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LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, dimCM > 1. Then M

is called locally conformally Kähler (LCK) if dω = ω∧ θ, where θ is a closed

1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kähler iff it admits a

Kähler form taking values in a positive, flat vector bundle L, called the weight

bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M̃ −→M

are elements of the group AutM(M̃). When M̃ is a universal cover, one

has AutM(M̃) = π1(M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-

versal cover M̃ is equipped with a Kähler form ω̃, and the deck transform acts

on M̃ by Kähler homotheties.

THEOREM: These three definitions are equivalent.
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Conical Kähler manifolds (reminder)

DEFINITION: Let (X, g) be a Riemannian manifold, and C(X) := X ×R>0,

with the metric t2g + dt2, where t is a coordinate on R>0. Then C(X) is

called Riemannian cone of X. Multiplicative group R>0 acts on C(X) by

homotheties, (m, t)−→ (m,λt).

DEFINITION: Let (X, g) be a Riemannian manifold, C(X) := X × R>0

its Riemannian cone, and hλ the homothety action. Assume that (X, g) is

equipped with a complex structure, in such a way that g is Kähler, and hλ
acts holomorphically. Then C(X) is called a conical Kähler manifold. In

this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic

structure on C(X), and hλ acting by homotheties. In particular, Sasakian

manifolds are contact. Sasakian geometry is an odd-dimensional coun-

terpart to Kähler geometry

EXAMPLE: Let L be a positive holomorphic line bundle on a projective

manifold. Then the total space of its unit S1-fibration is Sasakian.
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Reeb field (reminder)

DEFINITION: A Sasakian manifold is a contact manifold S with a Rie-

mannian structure, such that the symplectic cone C(S) with its Riemannian

metric is Kähler.

DEFINITION: Let S be a Sasakian manifold, ω the Kähler form on C(S),

and r = t ddt the homothety vector field. Then LieIr t = 〈dt, Ir〉 = 0, hence

iR is tangent to S ⊂ C(S). This vector field (denoted by Reeb) is called the

Reeb field of a Sasakian manifold.

REMARK: The Reeb field is dual to the contact form θ = ωyr.

THEOREM: The Reeb field acts on a Sasakian manifold by contact

isometries.

DEFINITION: A Sasakian manifold is called regular if the Reeb field gen-

erates a free action of S1, quasiregular if all orbits of Reeb are closed, and

irregular otherwise.
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Vaisman manifolds (reminder)

EXAMPLE: For any given λ ∈ R>1, the quotient C(X)/hλ of a conical

Kähler manifold is locally conformally Kähler.

DEFINITION: An LCK manifold (M, g, ω, θ) is called Vaisman if ∇θ = 0,

where ∇ is the Levi-Civita connection associated with g.

THEOREM: Let M be a Vaisman manifold, M̃ its covering; the pullback of

the Lee form θ to M̃ is denoted by the same letter θ. Assume that dψ = θ on

M̃ (such ψ exists, for example, if M̃ is a universal cover of M). Consider the

form ω̃ := e−ψω. Then (M̃, ω̃) is a Kähler manifold, isometric to a cone.

THEOREM: Every Vaisman manifold is obtained as C(X)/Z, where X is

Sasakian, Z =

〈
(x, t) 7→ (ϕ(x), qt)

〉
, q > 1, and ϕ is a Sasakian automorphism

of X. Moreover, the triple (X,ϕ, q) is unique.
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Kähler potentials and plurisubharmonic functions (reminder)

DEFINITION: A real-valued smooth function on a complex manifold is

called plurisubharmonic (psh) if the (1,1)-form ddcf is positive, and strictly

plurisubharmonic if ddcf is an Hermitian form.

REMARK: Since ddcf is always closed, it is also Kähler when it is strictly

positive.

DEFINITION: Let (M, I, ω) be a Kähler manifold. Kähler potential is a

function f such that ddcf = ω.

THEOREM: Let S be a Sasakian manifold, C(S) = S × R>0 its cone, t the

coordinate along the second variable, and r = t ddt. Then t2 is a Kähler

potential on C(S). Moreover, the form ddc log t vanishes on 〈r, I(r)〉 and

the rest of its eigenvalues are positive.
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The fundamental foliation (reminder)

DEFINITION: Let M be a Vaisman manifold, θ] its Lee field, and Σ a 2-

dimensional real foliation generated by θ], Iθ]. It is called the fundamental

foliation of M . Clearly, Σ is tangent to orbits of the one-parametric group

of automorphisms of the covering M̃ generated by homotheties. Therefore,

Σ is a holomorphic foliaton.

THEOREM: Let M be a compact Vaisman manifold, and Σ ⊂ TM its

fundamental foliation. Then

1. Σ is independent from the choice of the Vaisman metric.

