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LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, dimCM > 1. Then M

is called locally conformally Kähler (LCK) if dω = ω∧ θ, where θ is a closed

1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kähler iff it admits a

Kähler form taking values in a positive, flat vector bundle L, called the weight

bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M̃ −→M

are elements of the group AutM(M̃). When M̃ is a universal cover, one

has AutM(M̃) = π1(M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-

versal cover M̃ is equipped with a Kähler form ω̃, and the deck transform acts

on M̃ by Kähler homotheties.

THEOREM: These three definitions are equivalent.
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Conical Kähler manifolds (reminder)

DEFINITION: Let (X, g) be a Riemannian manifold, and C(X) := X ×R>0,

with the metric t2g + dt2, where t is a coordinate on R>0. Then C(X) is

called Riemannian cone of X. Multiplicative group R>0 acts on C(X) by

homotheties, (m, t)−→ (m,λt).

DEFINITION: Let (X, g) be a Riemannian manifold, C(X) := X × R>0

its Riemannian cone, and hλ the homothety action. Assume that (X, g) is

equipped with a complex structure, in such a way that g is Kähler, and hλ
acts holomorphically. Then C(X) is called a conical Kähler manifold. In

this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic

structure on C(X), and hλ acting by homotheties. In particular, Sasakian

manifolds are contact. Sasakian geometry is an odd-dimensional coun-

terpart to Kähler geometry

EXAMPLE: Let L be a positive holomorphic line bundle on a projective

manifold. Then the total space of its unit S1-fibration is Sasakian.
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Vaisman manifolds (reminder)

EXAMPLE: For any given λ ∈ R>1, the quotient C(X)/hλ of a conical

Kähler manifold is locally conformally Kähler.

DEFINITION: An LCK manifold (M, g, ω, θ) is called Vaisman if ∇θ = 0,

where ∇ is the Levi-Civita connection associated with g.

THEOREM: Let M be a Vaisman manifold, M̃ its covering; the pullback of

the Lee form θ to M̃ is denoted by the same letter θ. Assume that dψ = θ on

M̃ (such ψ exists, for example, if M̃ is a universal cover of M). Consider the

form ω̃ := e−ψω. Then (M̃, ω̃) is a Kähler manifold, isometric to a cone.

THEOREM: Every Vaisman manifold is obtained as C(X)/Z, where X is

Sasakian, Z =

〈
(x, t) 7→ (ϕ(x), qt)

〉
, q > 1, and ϕ is a Sasakian automorphism

of X. Moreover, the triple (X,ϕ, q) is unique.
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Kähler potentials and plurisubharmonic functions (reminder)

DEFINITION: A real-valued smooth function on a complex manifold is

called plurisubharmonic (psh) if the (1,1)-form ddcf is positive, and strictly

plurisubharmonic if ddcf is an Hermitian form.

REMARK: Since ddcf is always closed, it is also Kähler when it is strictly

positive.

DEFINITION: Let (M, I, ω) be a Kähler manifold. Kähler potential is a

function f such that ddcf = ω.

THEOREM: Let S be a Sasakian manifold, C(S) = S × R>0 its cone, t the

coordinate along the second variable, and r = t ddt. Then t2 is a Kähler

potential on C(S).
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Deformational stability of LCK manifolds

DEFINITION: Let A be a property of compact complex manifolds, and

X π−→ B a smooth, proper map, that is, a smooth family of compact man-

ifolds. We say that A is stable under small deformations if the set of all

z ∈ B such that Xz := π−1(z) has A is open in B.

EXAMPLE: Property of admitting a Kähler metric is stable under small de-

formations (“Kodaira stability theorem”). One also says “Kähler manifolds

are stable with respect to small deformations”, or a small deformation

of Kähler manifold is again Kähler.

EXAMPLE: Call a complex manifold Hermitian symplectic if it admits a

symplectic form ω such that its (1,1)-part is Hermitian.

EXERCISE: Prove that a small deformation of a Hermitian symplectic

manifold is again Hermitian symplectic

OBSERVATION: LCK manifolds are not stable with respect to small

deformations (Belgun). Also, Vaisman manifolds are not stable with

respect to small deformations.
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Deformations of Vaisman manifolds: automorphic forms and functions

Theorem 1: Let X π−→ B be a smooth, proper, holomorphic map, and z ∈ B
a point. Assume that the fiber Xz := π−1(z) is Vaisman (that is, admits a
Vaisman metric). Then there exists a neighbourhood W 3 z such that
for each y ∈W , the fiber Xy := π−1(y) is LCK.

For the proof, see the next slide.

DEFINITION: Let M be an LCK manifold, (M̃, ω) is Kähler covering, equipped
with an action of π1(M), and χ : π1(M)−→ R>0 the weight character, or
the character of automorphy which puts γ ∈ π1(M) to a number γ∗ω̃

ω̃ . Its
image Γ ⊂ R>0 is called the monodromy group of an LCK manifold M .
We shall always chose M̃ in such a way that Γ acts on M̃ and M = M̃/Γ.

