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L. CK manifolds, lecture 7 M. Verbitsky

LCK manifolds (reminder)

DEFINITION: Let (M, I,w) be a Hermitian manifold, dim¢ M > 1. Then M
is called locally conformally Kahler (LCK) if dw = w A8, where 6 is a closed
1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kahler iff it admits a
Kahler form taking values in a positive, flat vector bundle L, called the weight
bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M — M
are elements of the group Auty/(M). When M is a universal cover, one
has Aut,;(M) = 1 (M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-
versal cover M is equipped with a Kidhler form &, and the deck transform acts
on M by Kihler homotheties.

THEOREM: These three definitions are equivalent.
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Conical Kahler manifolds (reminder)

DEFINITION: Let (X,g) be a Riemannian manifold, and C(X) := X x R>0,
with the metric t2g 4 dt2, where t is a coordinate on R>9. Then C(X) is
called Riemannian cone of X. Multiplicative group R>° acts on C(X) by
homotheties, (m,t) — (m, A\t).

DEFINITION: Let (X,g) be a Riemannian manifold, C(X) := X x R>0
its Riemannian cone, and h, the homothety action. Assume that (X, g) is
equipped with a complex structure, in such a way that g is Kahler, and h
acts holomorphically. Then C(X) is called a conical Kahler manifold. In
this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic
structure on C(X), and hy, acting by homotheties. In particular, Sasakian
manifolds are contact. Sasakian geometry is an odd-dimensional coun-
terpart to Kahler geometry

EXAMPLE: Let L be a positive holomorphic line bundle on a projective
manifold. Then the total space of its unit Sl_fibration is Sasakian.
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Reeb field (reminder)

DEFINITION: A Sasakian manifold is a contact manifold S with a Rie-
mannian structure, such that the symplectic cone C(S) with its Riemannian
metric is Kahler.

DEFINITION: Let S be a Sasakian manifold, w the Kahler form on C(S),
and r = t% the homothety vector field. Then Liej,.t = (dt,Ir) = 0, hence
iR is tangent to S C C(S). This vector field (denoted by Reeb) is called the
Reeb field of a Sasakian manifold.

REMARK: The Reeb field is dual to the contact form 0 = wur.

THEOREM: The Reeb field acts on a Sasakian manifold by contact
iIsometries.

DEFINITION: A Sasakian manifold is called regular if the Reeb field gen-
erates a free action of Sl, quasiregular if all orbits of Reeb are closed, and
irregular otherwise.
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Vaisman manifolds (reminder)

EXAMPLE: For any given A € R>!, the quotient C(X)/h, of a conical
Kahler manifold is locally conformally Kahler.

DEFINITION: An LCK manifold (M, g,w,0) is called Vaisman if V6 = 0,
where V is the Levi-Civita connection associated with g.

THEOREM: Let M be a Vaisman manifold, M its covering: the pullback of
the Lee form 0 to M is denoted by the same letter §. Assume that diy = 6 on
M (such 1 exists, for example, if M is a universal cover of M). Consider the
form & ;= e %w. Then (M,) is a Kahler manifold, isometric to a cone.

THEOREM: Every Vaisman manifold is obtained as C(X)/Z, where X is
Sasakian, Z = <(:L',t) —> (go(:v),qt)>, g > 1, and ¢ is a Sasakian automorphism

of X. Moreover, the triple (X, ¢, q) is unique.
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Kahler potentials and plurisubharmonic functions (reminder)

DEFINITION: A real-valued smooth function on a complex manifold is
called plurisubharmonic (psh) if the (1,1)-form dd°¢f is positive, and strictly
plurisubharmonic if dd°f is an Hermitian form.

REMARK: Since dd°f is always closed, it is also Kahler when it is strictly
positive.

DEFINITION: Let (M,I,w) be a Kahler manifold. Kahler potential is a
function f such that dd°f = w.

THEOREM: Let S be a Sasakian manifold, C(S) = S x R>0 its cone, t the
coordinate along the second variable, and r = t%. Then t2 is a Kahler
potential on C(S). Moreover, the form dd°logt vanishes on (r, I(r)) and
the rest of its eigenvalues are positive.



L CK manifolds, lecture 7 M. Verbitsky
The fundamental foliation (reminder)

DEFINITION: Let M be a Vaisman manifold, 6! its Lee field, and ~ a 2-
dimensional real foliation generated by 6% 16%. It is called the fundamental
foliation of M. Clearly, > is tangent to orbits of the one-parametric group
of automorphisms of the covering M generated by homotheties. Therefore,
2_is a holomorphic foliaton.

