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LCK manifolds (reminder)

DEFINITION: Let (M, I,w) be a Hermitian manifold, dim¢ M > 1. Then M
is called locally conformally Kahler (LCK) if dw = w A8, where 6 is a closed
1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kahler iff it admits a
Kahler form taking values in a positive, flat vector bundle L, called the weight
bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M — M
are elements of the group Auty/(M). When M is a universal cover, one
has Aut,;(M) = 1 (M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-
versal cover M is equipped with a Kidhler form &, and the deck transform acts
on M by Kihler homotheties.

THEOREM: These three definitions are equivalent.
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Conical Kahler manifolds (reminder)

DEFINITION: Let (X,g) be a Riemannian manifold, and C(X) := X x R>0,
with the metric t2g 4 dt2, where t is a coordinate on R>9. Then C(X) is
called Riemannian cone of X. Multiplicative group R>° acts on C(X) by
homotheties, (m,t) — (m, A\t).

DEFINITION: Let (X,g) be a Riemannian manifold, C(X) := X x R>0
its Riemannian cone, and h, the homothety action. Assume that (X, g) is
equipped with a complex structure, in such a way that g is Kahler, and h
acts holomorphically. Then C(X) is called a conical Kahler manifold. In
this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic
structure on C(X), and hy, acting by homotheties. In particular, Sasakian
manifolds are contact. Sasakian geometry is an odd-dimensional coun-
terpart to Kahler geometry

EXAMPLE: Let L be a positive holomorphic line bundle on a projective
manifold. Then the total space of its unit Sl_fibration is Sasakian.
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Vaisman manifolds (reminder)

EXAMPLE: For any given A € R>!, the quotient C(X)/h, of a conical
Kahler manifold is locally conformally Kahler.

DEFINITION: An LCK manifold (M, g,w,0) is called Vaisman if V6 = 0,
where V is the Levi-Civita connection associated with g.

THEOREM: Let M be a Vaisman manifold, M its covering: the pullback of
the Lee form 0 to M is denoted by the same letter §. Assume that diy = 6 on
M (such 1 exists, for example, if M is a universal cover of M). Consider the
form & ;= e %w. Then (M,) is a Kahler manifold, isometric to a cone.

THEOREM: Every Vaisman manifold is obtained as C(X)/Z, where X is
Sasakian, Z = <(:L',t) —> (go(:v),qt)>, g > 1, and ¢ is a Sasakian automorphism

of X. Moreover, the triple (X, ¢, q) is unique.
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Kahler potentials and plurisubharmonic functions (reminder)

DEFINITION: A real-valued smooth function on a complex manifold is
called plurisubharmonic (psh) if the (1,1)-form dd°¢f is positive, and strictly
plurisubharmonic if dd°f is an Hermitian form.

REMARK: Since dd°f is always closed, it is also Kahler when it is strictly
positive.

DEFINITION: Let (M,I,w) be a Kahler manifold. Kahler potential is a
function f such that dd°f = w.

THEOREM: Let S be a Sasakian manifold, C(S) = S x R>Y its cone, ¢ the
coordinate along the second variable, and r = t%. Then t2 is a Kahler
potential on C(S).
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Deformational stability of LCK manifolds

DEFINITION: Let 2 be a property of compact complex manifolds, and
X -3 B a smooth, proper map, that is, a smooth family of compact man-
ifolds. We say that 2 is stable under small deformations if the set of all
z € B such that X, := 7 1(2) has 2 is open in B.

EXAMPLE: Property of admitting a Kahler metric is stable under small de-
formations ( “Kodaira stability theorem” ). One also says ‘“Kahler manifolds
are stable with respect to small deformations”, or a small deformation
of Kahler manifold is again Kahler.

EXAMPLE: Call a complex manifold Hermitian symplectic if it admits a
symplectic form w such that its (1, 1)-part is Hermitian.

EXERCISE: Prove that a small deformation of a Hermitian symplectic
manifold is again Hermitian symplectic

OBSERVATION: LCK manifolds are not stable with respect to small
deformations (Belgun). Also, Vaisman manifolds are not stable with
respect to small deformations.
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Deformations of Vaisman manifolds: automorphic forms and functions

Theorem 1: Let X -=s B bea smooth, proper, holomorphic map, and z € B
a point. Assume that the fiber X, := 7=~ 1(2) is Vaisman (that is, admits a
Vaisman metric). Then there exists a neighbourhood W > z such that
for each y ¢ W, the fiber X, := 7~ 1(y) is LCK.

For the proof, see the next slide.

