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L. CK manifolds, lecture 6 M. Verbitsky

LCK manifolds (reminder)

DEFINITION: Let (M, I,w) be a Hermitian manifold, dim¢ M > 1. Then M
is called locally conformally Kahler (LCK) if dw = w A8, where 6 is a closed
1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kahler iff it admits a
Kahler form taking values in a positive, flat vector bundle L, called the weight
bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M — M
are elements of the group Auty/(M). When M is a universal cover, one
has Aut,;(M) = 1 (M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-
versal cover M is equipped with a Kidhler form &, and the deck transform acts
on M by Kihler homotheties.

THEOREM: These three definitions are equivalent.
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Conical Kahler manifolds (reminder)

DEFINITION: Let (X,g) be a Riemannian manifold, and C(X) := X x R>0,
with the metric t2g 4 dt2, where t is a coordinate on R>9. Then C(X) is
called Riemannian cone of X. Multiplicative group R>° acts on C(X) by
homotheties, (m,t) — (m, A\t).

DEFINITION: Let (X,g) be a Riemannian manifold, C(X) := X x R>0
its Riemannian cone, and h, the homothety action. Assume that (X, g) is
equipped with a complex structure, in such a way that g is Kahler, and h
acts holomorphically. Then C(X) is called a conical Kahler manifold. In
this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic
structure on C(X), and hy, acting by homotheties. In particular, Sasakian
manifolds are contact. Sasakian geometry is an odd-dimensional coun-
terpart to Kahler geometry

EXAMPLE: Let L be a positive holomorphic line bundle on a projective
manifold. Then the total space of its unit Sl_fibration is Sasakian.
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Contact manifolds (reminder)
All manifolds are assumed to be oriented here.

Definition 1: Let C(S) = (S x R”0) be a cone, equipped with the standard
action hy(z,t) = (z,At). Assume that C(S) is equipped with a symplectic
form w such that hjw — \2w. Then S is called contact manifold.

Definition 2: Let S be an odd-dimensional manifold, and B C T'S an ori-
ented sub-bundle of codimension 1, with Frobenius form A2B i> TS/B
non-degenerate. Then S is called contact manifold, B C T'S the contact

bundle.

Definition 3: Let S be manifold of dimension 2k + 1, B C T'S an oriented
sub-bundle of codimension 1. Assume that for any nowhere vanishing 1-form
6 € ALS, the form 6 A (d9)* is a non-degenerate volume form. Then (S, B) is
called a contact manifold, and 6 a contact form.

THEOREM: These three definitions are equivalent.
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Reeb field (reminder)

DEFINITION: A Sasakian manifold is a contact manifold S with a Rie-
mannian structure, such that the symplectic cone C(S) with its Riemannian
metric is Kahler.

DEFINITION: Let S be a Sasakian manifold, w the Kahler form on C(S),
and r = t% the homothety vector field. Then Liej,.t = (dt,Ir) = 0, hence
iR is tangent to S C C(S). This vector field (denoted by Reeb) is called the
Reeb field of a Sasakian manifold.

REMARK: The Reeb field is dual to the contact form 0 = wur.

THEOREM: The Reeb field acts on a Sasakian manifold by contact
iIsometries.

DEFINITION: A Sasakian manifold is called regular if the Reeb field gen-
erates a free action of Sl, quasiregular if all orbits of Reeb are closed, and
irregular otherwise.
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Vaisman manifolds (reminder)

EXAMPLE: For any given A € R>!, the quotient C(X)/h, of a conical
Kahler manifold is locally conformally Kahler.

DEFINITION: An LCK manifold (M, g,w,0) is called Vaisman if V6 = 0,
where V is the Levi-Civita connection associated with g.

THEOREM: Let M be a Vaisman manifold, M its covering: the pullback of
the Lee form 0 to M is denoted by the same letter §. Assume that diy = 6 on
M (such 1 exists, for example, if M is a universal cover of M). Consider the
form & ;= e %w. Then (M,) is a Kahler manifold, isometric to a cone.