2. There exists a positive, exact (1,1)-form ω0 with Σ = kerω0.

3. For any complex subvariety Z ⊂M, Z is tangent to Σ.

4. For any compact complex subvariety Z ⊂ M, the set of smooth

points of Z is Vaisman.

DEFINITION: A Vaisman manifold M is called regular, if the leaves of

the fundamental foliation are orbits of the group (S1)2 freely acting on M ,

quasiregular if these leaves are compact, and irregular otherwise.
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Orbispaces (reminder)

DEFINITION: Groupoid is a category with all morphisms invertible.

DEFINITION: An action of a group on a manifold is rigid if the set of points

with trivial stabilizer is dense.

DEFINITION: An orbispace is a topological space M , equipped with a

structure of a groupoid (the points of M are objects of the groupoid category),

a covering {Ui}, and continuous maps ϕi : Vi −→ Ui, where each Vi is equipped

with a rigid action of a finite group Gi, satisfying the following properties.

1. ϕi : Vi −→ Vi/Gi = Ui is the quotient map.

2. For each x ∈M and Ui 3 x, the group Mor(x, x) is equal to the stabilizer

of x in Gi.

REMARK: An orbispace is a topological space, locally obtained as a quotient,

with the quotient structure remembered via the groupoid structure.
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Orbifolds (reminder)

DEFINITION: An orbifold is an orbispace (M, {ϕi : Vi −→ Vi/Gi = Ui}),

where all Vi are diffeomorphic to open balls in Rn.

EXAMPLE: Let M = CP1/((x, y) ∼ (x,−y)). This quotient is homeo-

morphic to CP1. However, it is a different orbifold if we consider the

covering induced from CP1/G, G = {±1} and the groupoid structure where

Mor(x, x) = StG(x).

DEFINITION: A smooth orbifold is an orbifold M equipped with a sheaf

of functions C∞M in such a way that for each Ui = Vi/Gi, the corresponding

ring of sections C∞Ui is identified with a ring of Gi-invariant smooth functions

on Vi.

DEFINITION: A complex orbifold is an orbifold M equipped with a sheaf

of functions OM in such a way that each Vi is an open ball in Cn, and for each

Ui = Vi/Gi, the corresponding ring of sections OUi is identified with a ring of

Gi-invariant holomorphic functions on Vi.
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Projective orbifolds (reminder)

DEFINITION: An underlying complex variety of a complex orbifold is a

complex variety with the topological space M and the structure sheaf OM .

DEFINITION: A projective orbifold is a complex orbifold with the under-

lying complex variety projective.

DEFINITION: A holomorphic vector bundle on a complex orbifold is a

Gi-equivariant vector bundle on each Vi, equipped with the Gi-invariant gluing

maps satisfying cocycle condition.

THEOREM: (Baily)

Let M be a compact complex orbifold equipped with a holomorphic Hermitian

vector bundle L. Assume that the curvature of L is positive definite on all Vi
(in this case L is called positive). Then M is projective.

W. L. Baily, On the imbedding of V-manifolds in projective spaces, Amer. J. Math. 79

(1957), 403-430.
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Sasakian and Vaisman manifolds and their projective orbifolds

THEOREM: Let Tn be a compact torus acting on a manifold M with all
orbits of the same dimension. Then M/Tn is an orbifold.

COROLLARY: Let M be a quasiregilar Vaisman manifold, Σ its fundamental
foliation, and M/Σ the quotient space. Them X := M/Σ is a projective
orbifold.

Proof: Being a T2-quotient, X is an orbifold. Since it is a quotient of
a complex space by a complex group action, X is a complex orbifold. By
construction, the corresponding conical Kähler manifold M̃ is a total space
of C∗-bundle L (in the orbifold sense). The standard local argument implies
that the curvature of L gives a Kähler orbifold metric on X. Baily’s theorem
implies that X is projective.

COROLLARY: Let S be a quasiregular Sasakian manifold, and Reeb its Reeb
field. Then X := S/Reeb is a projective orbifold, and S is a total space of
U(1)-bundle over X associated with a positive holomorphic line bundle.

Proof: S × S1 is Vaisman, and the corresponding fundamental foliation is
TS1 × Reeb.
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Conical Kähler structures and homotheties

Proposition 1: Let (M,ω) be a conical Kähler manifold, and X a vector field

acting on M by holomorphic, non-isometric homotheties, such that IX also

acts by homotheties, and etX is defined for any real t. Then

(a) ddcϕ = ω, where ϕ = |X|2.

(b) Let SX := ϕ−1(1). Then SX is Sasakian,

and M is isometric to C(SX).