THEOREM: Let M be a compact Vaisman manifold, and > C TM its
fundamental foliation. Then

1. > is independent from the choice of the Vaisman metric.

2. There exists a positive, exact (1,1)-form wg with >~ = kerwg.

3. For any complex subvariety Z C M, Z is tangent to >.

4. For any compact complex subvariety Z C M, the set of smooth
points of 7 is Vaisman.

DEFINITION: A Vaisman manifold M is called regular, if the leaves of
the fundamental foliation are orbits of the group (Sl)2 freely acting on M,
quasiregular if these leaves are compact, and irregular otherwise.
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Orbispaces (reminder)
DEFINITION: Groupoid is a category with all morphisms invertible.

DEFINITION: An action of a group on a manifold is rigid if the set of points
with trivial stabilizer is dense.

DEFINITION: An orbispace is a topological space M, equipped with a
structure of a groupoid (the points of M are objects of the groupoid category),
a covering {U;}, and continuous maps ¢; : V; — U;, where each Vj is equipped
with a rigid action of a finite group G;, satisfying the following properties.

1. ;1 V;, — V;/G; = U; is the quotient map.

2. For each x € M and U; > z, the group Mor(z, z) is equal to the stabilizer
of x in Gi-

REMARK: An orbispace is a topological space, locally obtained as a quotient,
with the quotient structure remembered via the groupoid structure.
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Orbifolds (reminder)

DEFINITION: An orbifold is an orbispace (M,{y; : V;—V;/G; = U;}),
where all V; are diffeomorphic to open balls in R™.

EXAMPLE: Let M = CPl/((z,y) ~ (z,—y)). This quotient is homeo-
morphic to CPl. However, it is a different orbifold if we consider the
covering induced from CP!/G, G = {£1} and the groupoid structure where
Mor(xz,x) = Stg(x).

DEFINITION: A smooth orbifold is an orbifold M equipped with a sheaf
of functions C*°M in such a way that for each U; = V;/G;, the corresponding
ring of sections C°°U; is identified with a ring of G;-invariant smooth functions
on Vj.

DEFINITION: A complex orbifold is an orbifold M equipped with a sheaf
of functions O, in such a way that each V, is an open ball in C", and for each
U; = V;/G;, the corresponding ring of sections Oy, is identified with a ring of
G;-invariant holomorphic functions on Vj.

9



L. CK manifolds, lecture 7 M. Verbitsky

Projective orbifolds (reminder)

DEFINITION: An underlying complex variety of a complex orbifold is a
complex variety with the topological space M and the structure sheaf O,.

DEFINITION: A projective orbifold is a complex orbifold with the under-
lying complex variety projective.

DEFINITION: A holomorphic vector bundle on a complex orbifold is a
G;-equivariant vector bundle on each V;, equipped with the G;-invariant gluing
maps satisfying cocycle condition.

THEOREM: (Baily)

Let M be a compact complex orbifold equipped with a holomorphic Hermitian
vector bundle L. Assume that the curvature of L is positive definite on all V;
(in this case L is called positive). Then M is projective.

W. L. Baily, On the imbedding of V-manifolds in projective spaces, Amer. J. Math. 79
(1957), 403-430.
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Sasakian and Vaisman manifolds and their projective orbifolds

THEOREM: Let T™ be a compact torus acting on a manifold M with all
orbits of the same dimension. Then M/T™ is an orbifold. =

COROLLARY: Let M be a quasiregilar Vaisman manifold, > its fundamental
foliation, and M /3> the quotient space. Them X = M/> is a projective
orbifold.

Proof: Being a T2-quotient, X is an orbifold. Since it is a quotient of
a complex space by a complex group action, X is a complex orbifold. By
construction, the corresponding conical Kidhler manifold M is a total space
of C*-bundle L (in the orbifold sense). The standard local argument implies
that the curvature of L gives a Kahler orbifold metric on X. Baily's theorem
implies that X is projective. m

COROLLARY: Let S be a quasiregular Sasakian manifold, and Reeb its Reeb
field. Then X := S/ Reeb is a projective orbifold, and S is a total space of
U(1)-bundle over X associated with a positive holomorphic line bundle.

Proof: S x S! is Vaisman, and the corresponding fundamental foliation is
TS! % Reeb. m
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Conical Kahler structures and homotheties

Proposition 1: Let (M,w) be a conical Kahler manifold, and X a vector field
acting on M by holomorphic, non-isometric homotheties, such that I.X also
acts by homotheties, and etX is defined for any real t. Then

(a) dd°p = w, where ¢ = |X|2.

