Locally conformally Kähler manifolds

lecture 7: Immersion theorem

Misha Verbitsky

HSE and IUM, Moscow

March 31, 2014

LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, $\dim_{\mathbb{C}} M > 1$. Then M is called **locally conformally Kähler** (LCK) if $d\omega = \omega \wedge \theta$, where θ is a closed 1-form, called **the Lee form**.

DEFINITION: A manifold is locally conformally Kähler iff it admits a Kähler form taking values in a positive, flat vector bundle *L*, called **the weight bundle**.

DEFINITION: Deck transform, or monodromy maps of a covering $\tilde{M} \longrightarrow M$ are elements of the group $\operatorname{Aut}_{M}(\tilde{M})$. When \tilde{M} is a universal cover, one has $\operatorname{Aut}_{M}(\tilde{M}) = \pi_{1}(M)$.

DEFINITION: An LCK manifold is a complex manifold such that its universal cover \tilde{M} is equipped with a Kähler form $\tilde{\omega}$, and the deck transform acts on \tilde{M} by Kähler homotheties.

THEOREM: These three definitions are equivalent.

Conical Kähler manifolds (reminder)

DEFINITION: Let (X,g) be a Riemannian manifold, and $C(X) := X \times \mathbb{R}^{>0}$, with the metric $t^2g + dt^2$, where t is a coordinate on $\mathbb{R}^{>0}$. Then C(X) is called **Riemannian cone** of X. **Multiplicative group** $\mathbb{R}^{>0}$ **acts on** C(X) by **homotheties,** $(m,t) \longrightarrow (m, \lambda t)$.

DEFINITION: Let (X,g) be a Riemannian manifold, $C(X) := X \times \mathbb{R}^{>0}$ its Riemannian cone, and h_{λ} the homothety action. Assume that (X,g) is equipped with a complex structure, in such a way that g is Kähler, and h_{λ} acts holomorphically. Then C(X) is called a conical Kähler manifold. In this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic structure on C(X), and h_{λ} acting by homotheties. In particular, Sasakian manifolds are contact. Sasakian geometry is an odd-dimensional counterpart to Kähler geometry

EXAMPLE: Let *L* be a positive holomorphic line bundle on a projective manifold. Then the total space of its unit S^1 -fibration is Sasakian.

3

Reeb field (reminder)

DEFINITION: A Sasakian manifold is a contact manifold S with a Riemannian structure, such that the symplectic cone C(S) with its Riemannian metric is Kähler.

DEFINITION: Let *S* be a Sasakian manifold, ω the Kähler form on C(S), and $r = t \frac{d}{dt}$ the homothety vector field. Then $\operatorname{Lie}_{Ir} t = \langle dt, Ir \rangle = 0$, hence *iR* is tangent to $S \subset C(S)$. This vector field (denoted by Reeb) is called **the Reeb field** of a Sasakian manifold.

REMARK: The Reeb field is dual to the contact form $\theta = \omega \lrcorner r$.

THEOREM: The Reeb field acts on a Sasakian manifold by contact isometries.

DEFINITION: A Sasakian manifold is called **regular** if the Reeb field generates a free action of S^1 , **quasiregular** if all orbits of Reeb are closed, and **irregular** otherwise.

Vaisman manifolds (reminder)

EXAMPLE: For any given $\lambda \in \mathbb{R}^{>1}$, the quotient $C(X)/h_{\lambda}$ of a conical Kähler manifold is locally conformally Kähler.

DEFINITION: An LCK manifold (M, g, ω, θ) is called **Vaisman** if $\nabla \theta = 0$, where ∇ is the Levi-Civita connection associated with g.

THEOREM: Let M be a Vaisman manifold, \tilde{M} its covering; the pullback of the Lee form θ to \tilde{M} is denoted by the same letter θ . Assume that $d\psi = \theta$ on \tilde{M} (such ψ exists, for example, if \tilde{M} is a universal cover of M). Consider the form $\tilde{\omega} := e^{-\psi}\omega$. Then $(\tilde{M}, \tilde{\omega})$ is a Kähler manifold, isometric to a cone.

THEOREM: Every Vaisman manifold is obtained as $C(X)/\mathbb{Z}$, where X is Sasakian, $\mathbb{Z} = \left\langle (x,t) \mapsto (\varphi(x),qt) \right\rangle$, q > 1, and φ is a Sasakian automorphism of X. Moreover, the triple (X,φ,q) is unique.