THEOREM: Every Vaisman manifold is obtained as C(X)/Z, where X is
Sasakian, Z = <(:L',t) —> (go(:v),qt)>, g > 1, and ¢ is a Sasakian automorphism

of X. Moreover, the triple (X, ¢, q) is unique.
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Kahler potentials and plurisubharmonic functions (reminder)

DEFINITION: A real-valued smooth function on a complex manifold is
called plurisubharmonic (psh) if the (1,1)-form dd°¢f is positive, and strictly
plurisubharmonic if dd°f is an Hermitian form.

REMARK: Since dd°f is always closed, it is also Kahler when it is strictly
positive.

DEFINITION: Let (M,I,w) be a Kahler manifold. Kahler potential is a
function f such that dd“f = w.

THEOREM: Let S be a Sasakian manifold, C(S) = S x R>0 its cone, t the
coordinate along the second variable, and r = t%. Then t? is a Kahler
potential on C(S). Moreover, the form dd°logt vanishes on (r, I(r)) and
the rest of its eigenvalues are positive.

Proof. Step 1: 2w = Lie,w = d(I0) = d(tIdt) = dd°(t?) Therefore, t2 is a
Kahler potential.

Step 2: dd°logt? = i — 470l
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The fundamental foliation

DEFINITION: Let M be a Vaisman manifold, 0t its Lee field, and > a 2-
dimensional real foliation generated by 6% 16%. It is called the fundamental
foliation of M. Clearly, > is tangent to orbits of the one-parametric group
of automorphisms of the covering M generated by homotheties. Therefore,
> IS a holomorphic foliaton.

THEOREM: Let M be a compact Vaisman manifold, and > C TM its
fundamental foliation. Then

1. > is independent from the choice of the Vaisman metric.

2. There exists a positive, exact (1,1)-form wg with X = ker wg.

3. For any complex subvariety Z C M, Z is tangent to >..

4. For any compact complex subvariety Z C M, the set of smooth
points of Z is Vaisman.

Proof of (2): Let M = C(X) be the conical Kahler manifold which covers
M, and v : M — R the function satisfying diy = 6. Then wg := ddy is
a pseudo-Hermitian form which vanishes on > and positive on TM/*
(Theorem 1). Also, wg = d(I0), hence this form is well defined on M.
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The fundamental foliation (proofs)

1. > is independent from the choice of the Vaisman metric.

2. There exists a positive, exact (1,1)-form wg with X = ker wg.

3. For any complex subvariety Z C M, Z is tangent to >.

4. For any compact complex subvariety Z C M, the set of smooth
points of Z is Vaisman.

Proof of (1): The zero foliation of wqg is independent from the choice of
the Vaisman metric. Indeed, if tere are two Vaisman structures with wg and
wp vanishing on differenc 1-dimensional complex foliations, the sum wg + wj
would be positive definite. However, [, wS'mCM vanishes, because wq is exact.
Since > = kerwg, 2 is independent from the Vaisman structure.

Proof of (3): For any compact subvariety X C M, the integral fzwg'mCM
vanishes, because wq is exact. Therefore, wg|r, has one zero eigenvalue

at each point of Z. This means precisely that > C T'Z at this point.

Proof of (4): Since the Lee field is tangent ot Z, the covering Z C C(S) is
preserved by the homotheties. Therefore it is also a conical Kahler manifold.
Then Z = Z/7 is Vaisman. =
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Regular Vaisman manifolds

DEFINITION: A Vaisman manifold M is called regular, if the leaves of
the fundamental foliation are orbits of the group (S1)?2 freely acting on M,
quasiregular if these leaves are compact, and irregular otherwise.

THEOREM: A Vaisman manifold is regular if and only if it is a smooth
elliptic fibration over a projective manifold, obtained as a quotient of a
total space of non-zero vectors in a positive bundle by the action of Z mapping
v to \v, with |A| > 1.

Proof. Step 1: Let M := C(S) be the corresponding conical Kihler manifold.
Clearly, the leaves of > are obtained from orbits of the Reeb field on S by the
Lee field acting on C(S) as a standard homothety. Therefore, S is regular.
Step 2: By structure theorem, M = C(S)/Z acting as ((x,t) — (¢(x),qt)),
where ¢ > 1, and ¢ is a Sasakian automorphism of X. The leaves of X
intersect with S by a union several copies of ST numbered by (¢). Regularity
of M implies that ¢ has finite order, and the corresponding group acts
freely on S.
Step 3: Now, S1 := S5/{yp) is a regular Sasakian manifold, hence it is a space
of unit vectors in a positive line bundle L over X := S1/ Reeb.
Step 4: By construction, X is the space of leaves of ¥, hence M is a C*-
fibration over X. m
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Orbispaces
DEFINITION: Groupoid is a category with all morphisms invertible.

