S)/Z by Z
acting as eλX

′
.

COROLLARY: Any compact Sasakian manifold (M, I) admits a defor-

mation (M, I ′) which is quasi-regular. Moreover, I ′ can be chosen arbitrarily

close to I.
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