Kähler potentials and plurisubharmonic functions (reminder)

DEFINITION: A real-valued smooth function on a complex manifold is called **plurisubharmonic (psh)** if the (1,1)-form $dd^c f$ is positive, and **strictly plurisubharmonic** if $dd^c f$ is an Hermitian form.

REMARK: Since $dd^c f$ is always closed, it is also Kähler when it is strictly positive.

DEFINITION: Let (M, I, ω) be a Kähler manifold. Kähler potential is a function f such that $dd^c f = \omega$.

THEOREM: Let *S* be a Sasakian manifold, $C(S) = S \times \mathbb{R}^{>0}$ its cone, *t* the coordinate along the second variable, and $r = t\frac{d}{dt}$. Then t^2 is a Kähler potential on C(S). Moreover, the form $dd^c \log t$ vanishes on $\langle r, I(r) \rangle$ and the rest of its eigenvalues are positive.

The fundamental foliation (reminder)

DEFINITION: Let M be a Vaisman manifold, θ^{\sharp} its Lee field, and Σ a 2dimensional real foliation generated by $\theta^{\sharp}, I\theta^{\sharp}$. It is called **the fundamental foliation** of M. Clearly, Σ is tangent to orbits of the one-parametric group of automorphisms of the covering \tilde{M} generated by homotheties. Therefore, Σ is a holomorphic foliaton.

THEOREM: Let *M* be a compact Vaisman manifold, and $\Sigma \subset TM$ its fundamental foliation. Then

- 1. Σ is independent from the choice of the Vaisman metric.
- 2. There exists a positive, exact (1,1)-form ω_0 with $\Sigma = \ker \omega_0$.
- **3.** For any complex subvariety $Z \subset M$, Z is tangent to Σ .

4. For any compact complex subvariety $Z \subset M$, the set of smooth points of Z is Vaisman.

DEFINITION: A Vaisman manifold M is called **regular**, if the leaves of the fundamental foliation are orbits of the group $(S^1)^2$ freely acting on M, **quasiregular** if these leaves are compact, and **irregular** otherwise.

Orbispaces (reminder)

DEFINITION: Groupoid is a category with all morphisms invertible.

DEFINITION: An action of a group on a manifold is **rigid** if the set of points with trivial stabilizer is dense.

DEFINITION: An orbispace is a topological space M, equipped with a structure of a groupoid (the points of M are objects of the groupoid category), a covering $\{U_i\}$, and continuous maps $\varphi_i : V_i \longrightarrow U_i$, where each V_i is equipped with a rigid action of a finite group G_i , satisfying the following properties.

1. $\varphi_i : V_i \longrightarrow V_i/G_i = U_i$ is the quotient map.

2. For each $x \in M$ and $U_i \ni x$, the group Mor(x, x) is equal to the stabilizer of x in G_i .

REMARK: An orbispace is a topological space, locally obtained as a quotient, with the quotient structure remembered via the groupoid structure.

Orbifolds (reminder)

DEFINITION: An orbifold is an orbispace $(M, \{\varphi_i : V_i \longrightarrow V_i/G_i = U_i\})$, where all V_i are diffeomorphic to open balls in \mathbb{R}^n .

EXAMPLE: Let $M = \mathbb{C}P^1/((x,y) \sim (x,-y))$. This quotient is homeomorphic to $\mathbb{C}P^1$. However, it is a different orbifold if we consider the covering induced from $\mathbb{C}P^1/G$, $G = \{\pm 1\}$ and the groupoid structure where $Mor(x,x) = St_G(x)$.

DEFINITION: A smooth orbifold is an orbifold M equipped with a sheaf of functions $C^{\infty}M$ in such a way that for each $U_i = V_i/G_i$, the corresponding ring of sections $C^{\infty}U_i$ is identified with a ring of G_i -invariant smooth functions on V_i .

DEFINITION: A complex orbifold is an orbifold M equipped with a sheaf of functions \mathcal{O}_M in such a way that each V_i is an open ball in \mathbb{C}^n , and for each $U_i = V_i/G_i$, the corresponding ring of sections \mathcal{O}_{U_i} is identified with a ring of G_i -invariant holomorphic functions on V_i .

Projective orbifolds (reminder)

DEFINITION: An underlying complex variety of a complex orbifold is a complex variety with the topological space M and the structure sheaf \mathcal{O}_M .

DEFINITION: A projective orbifold is a complex orbifold with the underlying complex variety projective.

DEFINITION: A holomorphic vector bundle on a complex orbifold is a G_i -equivariant vector bundle on each V_i , equipped with the G_i -invariant gluing maps satisfying cocycle condition.