DEFINITION: An action of a group on a manifold is rigid if the set of points
with trivial stabilizer is dense.

DEFINITION: An orbispace is a topological space M, equipped with a
structure of a groupoid (the points of M are objects of the groupoid category),
a covering {U;}, and continuous maps ¢; : V; — U;, where each Vj is equipped
with a rigid action of a finite group G;, satisfying the following properties.

1. ;1 V;, — V;/G; = U; is the quotient map.

2. For each x € M and U; > z, the group Mor(z, z) is equal to the stabilizer
of x in Gi-

REMARK: An orbispace is a topological space, locally obtained as a quotient,
with the quotient structure remembered via the groupoid structure.
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Orbifolds

DEFINITION: An orbifold is an orbispace (M,{y; : V,—V;/G; = U;}),
where all V; are diffeomorphic to open balls in R™.

EXAMPLE: Let M = CP!/((z,y) ~ (z,—y)). This quotient is homeo-
morphic to CPl. However, it is a different orbifold if we consider the
covering induced from CP1/G, G = {£1} and the groupoid structure where
Mor(x,xz) = Sta(x).

DEFINITION: A smooth orbifold is an orbifold M equipped with a sheaf
of functions C*°M in such a way that for each U; = V;/G;, the corresponding
ring of sections C°°U;, is identified with a ring of G;-invariant smooth functions
on V.

DEFINITION: A Riemannian metric on a smooth orbifold is a G;-invariant
metric on each V;, compatible with the gluing maps.
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Complex orbifolds

DEFINITION: A complex orbifold is an orbifold M equipped with a sheaf
of functions O, in such a way that each V; is an open ball in C", and for each
U; = V;/G;, the corresponding ring of sections Oy, is identified with a ring of
G;-invariant holomorphic functions on Vj.

DEFINITION: An underlying complex variety of a complex orbifold is a
complex variety with the topological space M and the structure sheaf O,.

EXAMPLE: Let C* act on C" as

hi(x1,....,7n) = (" x1,t%2x0, ..., t""2)p).

The quotient (C™\0)/C* is called weighted projective space, and denoted
CP" 1(aq,...,an).

EXERCISE: Prove that it is an orbifold.
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Projective orbifolds

DEFINITION: A projective orbifold is a complex orbifold with the under-
lying complex variety projective.

DEFINITION: A holomorphic vector bundle on a complex orbifold is a
G;-equivariant vector bundle on each V;, equipped with the G;-invariant gluing
maps satisfying cocycle condition.

THEOREM: (Baily)

Let M be a compact complex orbifold equipped with a holomorphic Hermitian
vector bundle L. Assume that the curvature of L is positive definite on all V;
(in this case L is called positive). Then M is projective.

W. L. Baily, On the imbedding of V-manifolds in projective spaces, Amer. J. Math. 79
(1957), 403-430.
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Quotients of torus action

THEOREM: Let T™ be a compact torus acting on a manifold M with all
orbits of the same dimension. Then M/T" is an orbifold.

The proof is futher in these slides.
LEMMA: The set of compact subgroups of 7" is countable. =

LEMMA: Let M be a topological space with continuous action of T", and
St(x) the stabilizer of x € M in T". Then the map x — St(x) is semicon-
tinuous: for any sequence {z;} C M, lim;z; = x, one has St(z) D lim; St(z;),
where lim;St(x;) is the set of all limit points of the sequences {¢;},
t; € St(x;). m

PROPOSITION: For any sequence of compact subgroup of a torus
T; CT™, the limit lim;T; contains all T;, except a finite number.

EXERCISE: Prove this!
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Subgroups of a torus

PROPOSITION: For any sequence of compact subgroup of a torus
T; CT", the limit lim;T; contains all T;, except a finite number.