DEFINITION: Let M be an LCK manifold, (M, w) is Kahler covering, equipped
with an action of 71(M), and x : m1(M) — R>Y the weight character, or
the character of automorphy which puts v € w1(M) to a number 7 © Its
image I C R>0 is called the monodromy group of an LCK manlfold M.
We shall always chose M in such a way that I acts on M and M = M/I‘.

DEFINITION: Let M be a manifold, M its Galois covering. A form n on M
is called automorphic if for any v € 71 (M) actlng on M as usual, the form
v*n is proportional to n. The character xn(v) := % is called the character
of automorphy for n.

EXAMPLE: Let M be a Vaisman manifold, M = C(S) its Kahler covering,
and ¢ = t2 its Kdhler potential. Then ¢ is an automorphic function.
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Deformations of Vaisman manifolds

Theorem 1: Let X -=s B be a smooth, proper, holomorphic map, and z € B
a point. Assume that the fiber X, := n#—1(2) is Vaisman (that is, admits a
Vaisman metric). Then there exists a neighbourhood W > z such that
for each y ¢ W, the fiber X, := 7~ 1(y) is LCK.

Proof. Step 1: Let X, = C(S) be a conical Kihler covering of X,. By
Ehresmann fibration theorem, = is a locally trivial fibration. Replacing B by a
sufficiently small open neighbourhood of z, we may assume that =« is trivial
as a smooth fibration: X = X, x B. Consider a covering X — X with
X = X, x B, and let X, denote the fibers of the projection ¥ —— B.

Proof. Step 2: Let ¢ be the automorphic Kahler potential of X, = C(S).
Extend ¢ to X = X, x B using the projection X — X,. Restricting ¢ to
Xy C X, we obtain an automorphic function ¢, on any X,.

Proof. Step 3: The form dd°p, is closed, automorphic and of type (1,1).
T herefore, Xy is LCK whenever the pseudo-Hermitian form ddpy is positive
definite. However, the complex structure on X, smoothly depends on y € B,
hence the function y — dd“py is continuous, and its eigenvalues continuously
depend on y € B. Therefore, for y sufficiently close to z, these eigenvalues
remain positive, and ¢y gives an automorphic Kahler potential. m
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LCK manifolds with potential

DEFINITION: Let M be an LCK manifold, and (M, &) its Kahler covering.
It is called LCK manifold with potential if M admits an automorphic Kahler
potential ¢ : M —5 R>9, dd°p = &, which is proper (preimage of a compact
iS again compact).

EXAMPLE: Vaisman manifold is an example of an LCK manifold with po-
tential.

REMARK: The property of being LCK with potential is stable under
small deformations (Theorem 1; same proof).

REMARK: For any complex submanifold Z € M of an LCK manifold with
potential, Z is also an LCK manifold with potential.
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Monodromy group of LCK manifolds with potential

PROPOSITION: Let M be an LCK manifold, ' ¢ R>9 the monodromy
group, and (M,&%) its Kdhler covering, with M/ = M. Assume that &
admits a [-automorphic Kahler potential ¢. The map ¢ is proper if and
only if I = Z.

Proof. [ =7 = ¢ IS proper:
Let v be a generator of Z, such that v*¢ = Xp, and 7 : M — M/ = M
the quotient map. Then ¢~ 1([1,\]) is a fundamental domain of -action.
Therefore 7 : o~ 1([1,VA]) — M is bijective onto its image, which is compact,
hence »~1([1,v/A]) is also compact. This implies that preimage of any
closed interval is compact.

Proof. ¢ Is proper = [ = Z:

Assume ~ # Z: then I is a dense subgroup of R>Y, Fix = € M and
nonempty interval Ja,b[C R™O, and let $§ C I be the set of all v € I such
that o(y(x)) €]a,b[ Since I' is dense, $ is infinite. However, o($ - x) C [a,b],
hence an infinite discrete set § -z is contained in a compact ¢ 1([a,b]).
Contradiction! =
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Linear Hopf manifold

DEFINITION: Let A € End(C™) be an invertible linear endomorphism with
all eigenvalues |o;| < 1. The quotient H := (C™\0)/(A) is called a linear
Hopf manifold. When A can be diagonalized, H is called a diagonal Hopf
manifold.

THEOREM: A linear Hopf manifold is LCK with potential.

Proof in lecture 10.

THEOREM: Let M be an LCK manifold with potential, dim¢c M > 2. Then
M admits a holomorphic embedding to a linear Hopf manifold.

Proof in lecture 9.
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Stein manifolds.

DEFINITION: A complex variety M is called holomorphically convex if
for any infinite discrete subset S C M, there exists a holomorphic function
f € O which is unbounded on S.