THEOREM: (Baily)

Let M be a compact complex orbifold equipped with a holomorphic Hermitian vector bundle L. Assume that the curvature of L is positive definite on all V_i (in this case L is called **positive**). Then M is projective.

W. L. Baily, On the imbedding of V-manifolds in projective spaces, Amer. J. Math. 79 (1957), 403-430.

Sasakian and Vaisman manifolds and their projective orbifolds

THEOREM: Let T^n be a compact torus acting on a manifold M with all orbits of the same dimension. Then M/T^n is an orbifold.

COROLLARY: Let *M* be a quasiregilar Vaisman manifold, Σ its fundamental foliation, and M/Σ the quotient space. Them $X := M/\Sigma$ is a projective orbifold.

Proof: Being a T^2 -quotient, X is an orbifold. Since it is a quotient of a complex space by a complex group action, X is a complex orbifold. By construction, the corresponding conical Kähler manifold \tilde{M} is a total space of \mathbb{C}^* -bundle L (in the orbifold sense). The standard local argument implies that the curvature of L gives a Kähler orbifold metric on X. Baily's theorem implies that X is projective.

COROLLARY: Let S be a quasiregular Sasakian manifold, and Reeb its Reeb field. Then X := S/Reeb is a projective orbifold, and S is a total space of U(1)-bundle over X associated with a positive holomorphic line bundle.

Proof: $S \times S^1$ is Vaisman, and the corresponding fundamental foliation is $TS^1 \times \text{Reeb.} \blacksquare$

Conical Kähler structures and homotheties

Proposition 1: Let (M, ω) be a conical Kähler manifold, and X a vector field acting on M by holomorphic, non-isometric homotheties, such that IX also acts by homotheties, and e^{tX} is defined for any real t. Then

(a) $dd^c \varphi = \omega$, where $\varphi = |X|^2$.

(b) Let $S_X := \varphi^{-1}(1)$. Then S_X is Sasakian,

and M is isometric to $C(S_X)$.

(c) S_X is quasiregular if and only if the action of X integrates to a holomorphic \mathbb{C}^* -action.

Proof. Step 1: Since *X*, *IX* act by homotheties, one has a character $\chi : \langle X, IX \rangle \longrightarrow \mathbb{R}$ such that $\text{Lie}_Z \omega = \chi(Z)\omega$. Replacing *X* by some linear combination of *X*, *IX* if necessary, we may assume that *IX* acts by isometries. Rescaling, we may assume that $\text{Lie}_X g = 2g$.

Step 2: Define $X^{\flat} := g(X, \cdot)$ ("the dual 1-form"). Then $dX^{\flat} = \operatorname{Lie}_{IX} \omega = 0$ and $2X^{\flat} = \operatorname{Lie}_X(X^{\flat}) = d\langle X, X^{\flat} \rangle = d|X|^2$.

Step 3: Lie_X $\omega = 2\omega$, which gives $2\omega = d(\omega \lrcorner X) = d(IX^{\flat}) = 2dId|x|^2$ (last equation is proven in Step 2). This proves Proposition 1 (a).

Conical Kähler structures and homotheties (cont.)

Proposition 1: Let (M, ω) be a conical Kähler manifold, and X a vector field acting on M by holomorphic, non-isometric homotheties, such that IX also acts by homotheties, and e^{tX} is defined for any real t. Then

(a) $dd^c \varphi = \omega$, where $\varphi = |X|^2$.

(b) Let $S_X := \varphi^{-1}(1)$. Then S_X is Sasakian,

and M is isometric to $C(S_X)$.

(c) S_X is quasiregular if and only if the action of X integrates to a holomorphic \mathbb{C}^* -action.

Step 4: Let $M \longrightarrow S_X$ map m to an intersection of $e^{tX}m$ and S_X . This gives a decomposition $M = S_X \times \mathbb{R}^{>0}$, compatible with the conical metric on $S_X \times \mathbb{R}^{>0} = C(S_X)$, as shown in the last lecture using the local decomposition of Vaisman manifolds into a product of a Sasakian manifold and \mathbb{R} .

Step 5: Let *C* be the group generated by e^{tX} , e^{tIX} . Clearly, $C = \mathbb{R}^{>0} \times \{e^{tIX}\}$. The Reeb orbits on S_X are orbits of e^{tIX} , hence they are compact if and only if $\{e^{tIX}\}$ is compact, equivalently, iff $C = \mathbb{C}^*$.

Conical Kähler structures and \mathbb{C}^* -action

REMARK: For each holomorphic isometry h of a Vaisman manifold, h lifts to a conformal automorphism of its Kähler covering. However, **a conformal automorphism of a Kähler manifold is a homothety,** because $d(f\omega) = df \wedge \omega$, and this may vanish only when df = 0.