Proof. Step 1: LEMMA:

Let X,Y be subsets of a metric space, and 6(X,Y) := supgecx d(z,Y). Fix
a flat Riemannian metric on a compact torus T". Then for any compact
subgroup G C T" there exists a positive number (G) such that 6(G1,G) >
e(G) unless G1 C G.

To see this, take e(G) = %R, where R is a metric diameter of a smallest circle
in the decomposition T7%/G = (S1)*, where T"/G is considered with a flat
metric induced from T™. Then §(G1,G) < 6(0,G1/(G1NG)) < e(G).

Step 2: Each T; is a closure of a set {«a;, 2, 3¢, ...}, where «; is a sufficiently
general point in T;. Then T :=1lim; T; is the set of all limit points of {nam},
n,m € Z>9. Therefore, for all n,m, except finitely many, d(nam, Teo) < £(Tso),
giving 6(Tm, T) < e(Ts0) and Ty, C Too. W
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Stratification associated with a torus action

COROLLARY: Let T™ be a compact torus acting on a topological space.
Consider a function x i> St(x). Then there exist a stratification of M
by closed strata M; such that W is constant on a complement of M, by
smaller strata, and W(M;) D W(M,;) whenever M; > M,;.

Proof: Consider the set 2 of all compact subgroups of T", and let M, =
{xe M | W(x)D a}l, where a € 2. By semicontinuity, M, is closed for each
a. Relation W(M;) D W(M;) for smaller strata follows from the proposition
above. m
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Quotient orbifolds

THEOREM: Let Let G = T"™ be a torus acting on a complex manifold G
by biholomorphic maps, and M, the corresponding stratification. Let Hp :=
St(x), where z is a general point of a maximal stratum. Then the quotient
M/G is an orbifold, and for each x € M/G, the corresponding group
Mor(x,z) is equal to St(x)/Hp.

Proof. Step 1: All orbits of G are smooth. Indeed, the Zariski tangent space
to an orbit has constant dimension, because it is a quotient of the Lie algebra
of G by Lie(Hp), and a variety with Zariski tangent space of constant
dimension is smooth.

Step 2: Define a section of an action of G at x € M as a smooth submanifold
S > x defined locally in some neighbourhood of x, transversal to the orbit G-z
and having complementary dimension. Clearly, a section exists at each
x € M.
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Quotient orbifolds (cont.)

THEOREM: Let Let G = T"™ be a torus acting on a complex manifold G
by biholomorphic maps, and M,; the corresponding stratification. Let Hgy :=
St(x), where z is a general point of a maximal stratum. Then the quotient
M/G is an orbifold, and for each x € M/G, the corresponding group
Mor(x,x) is equal to St(x)/Hp.

Step 3: A section at x can be always chosen St(z)-invariant. To see
that, chose a G-invariant metric, let W C 1, M be an orthogonal complement
of the tangent space to G-z, and S the union of all geodesics passing through
x and tangent to W,

Step 4: Let Hy := St(x). Take a tubular neighbourgood U of an orbit G -z
given by
U .= U gs.
geG/Hy
For S sufficiently small, this gives a decomposition U = Sx(G/H;). Therefore,
SngS =0 for all g ¢ Hy. This implies that the map S— M is a finite
quotient map, with M locally isomorphic to S/(H;/Hg). m
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Sasakian and Vaisman manifolds and their projective orbifolds

COROLLARY: Let M be a quasiregilar Vaisman manifold, > its fundamental
foliation, and M /3> the quotient space. Them X := M/> is a projective
orbifold.

Proof: X is an orbifold as proven above. Since it is a quotient of a complex
space by a complex group action, X is a complex orbifold. By construction,
the corresponding conical Kihler manifold M is a total space of C*-bundle
L (in the orbifold sense). The standard local argument implies that the
curvature of L gives a Kahler orbifold metric on X. Baily's theorem implies
that X is projective. =

COROLLARY: Let S be a quasiregular Sasakian manifold, and Reeb its Reeb
field. Then X := S/Reeb is a projective orbifold, and S is a total space of
U(1)-bundle over X associated with a positive holomorphic line bundle.