DEFINITION: A complex variety is called Stein if it is holomorphically con-
vex, and has no compact complex subvarieties.

REMARK: Equivalently, a complex variety is Stein if it admits a closed
holomorphic embedding into C".

THEOREM: (K. Oka, 1942) A complex manifold M is Stein if and only
M admits a Kahler metric with a Kahler potential which is positive and
proper (proper = preimages of compact sets are compact).

THEOREM: (H. Cartan, 1951) A complex variety M is Stein if and only if
for any coherent sheaf F on M, its cohomology H*(F) vanish for all i > 0.
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Rossi-Andreotti-Siu theorem.

THEOREM: (Rossi 1965, Andreotti-Siu 1970)

Let M be a complex manifold with boundary, dimgc M > 2, and ¢ a proper
Kahler potential on M, taking values in [a, o[, and equal to c in the boundary
of M. Then there exists a Stein variety M, with isolated singularities,
obtained by gluing a compact domain to M, and it is unique. Moreover, any
holomorphic function on M can be extended to M,.

Theorem 2: Let M be an LCK manifold with potential, and M its Kahler
Z-covering. Then a metric completion M. admits a structure of a complex
manifold, compatible with the complex structure on M C M,.

For the proof see the end of this lecture.

DEFINITION: In assumptions of Theorem 2, the manifold M. is called the

cone of an LCK manifold with potential.
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Cone of an LCK manifold with potential.

Theorem 2: Let M be an LCK manifold with potential, and M its Kahler
Z-covering. Then a metric completion M. admits a structure of a complex
manifold, compatible with the complex structure on M C M..

Claim 1: The complement M.\M is just one point, called the origin.

Proof: Indeed, let z; = ~"i(z;) be a sequence of points in M, with each z; in
the fundamental domain ¢~ 1([1, A]) of the ' = Z-action. Clearly, the distance
between two fundamental domains M,, := v"o1([1,A]) = o~ 1([A\", \»11]) and
Mn—l—k—I—Q = ’yn+k+2g0_1([1, A]) is written as

k
d(Mp, My 1 10) = Y A"l (%)
i=0
where v is a distance between Mg and M>. Then, z;, may converge only if
lim;n, = —oo or if all n;, except finitely many, belong to a set (p,p+ 1) for

some p. The second case is irrelevant, because each M; is compact, and in
the first case, {z;} is always a Cauchy sequence, as follows from (*). All such
{z;} are therefore equivalent, hence converge to the same point in the
metric completion. =
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Normal families of functions

DEFINITION: Let M be a complex manifold, and F a family of holomorphic
functions f; € H9(O,;). We call F a normal family if for each compact
K C M there exists Cx > 0 such that for each f € F, supg |f| < Ck.

LEMMA: Let M be a complex Hermitian manifold, F ¢ H(®,,;) a normal
family, and K C M a compact. Then there exists a number Ay > 0 such
that supg |f/| < Ak.

Proof: Assume otherwise. Then there exists x € K, v el M, and a sequence

fi € F such that lim;|Dyf;| = co. Pick a disk A Jy M with compact closure
in M, tangent to v in z, such that j(0) = z. Let w = tv be the unit tangent
vector. Then supa |fi| < Ca by the normal family condition. By Schwartz
lemma, this implies |Dy f;| < Ca. However, t=11im; |Dyf;| = lim;|Dyf;| = oo
— contradiction. =
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CO-topology on functions

DEFINITION: Let C(M) be the space of functions on a topological space.
Topology of uniform convergence on compacts (also known as compact-
open topology; usually denoted as C9) is a topology on C(M) where a base
of open sets is given by

UX,C):={feC(M) | Sg{plfl < CY,

for all compacts K C M and C' > 0. A sequence f; of functions converges to
f if it converges to f uniformly on all compacts.

REMARK: When M is locally compact, any sequence of continuous functions
converging in CY converges to a continuous function (prove it!)

REMARK: In a similar way one defines C°-topology on the space of
sections of a bundle.
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Cl-topology

DEFINITION: Let B be a vector bundle on a smooth manifold M, and
V : B— B ® A'M a connection. Define Cl-topology on the space of
sections of B (denoted, as usual, by the same letter B) as one where a sub-
base of open sets is given by Co—open sets on B and V‘l(W), where W is an
open set in CO%-topology in B® AL M.

REMARK: A sequence f; converges in Cl-topology if it converges uniformly
on all compacts, and first derivatives fi’ also converge uniformy on all com-

pacts. This can be seen as a definition of Cl-topology.

EXERCISE: Prove that Cl—topology IS independent from the choice of
a connection.