Theorem 1: Let C(S) be a conical Kähler manifold, h_t the corresponding homothety action, and X its vector field. Then there exists a vector field X_1 arbitrarily close to X acting on C(S) by holomorphic homotheties, with $I(X_1)$ also acting by homotheties, such that the action of X_1 integrates to \mathbb{C}^* -action on C(S).

Proof: Fix some $\lambda > 1$, and let $M := C(S)/h_{\lambda}$ be the corresponding Vaisman manifold, where h_t acts isometrically. Consider the Lie group $G \subset \text{Iso}(M)$ obtained as the closure of $\{h_t\}$. For each vector field $X_1 \in \text{Lie}(G)$, X_1 acts on M by holomorphic isometries, hence it acts on C(S) by homotheties; non-isometrically when X_1 is sufficiently close to X.

Choosing $X' \in \text{Lie}(G)$ rational and sufficiently close to X, we obtain an isometry of M which integrates to a T^2 -action on M and to non-isometric \mathbb{C}^* -action on its cone.

REMARK: By Proposition 1, his gives a new cone structure on C(S).

Density of quasiregular Vaisman manifolds

COROLLARY: Let C(S) be a conical Kähler manifold, with S compact. Then C(S) is holomorphically isometric to a total space of non-zero sections of a positive line bundle over a projective orbifold.

COROLLARY: Any compact Vaisman manifold (M, I) admits a deformation (M, I') which is quasi-regular. Moreover, I' can be chosen arbitrarily close to I.

Proof: Take the conical Kähler manifold C(S), and replace the homothety vector field X by a quasiregular one X'. Then take a quotient $C(S)/\mathbb{Z}$ by \mathbb{Z} acting as $e^{\lambda X'}$.

COROLLARY: Any compact Sasakian manifold (M, I) **admits a deformation** (M, I') which is quasi-regular. Moreover, I' can be chosen arbitrarily close to I.

Immersion of conical Kähler manifolds

COROLLARY: Let C(S) be a conical Kähler manifold. Then there exists a holomorphic immersion $C(S) \longrightarrow C(S^{2n-1})$ equivariant under homothety, with $C(S^{2n-1}) = \mathbb{C}^n \setminus 0$ the standard (flat) cone.

Proof: The manifold C(S) is a space of non-zero vectors in a total space of a positive line bundle L over a projective orbifold X. By Baily's theorem, L^N is very ample, and there exists an embedding $X \stackrel{j}{\hookrightarrow} \mathbb{C}P^{n-1}$ such that $L^N = l^*(\mathcal{O}(1))$. Consider a holomorphic map $\psi_0 : C(S) \longrightarrow \text{Tot}(L^N)$ mapping v to v^N . It is an N-sheeted covering.

Now, define Ψ : $C(S) \longrightarrow C(S^{2n-1})$ as $\Psi(v) := j(\psi_0(v))$. Since ψ_0 is etale and j an embedding, Ψ is an immersion.

Immersion of Vaisman manifolds

DEFINITION: A linear Hopf manifold is a quotient of $\mathbb{C}^n \setminus 0$ by a linear automorphism with all eigenvalues $|\alpha_i| < 1$.

COROLLARY: Let *M* be a quasiregular Vaisman manifold. Then *M* admits an immersion into a linear Hopf manifold.

Proof: Let C(S) be a conical Kähler covering of M. Consider an immersion Ψ : $C(S) \longrightarrow C(S^{2n-1})$, and let γ : $\mathbb{Z} \longrightarrow \operatorname{Aut}(C(S))$ be the homothety action. Since L is γ -equivariant, γ actually induces a linear automorphism Γ of a vector space $\mathbb{C}^n = H^0(L^N)$. Since γ uniformly decreases the norm, the eigenvalues of Γ are all $|\alpha_i| < 1$. This gives a commutative square

$$\begin{array}{cccc} C(S) & \stackrel{\Psi}{\longrightarrow} & C(S^{2n-1}) \\ & & & & & \\ & & & & & \\ M & \longrightarrow & (\mathbb{C}^n \backslash 0) / \langle \Gamma \rangle \end{array}$$

with the bottom arrow holomorphic immersion. \blacksquare

REMARK: In fact, for each Vaisman manifold **there exists an embedding into a linear Hopf manifold.**

Kodaira stability theorem

THEOREM: (Kodaira) Let $\mathcal{X} \xrightarrow{\pi} B$ be a smooth, proper, holomorphic map, and $z \in B$ a point. Assume that the fiber $X_z := \pi^{-1}(z)$ is Kähler (that is, admits Kähler structure). Then there exists a neighbourhood $W \ni z$ such that for each $y \in W$, the fiber $X_y := \pi^{-1}(y)$ is Kähler.