(b) Let Sy := ¢ 1(1). Then Sy is Sasakian,
and M is isometric to C(Sy).

(c) Sy is quasiregular if and only if the action of X integrates to a
holomorphic C*-action.

Proof. Step 1: Since X, IX act by homotheties, one has a character
x . (X,IX) — R such that Lieyw = x(Z)w. Replacing X by some linear
combination of X,/X if necessary, we may assume that /X acts by
iIsometries. Rescaling, we may assume that Lieyxy g = 2g.

Step 2: Define X? := g(X,-) (“the dual 1-form”). Then dX” = Lie;xyw = 0
and 2X° = Liex(X’) = d(X, X°) = d| X|2.

Step 3: Lieyw = 2w, which gives 2w = d(wiX) = d(IX") = 2dId|z|? (last
equation is proven in Step 2). This proves Proposition 1 (a).
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Conical Kahler structures and homotheties (cont.)

Proposition 1: Let (M,w) be a conical Kahler manifold, and X a vector field
acting on M by holomorphic, non-isometric homotheties, such that I.X also
acts by homotheties, and etX is defined for any real t. Then

(a) dd°p = w, where ¢ = |X|2.

(b) Let Sy := ¢~ 1(1). Then Sy is Sasakian,
and M is isometric to C(Sy).

(c) Sx is quasiregular if and only if the action of X integrates to a
holomorphic C*-action.

Step 4: Let M — Sx map m to an intersection of e*m and Sx. This gives
a decomposition M = Sy x R~9, compatible with the conical metric on
Sy xR>0 = C(Sy), as shown in the last lecture using the local decomposition
of Vaisman manifolds into a product of a Sasakian manifold and R.

Step 5: Let C be the group generated by et !X Clearly, C = R>0 x {e!!X}.
The Reeb orbits on Sy are orbits of ¢//X, hence they are compact if and
only if {¢//X} is compact, equivalently, iff C = C*. =
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Conical Kahler structures and C*-action

REMARK: For each holomorphic isometry h of a Vaisman manifold, h lifts
to a conformal automorphism of its Kahler covering. However, a conformal
automorphism of a Kahler manifold is a homothety, because d(fw) =
df AN w, and this may vanish only when df = 0.

Theorem 1: Let C(S) be a conical Kahler manifold, h; the corresponding
homothety action, and X its vector field. Then there exists a vector field
X4 arbitrarily close to X acting on C(S) by holomorphic homotheties, with
I(X1) also acting by homotheties, such that the action of X; integrates
to C*-action on C(S).

Proof: Fix some A > 1, and let M := C(S)/h) be the corresponding Vaisman
manifold, where h; acts isometrically. Consider the Lie group G C Iso(M)
obtained as the closure of {h;}. For each vector field X, € Lie(G), X1 acts
on M by holomorphic isometries, hence it acts on C(S) by homotheties;
non-isometrically when X7 is sufficiently close to X.

Choosing X’ € Lie(G@) rational and sufficiently close to X, we obtain an
isometry of M which integrates to a T2-action on M and to non-isometric
C*-action on its cone. =

REMARK: By Proposition 1, his gives a new cone structure on C(S5).
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Density of quasiregular Vaisman manifolds

COROLLARY: Let C(S) be a conical Kahler manifold, with S compact.
Then C(S) is holomorphically isometric to a total space of non-zero
sections of a positive line bundle over a projective orbifold. =

COROLLARY: Any compact Vaisman manifold (M, 1) admits a defor-
mation (M, I’) which is quasi-regular. Moreover, I’ can be chosen arbitrarily
close to I.

Proof: Take the conical Kahler manifold C(S), and replace the homothety
vector field X by a quasiregular one X’. Then take a quotient C(S)/Z by Z
acting as e*X'. m

COROLLARY: Any compact Sasakian manifold (M, 1) admits a defor-

mation (M, I") which is quasi-regular. Moreover, I’ can be chosen arbitrarily
closeto /. m
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Immersion of conical Kahler manifolds

COROLLARY: Let C(S) be a conical Kahler manifold. Then there exists a
holomorphic immersion C(S) — C (52"~ 1) equivariant under homothety,
with C(827—1) = C™\0 the standard (flat) cone.