(c) SX is quasiregular if and only if the action of X integrates to a

holomorphic C∗-action.

Proof. Step 1: Since X, IX act by homotheties, one has a character

χ : 〈X, IX〉 −→ R such that LieZ ω = χ(Z)ω. Replacing X by some linear

combination of X, IX if necessary, we may assume that IX acts by

isometries. Rescaling, we may assume that LieX g = 2g.

Step 2: Define X[ := g(X, ·) (“the dual 1-form”). Then dX[ = LieIX ω = 0

and 2X[ = LieX(X[) = d〈X,X[〉 = d|X|2.

Step 3: LieX ω = 2ω, which gives 2ω = d(ωyX) = d(IX[) = 2dId|x|2 (last

equation is proven in Step 2). This proves Proposition 1 (a).
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Conical Kähler structures and homotheties (cont.)

Proposition 1: Let (M,ω) be a conical Kähler manifold, and X a vector field

acting on M by holomorphic, non-isometric homotheties, such that IX also

acts by homotheties, and etX is defined for any real t. Then

(a) ddcϕ = ω, where ϕ = |X|2.

(b) Let SX := ϕ−1(1). Then SX is Sasakian,

and M is isometric to C(SX).

(c) SX is quasiregular if and only if the action of X integrates to a

holomorphic C∗-action.

Step 4: Let M −→ SX map m to an intersection of etXm and SX. This gives

a decomposition M = SX × R>0, compatible with the conical metric on

SX×R>0 = C(SX), as shown in the last lecture using the local decomposition

of Vaisman manifolds into a product of a Sasakian manifold and R.

Step 5: Let C be the group generated by etX , etIX. Clearly, C = R>0×{etIX}.
The Reeb orbits on SX are orbits of etIX, hence they are compact if and

only if {etIX} is compact, equivalently, iff C = C∗.
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Conical Kähler structures and C∗-action

REMARK: For each holomorphic isometry h of a Vaisman manifold, h lifts
to a conformal automorphism of its Kähler covering. However, a conformal
automorphism of a Kähler manifold is a homothety, because d(fω) =
df ∧ ω, and this may vanish only when df = 0.

Theorem 1: Let C(S) be a conical Kähler manifold, ht the corresponding
homothety action, and X its vector field. Then there exists a vector field
X1 arbitrarily close to X acting on C(S) by holomorphic homotheties, with
I(X1) also acting by homotheties, such that the action of X1 integrates
to C∗-action on C(S).

Proof: Fix some λ > 1, and let M := C(S)/hλ be the corresponding Vaisman
manifold, where ht acts isometrically. Consider the Lie group G ⊂ Iso(M)
obtained as the closure of {ht}. For each vector field X1 ∈ Lie(G), X1 acts
on M by holomorphic isometries, hence it acts on C(S) by homotheties;
non-isometrically when X1 is sufficiently close to X.

Choosing X ′ ∈ Lie(G) rational and sufficiently close to X, we obtain an
isometry of M which integrates to a T2-action on M and to non-isometric
C∗-action on its cone.

REMARK: By Proposition 1, his gives a new cone structure on C(S).
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Density of quasiregular Vaisman manifolds

COROLLARY: Let C(S) be a conical Kähler manifold, with S compact.

Then C(S) is holomorphically isometric to a total space of non-zero

sections of a positive line bundle over a projective orbifold.

COROLLARY: Any compact Vaisman manifold (M, I) admits a defor-

mation (M, I ′) which is quasi-regular. Moreover, I ′ can be chosen arbitrarily

close to I.

Proof: Take the conical Kähler manifold C(S), and replace the homothety

vector field X by a quasiregular one X ′. Then take a quotient C(S)/Z by Z
acting as eλX

′
.

COROLLARY: Any compact Sasakian manifold (M, I) admits a defor-

mation (M, I ′) which is quasi-regular. Moreover, I ′ can be chosen arbitrarily

close to I.
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Immersion of conical Kähler manifolds

COROLLARY: Let C(S) be a conical Kähler manifold. Then there exists a

holomorphic immersion C(S)−→ C(S2n−1) equivariant under homothety,

with C(S2n−1) = Cn\0 the standard (flat) cone.

Proof: The manifold C(S) is a space of non-zero vectors in a total space

of a positive line bundle L over a projective orbifold X. By Baily’s theorem,

LN is very ample, and there exists an embedding X
j
↪→ CPn−1 such that

LN = l∗(O(1)). Consider a holomorphic map ψ0 : C(S)−→ Tot(LN) mapping

v to vN . It is an N-sheeted covering.