Proof. Step 1: Consider the relative Frölicher spectral sequence

$$R^{i}\pi_{*}(\Omega_{B}^{j}\mathcal{X}) \Rightarrow R^{i+j}\pi_{*}(\mathbb{C}_{\mathcal{X}}) \quad (*)$$

Here $R^{i+j}\pi_*(\mathbb{C}_{\mathcal{X}})$ is the derived pushforward of a constant sheaf (that is, a graded local system over B with the fibers of grading k in $y \in B$ identified with k-th cohomology of X_y), and the E_2 term $R^i\pi_*(\Omega_B^j\mathcal{X})$ is a coherent sheaf obtained as a derived direct image of the fiberwise de Rham algebra $\Omega_B^j\mathcal{X} = \Omega^j(\mathcal{X}/B)$.

It is a relative (over B) version of the usual Frölicher spectral sequence $H^i(\Omega^j M) \Rightarrow H^{i+j}(M, \mathbb{C})$. This spectral sequence gives an inequality

$$\sum_{i+j=k} \dim H^i(\Omega^j X_y) \ge \sum_{i+j=k} \dim H^i(\Omega^j X_z) \quad (**)$$

Kodaira stability theorem (part 2)

Proof. Step 1: Consider the relative Frölicher spectral sequence

$$R^{i}\pi_{*}(\Omega^{j}_{B}\mathcal{X}) \Rightarrow R^{i+j}\pi_{*}(\mathbb{C}_{\mathcal{X}}) \quad (*)$$

This spectral sequence gives an inequality

$$\sum_{i+j=k} \dim H^i(\Omega^j X_y) \ge \sum_{i+j=k} \dim H^i(\Omega^j X_z) \quad (**)$$

Since X_z is Kähler, the Frölicher spectral sequence for X_z degenerates in E_2 , giving $\sum_{i+j=k} \dim H^i(\Omega^j X_z) = h^k(X_z)$. By semicontinuity,

$$\sum_{i+j=k} \dim H^i(\Omega^j X_y) \leq \sum_{i+j=k} \dim H^i(\Omega^j X_z)$$

in a sufficiently small neighbourhood U of z. Comparing this with (**), we find that rank of $H^i(\Omega^j X_y)$ is constant in U, hence the inequality (**) is equality in U, and the spectral sequence (*) degenerates.

Kodaira stability theorem (part 3)

Step 2: Consider the sheaf $\mathcal{H} := R^1 \pi_*(\Omega_B^1 \mathcal{X})$. It is a coherent sheaf with fiber $H^{1,1}(X_y)$ at each $y \in B$. From Step 1, we obtain that \mathcal{H} is locally free in U, and generated by fiberwise closed (1,1)-forms. Let $\Lambda_{cl}^{1,1}(\mathcal{X}/B)$ be the sheaf of fiberwise closed vertical forms on \mathcal{X} , and $\pi_* \Lambda_{cl}^{1,1}(\mathcal{X}/B) \xrightarrow{\Xi} \mathcal{H}$ the natural projection. Choose a Hermitian metric on \mathcal{X} , smoothly extending the Kähler metric ω_z on X_z , and let $\mathcal{H} \xrightarrow{\Xi^*} \pi_* \Lambda_{cl}^{1,1}(\mathcal{X}/B)$ be the Hermitian conjugate map. By construction, Ξ^* is an orthogonal projection of cohomology to closed (1,1)-forms along exact 2-forms. Therefore, Ξ^* maps the Kähler class $[\omega_z]$ to its harmonic representative ω_z .

Step 3: Let $\tilde{\omega}$ be a smooth section of \mathcal{H} satisfying $\tilde{\omega}|_z = [\omega_z]$. Then $\Xi^*(\tilde{\omega})$ is a family of closed forms $\omega_y \in \Lambda_{cl}^{1,1}(X_y)$, depending smoothly on $y \in B$. Since all eigenvalues of ω_z are positive, the same is true for ω_y for y sufficiently close to z. However, a closed, positive (1, 1)-form is Kähler.

REMARK: Neither Vaisman manifolds nor LCK manifolds are stable under small deformations. However, a small deformation of Vaisman manifolds in LCK. Next lecture I will define a new class of LCK manifolds, called LCK manifolds with potential which is stable under small deformations and contains Vaisman manfilds.