Proof: The manifold C(S) is a space of non-zero vectors in a total space
of a positive line bundle L over a projective orbifold X. By Baily's theorem,

LN is very ample, and there exists an embedding X < CP"1 such that
LN =1*(O0(1)). Consider a holomorphic map g : C(S) — Tot(LY) mapping
v to vV, It is an N-sheeted covering.

Now, define W : C(S) — C(S?" 1) as w(v) := j(¢vo(v)). Since g is etale
and 5 an embedding, V iIs an immersion. =
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Immersion of VVaisman manifolds

DEFINITION: A linear Hopf manifold is a quotient of C*\O by a linear
automorphism with all eigenvalues |o;| < 1.

COROLLARY: Let M be a quasiregular Vaisman manifold. Then M admits
an immersion into a linear Hopf manifold.

Proof: Let C(S) be a conical Kahler covering of M. Consider an immersion
v C(S)— (8% 1), and let v 1 Z— Aut(C(S)) be the homothety
action. Since L is v-equivariant, v actually induces a linear automorphism [
of a vector space C" = HO(LN). Since ~ uniformly decreases the norm, the
eigenvalues of " are all |o;| < 1. This gives a commutative square

c(s) Y c(s2n-1y
l/v l/r
M — (C™M\0)/(I)
with the bottom arrow holomorphic immersion. =

REMARK: In fact, for each Vaisman manifold there exists an embedding
into a linear Hopf manifold.
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Kodaira stability theorem

THEOREM: (Kodaira) Let X s B be a smooth, proper, holomorphic
map, and z € B a point. Assume that the fiber X, := 7~ 1(2) is Kahler (that
is, admits Kahler structure). Then there exists a neighbourhood W > 2z
such that for each y ¢ W, the fiber X, := 7~ 1(y) is Kahler.

Proof. Step 1: Consider the relative Frolicher spectral sequence

Here R'tim(Cx) is the derived pushforward of a constant sheaf (that is, a
graded local system over B with the fibers of grading k in y € B identified
with k-th cohomology of Xy), and the E5 term Riw*(Q%X) iSs a coherent
sheaf obtained as a derived direct image of the fiberwise de Rham algebra
QLX = QI(X/B).

It is a relative (over B) version of the usual Frolicher spectral sequence
HY(QIM) = H*tI(M,C). This spectral sequence gives an inequality

ST odimHY(QIXy) > Y dim HY(X.)  (x%)
i+i=k i+ji=k
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Kodaira stability theorem (part 2)

Proof. Step 1: Consider the relative Frolicher spectral sequence
This spectral sequence gives an inequality
S dimHY(QYXY) > Y dimHY(QY X)) (x%)

i+j=k i+j=k
Since X, is Kahler, the Frolicher spectral sequence for X, degenerates in E>,
giving Y4 = dim H(Q/X;) = h*(X.). By semicontinuity,

ST o dimHY(QIXy) < Y dim HY(X>)
i+j=k i+j=k

in a sufficiently small neighbourhood U of z. Comparing this with (**), we

find that rank of H'(Q/X,) is constant in U, hence the inequality (**) is
equality in U, and the spectral sequence (*) degenerates.
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Kodaira stability theorem (part 3)

Step 2: Consider the sheaf H = le(Ql X). It is a coherent sheaf with
fiber H1:1(X,) at each y € B. From Step 1, we obtain that H is locally free in
U, and generated by fiberwise closed (1,1)-forms. Let /\ (X/B) be the sheaf

of fiberwise closed vertical forms on &X', and T\ Y o (X/B) ‘H the natural
projection. Choose a Hermitian_ metrlc on X, smoothly extending the Kahler
metric w, on X, and let H =, */\l (X/B) be the Hermitian conjugate
map. By construction, =* is an orthogonal projection of cohomology to
closed (1,1)-forms along exact 2-forms. Therefore, =* maps the Kahler
class [w;] to its harmonic representative w..

Step 3: Let & be a smooth sectlon of H satisfying @|; = [wz]. Then =*(®)
is a family of closed forms wy € /\ (Xy) depending smoothly on y € B.
Since all eigenvalues of w, are pOS|t|ve the same is true for wy for y sufficiently
close to z. However, a closed, positive (1,1)-form is Kahler. m

REMARK: Neither Vaisman manifolds nor LCK manifolds are stable under
small deformations. However, a small deformation of Vaisman manifolds in
LCK. Next lecture I will define a new class of LCK manifolds, called LCK
Mmanifolds with potential which is stable under small deformations and con-

tains Vaisman manfilds.
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