Proof: S x St is Vaisman, and the corresponding fundamental foliation is
TS! x Reeb. m
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Conical Kahler structures and homotheties

Proposition 1: Let (M,w) be a conical Kahler manifold, and X a vector field
acting on M by holomorphic, non-isometric homotheties, such that I.X also
acts by homotheties, and etX is defined for any real t. Then

(a) dd°p = w, where ¢ = |X|2.

(b) Let Sy := ¢ 1(1). Then Sy is Sasakian,
and M is isometric to C(Sy).

(c) Sy is quasiregular if and only if the action of X integrates to a
holomorphic C*-action.

Proof. Step 1: Since X, IX act by homotheties, one has a character
x . (X,IX) — R such that Lieyw = x(Z)w. Replacing X by some linear
combination of X,/X if necessary, we may assume that /X acts by
iIsometries. Rescaling, we may assume that Lieyxy g = 2g.

Step 2: Define X? := g(X,-) (“the dual 1-form”). Then dX” = Lie;xyw = 0
and 2X° = Liex(X’) = d(X, X°) = d| X|2.

Step 3: Lieyw = 2w, which gives 2w = d(wiX) = d(IX") = 2dId|z|? (last
equation is proven in Step 2). This proves Proposition 1 (a).
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Conical Kahler structures and homotheties (cont.)

Proposition 1: Let (M,w) be a conical Kahler manifold, and X a vector field
acting on M by holomorphic, non-isometric homotheties, such that I.X also
acts by homotheties, and etX is defined for any real t. Then

(a) dd°p = w, where ¢ = |X|2.

(b) Let Sy := ¢~ 1(1). Then Sy is Sasakian,
and M is isometric to C(Sy).

(c) Sx is quasiregular if and only if the action of X integrates to a
holomorphic C*-action.

Step 4: Let M — Sy map m to an intersection of e**m and Syx. This gives
a decomposition M = Sy x R~9, compatible with the conical metric on
Sy x R0 = C(Syx), as shown in the last lecture using the Vaisman manifolds
local decomposition into a product.

Step 5: Let C be the group generated by et*, !X Clearly, C = R>0 x {e!!X}.
The Reeb orbits on Sy are orbits of ¢//X, hence they are compact if and
only if {¢//X} is compact, equivalently, iff C = C*. =
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Conical Kahler structures and C*-action

REMARK: For each holomorphic isometry h of a Vaisman manifold, h lifts
to a conformal automorphism of its Kahler covering. However, a conformal
automorphism of a Kahler manifold is a homothety, because d(fw) =
df AN w, and this may vanish only when df = 0.

Theorem 1: Let C(S) be a conical Kahler manifold, h; the corresponding
homothety action, and X its vector field. Then there exists a vector field
X4 arbitrarily close to X acting on C(S) by holomorphic homotheties, with
11X also acting by homotheties, such that the action of X7 integrates to
C*-action on C(S).

Proof: Fix some A > 1, and let M := C(S)/h) be the corresponding Vaisman
manifold, where h; acts isometrically. Consider the Lie group G C Iso(M)
obtained as the closure of {h;}. For each vector field X, € Lie(G), X1 acts
on M by holomorphic isometries, hence it acts on C(S) by homotheties;
non-isometrically when X7 is sufficiently close to X.

Choosing X’ € Lie(@) rational and sufficiently close to X, we obtain an
isometry of M which integrates to a T2-action on M and to non-isometric
C*-action on its cone. =

REMARK: By Proposition 1, his gives a new cone structure on C(S5).
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Density of quasiregular Vaisman manifolds

COROLLARY: Let C(S) be a conical Kahler manifold, with S compact.
Then C(S) is holomorphically isometric to a total space of non-zero
sections of a positive line bundle over a projective orbifold. =

COROLLARY: Any compact Vaisman manifold (M, ) admits a defor-
mation (M, I") which is quasi-regular. Moreover, I’ can be chosen arbitrarily
close to I.

Proof: Take the conical Kahler manifold C(S), and replace the homothety
vector field X by a quasiregular one X’. Then take a quotient C(S)/Z by Z
acting as e*X'. m

COROLLARY: Any compact Sasakian manifold (M, ) admits a defor-
mation (M, I’) which is quasi-regular. Moreover, I’ can be chosen arbitrarily
close to /. m
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