Now, define Ψ : C(S)−→ C(S2n−1) as Ψ(v) := j(ψ0(v)). Since ψ0 is etale

and j an embedding, Ψ is an immersion.
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Immersion of Vaisman manifolds

DEFINITION: A linear Hopf manifold is a quotient of Cn\0 by a linear
automorphism with all eigenvalues |αi| < 1.

COROLLARY: Let M be a quasiregular Vaisman manifold. Then M admits

an immersion into a linear Hopf manifold.

Proof: Let C(S) be a conical Kähler covering of M . Consider an immersion
Ψ : C(S)−→ C(S2n−1), and let γ : Z−→ Aut(C(S)) be the homothety
action. Since L is γ-equivariant, γ actually induces a linear automorphism Γ
of a vector space Cn = H0(LN). Since γ uniformly decreases the norm, the
eigenvalues of Γ are all |αi| < 1. This gives a commutative square

C(S)
Ψ−→ C(S2n−1)y/γ y/Γ

M −→ (Cn\0)/〈Γ〉
with the bottom arrow holomorphic immersion.

REMARK: In fact, for each Vaisman manifold there exists an embedding

into a linear Hopf manifold.
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Kodaira stability theorem

THEOREM: (Kodaira) Let X π−→ B be a smooth, proper, holomorphic

map, and z ∈ B a point. Assume that the fiber Xz := π−1(z) is Kähler (that

is, admits Kähler structure). Then there exists a neighbourhood W 3 z
such that for each y ∈W , the fiber Xy := π−1(y) is Kähler.

Proof. Step 1: Consider the relative Frölicher spectral sequence

Riπ∗(Ωj
BX )⇒ Ri+jπ∗(CX ) (∗)

Here Ri+jπ∗(CX ) is the derived pushforward of a constant sheaf (that is, a

graded local system over B with the fibers of grading k in y ∈ B identified

with k-th cohomology of Xy), and the E2 term Riπ∗(Ωj
BX ) is a coherent

sheaf obtained as a derived direct image of the fiberwise de Rham algebra

Ωj
BX = Ωj(X/B).

It is a relative (over B) version of the usual Frölicher spectral sequence

Hi(ΩjM)⇒ Hi+j(M,C). This spectral sequence gives an inequality∑
i+j=k

dimHi(ΩjXy) >
∑

i+j=k

dimHi(ΩjXz) (∗∗)
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Kodaira stability theorem (part 2)

Proof. Step 1: Consider the relative Frölicher spectral sequence

Riπ∗(Ωj
BX )⇒ Ri+jπ∗(CX ) (∗)

This spectral sequence gives an inequality∑
i+j=k

dimHi(ΩjXy) >
∑

i+j=k

dimHi(ΩjXz) (∗∗)

Since Xz is Kähler, the Frölicher spectral sequence for Xz degenerates in E2,

giving
∑
i+j=k dimHi(ΩjXz) = hk(Xz). By semicontinuity,∑

i+j=k

dimHi(ΩjXy) 6
∑

i+j=k

dimHi(ΩjXz)

in a sufficiently small neighbourhood U of z. Comparing this with (**), we

find that rank of Hi(ΩjXy) is constant in U, hence the inequality (**) is

equality in U , and the spectral sequence (*) degenerates.
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Kodaira stability theorem (part 3)

Step 2: Consider the sheaf H := R1π∗(Ω1
BX ). It is a coherent sheaf with

fiber H1,1(Xy) at each y ∈ B. From Step 1, we obtain that H is locally free in
U , and generated by fiberwise closed (1,1)-forms. Let Λ1,1

cl (X/B) be the sheaf

of fiberwise closed vertical forms on X , and π∗Λ
1,1
cl (X/B)

Ξ−→ H the natural
projection. Choose a Hermitian metric on X , smoothly extending the Kähler
metric ωz on Xz, and let H Ξ∗−→ π∗Λ

1,1
cl (X/B) be the Hermitian conjugate

map. By construction, Ξ∗ is an orthogonal projection of cohomology to
closed (1,1)-forms along exact 2-forms. Therefore, Ξ∗ maps the Kähler
class [ωz] to its harmonic representative ωz.

Step 3: Let ω̃ be a smooth section of H satisfying ω̃|z = [ωz]. Then Ξ∗(ω̃)
is a family of closed forms ωy ∈ Λ1,1

cl (Xy), depending smoothly on y ∈ B.
Since all eigenvalues of ωz are positive, the same is true for ωy for y sufficiently
close to z. However, a closed, positive (1,1)-form is Kähler.

REMARK: Neither Vaisman manifolds nor LCK manifolds are stable under
small deformations. However, a small deformation of Vaisman manifolds in
LCK. Next lecture I will define a new class of LCK manifolds, called LCK
manifolds with potential which is stable under small deformations and con-
tains Vaisman manfilds.
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