EXERCISE: Prove that the topological vector space C1M of 1-differentialble
functions on a manifold is complete in Cl-topology.
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Arzela-Ascoli theorem for normal families

THEOREM: Let M be a complex manifold and F ¢ H9(®j,) a normal family
of functions. Denote by F its closure in C9-topology. Then F is compact
and contained in H°(O;,).

Proof. Step 1: Let {f;} be a sequence of functions in F. By Tychonoff
theorem, for each compact K, there is a subsequence of {f;} which converges
pointwise on a dense countable subset Z C K. Taking diagonal subsequence,
we find a subsequence {fp.} C {f;} which converges pointwise on a dense
countable subset Z C M. Since |f7f| is uniformly bounded on compacts, the
limit f := lim; f; is Lipschitz on all compact subsets of M. Then it is con-
tinuous, because a pointwise limit of Lipschitz functions is again Lipschitz.

Step 2: Since |f/| is uniformly bounded on compacts, we can assume that f/
also converges pointwise in Z, and f ;= lim; f; is differentiable. Since a limit
of complex-linear operators is complex linear, Df is complex linear, and f is
holomorphic. This implies that F N H(©,,) is compact. =
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Metric completion of a Z-covering

THEOREM: (Rossi 1965, Andreotti-Siu 1970)

Let M be a complex manifold with boundary, dimgc M > 2, and ¢ a proper
Kahler potential on M, taking values in [a, oo[, and equal to a in the boundary
of M. Then there exists a Stein variety M, with isolated singularities,
obtained by gluing a compact domain to M, and it is unique. Moreover, any
holomorphic function on M can be extended to M,.

Theorem 2: Let M be an LCK manifold with potential ¢ : M —>R>O, where
M is its Kadhler Z-covering. Then a metric completion M, admits a structure
of a complex manifold, compatible with the complex structure on M C M,.

Proof. Step 1: Apply Rossi-Andreotti-Siu to ¢~ 1([a, co[), we obtain a Stein
variety M, containing ¢~ 1([a,oo[). Since M, contains ¢ 1([ay,[) for any
a1 > a, and the Rossi-Andreotti-Siu variety is unique, one has M, = Mg;.
This implies that M, =: M, is independent from the choice of a ¢ R>0,

It remains to identify M. with a metric completion of M. By Claim 1,
this is equivalent to the complement 1.\M being a one-point set.
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Metric completion of a Z-covering (part 2)

Theorem 2: Let M be an LCK manifold with potential ¢ : M — R>9, where
M is its K&hler Z-covering. Then a metric completion M. admits a structure
of a complex manifold, compatible with the complex structure on M C M..

It remains to identify M. with a metric completion of M. By Claim 1,
this is equivalent to the complement M.\ M being a one-point set.

Step 2: The monodromy group I = Z acts on M. by holomorphic
automorphisms. Indeed, any holomorphic function (hence, any holomorphic
map) can be extended from M to M. uniquely.

Step 3: Denote by v the generator of ' which decreases the metric by A < 1,
and let N2 be a Stein variety associated with »=1(]0,a]) C M as above. Since
(M%) = M}e, for any holomorphic function f on M., one has

sup |f(7"(2))l = sup [f(2)| < sup [£(2)].
zEMZ zENAN"a zEMZ

Therefore, {f(y"(z))} is a normal family.
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Metric completion of a Z-covering (part 3)

Step 3: Denote by v the generator of ' which decreases the metric by A < 1,
and let M% be a Stein variety associated with »—1(]0,a]) C M as above. Since
~v(M%) = N2®, for any holomorphic function f on M., one has

sup [f(v"(2))[ = sup If(Z)\ < sup |f(2)].

zeME 2€MAN" zeMZ
Therefore, {f(7"(z))} is a normal family.

Step 4: Let f, be any limit point of the sequence {f(7y"(z))}. Since the se-
quence t; ;= sup Le N |f(2)] is non-increasing, it converges, and SUP ¢ ra fiim =

limt;. Similarly, sup,, e N fim = limt;. By strong maximum principle, a non-
constant holomorphlc function on a complex manifold with boundary
cannot have local maxima (even non-strict) outside of the boundary.
Since M2® does not intersect the boundary of M2, the function f;,, must be
constant.

Step 5: Consider now the complement V := MM, and suppose it has
two distinct points x and y. Let f be a holomorphic function which satisfy
f(x) #= f(y). Replacing f by an exponent of uf if necessarily, we may assume
that |f(x)| < |f(y). Since ~ fixes Z, which is compact, for any limit f;,, of
the sequence {f(v"(z))}, supremum f; on Z is not equal to infimum
of fi, on Z. This is impossible, hence f = const on V, and V is one point. m

21