DEFINITION: Let M be a manifold, M̃ its Galois covering. A form η on M̃

is called automorphic if for any γ ∈ π1(M) acting on M̃ as usual, the form
γ∗η is proportional to η. The character χη(γ) := γ∗η̃

η̃ is called the character
of automorphy for η.

EXAMPLE: Let M be a Vaisman manifold, M̃ = C(S) its Kähler covering,
and ϕ = t2 its Kähler potential. Then ϕ is an automorphic function.
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Deformations of Vaisman manifolds

Theorem 1: Let X π−→ B be a smooth, proper, holomorphic map, and z ∈ B
a point. Assume that the fiber Xz := π−1(z) is Vaisman (that is, admits a
Vaisman metric). Then there exists a neighbourhood W 3 z such that
for each y ∈W , the fiber Xy := π−1(y) is LCK.

Proof. Step 1: Let X̃z = C(S) be a conical Kähler covering of Xz. By
Ehresmann fibration theorem, π is a locally trivial fibration. Replacing B by a
sufficiently small open neighbourhood of z, we may assume that π is trivial
as a smooth fibration: X = Xz × B. Consider a covering X̃ −→X with
X̃ = X̃z ×B, and let X̃y denote the fibers of the projection X̃ π̃−→ B.

Proof. Step 2: Let ϕ be the automorphic Kähler potential of X̃z = C(S).
Extend ϕ to X̃ = X̃z × B using the projection X̃ −→ X̃z. Restricting ϕ to
X̃y ⊂ X̃ , we obtain an automorphic function ϕy on any X̃y.

Proof. Step 3: The form ddcϕy is closed, automorphic and of type (1,1).
Therefore, X̃y is LCK whenever the pseudo-Hermitian form ddcϕy is positive
definite. However, the complex structure on Xy smoothly depends on y ∈ B,
hence the function y −→ ddcϕy is continuous, and its eigenvalues continuously
depend on y ∈ B. Therefore, for y sufficiently close to z, these eigenvalues
remain positive, and ϕy gives an automorphic Kähler potential.
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LCK manifolds with potential

DEFINITION: Let M be an LCK manifold, and (M̃, ω̃) its Kähler covering.

It is called LCK manifold with potential if M̃ admits an automorphic Kähler

potential ϕ : M̃ −→ R>0, ddcϕ = ω̃, which is proper (preimage of a compact

is again compact).

EXAMPLE: Vaisman manifold is an example of an LCK manifold with po-

tential.

REMARK: The property of being LCK with potential is stable under

small deformations (Theorem 1; same proof).

REMARK: For any complex submanifold Z ⊂ M of an LCK manifold with

potential, Z is also an LCK manifold with potential.
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Monodromy group of LCK manifolds with potential

PROPOSITION: Let M be an LCK manifold, Γ ⊂ R>0 the monodromy

group, and (M̃, ω̃) its Kähler covering, with M̃/Γ = M . Assume that ω̃

admits a Γ-automorphic Kähler potential ϕ. The map ϕ is proper if and

only if Γ = Z.

Proof. Γ = Z ⇒ ϕ is proper:

Let γ be a generator of Z, such that γ∗ϕ = λϕ, and π : M̃ −→ M̃/Γ = M

the quotient map. Then ϕ−1([1, λ[) is a fundamental domain of Γ-action.

Therefore π : ϕ−1([1,
√
λ])−→M is bijective onto its image, which is compact,

hence ϕ−1([1,
√
λ]) is also compact. This implies that preimage of any

closed interval is compact.

Proof. ϕ is proper ⇒ Γ = Z:

Assume γ 6= Z; then Γ is a dense subgroup of R>0. Fix x ∈ M̃ and

nonempty interval ]a, b[⊂ R>0, and let H ⊂ Γ be the set of all γ ∈ Γ such

that ϕ(γ(x)) ∈]a, b[ Since Γ is dense, H is infinite. However, ϕ(H · x) ⊂ [a, b],

hence an infinite discrete set H · x is contained in a compact ϕ−1([a, b]).

Contradiction!
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Linear Hopf manifold

DEFINITION: Let A ∈ End(Cn) be an invertible linear endomorphism with

all eigenvalues |αi| < 1. The quotient H := (Cn\0)/〈A〉 is called a linear

Hopf manifold. When A can be diagonalized, H is called a diagonal Hopf

manifold.

THEOREM: A linear Hopf manifold is LCK with potential.

Proof in lecture 10.

THEOREM: Let M be an LCK manifold with potential, dimCM > 2. Then

M admits a holomorphic embedding to a linear Hopf manifold.

Proof in lecture 9.
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Stein manifolds.

DEFINITION: A complex variety M is called holomorphically convex if

for any infinite discrete subset S ⊂ M , there exists a holomorphic function

f ∈ OM which is unbounded on S.

DEFINITION: A complex variety is called Stein if it is holomorphically con-

vex, and has no compact complex subvarieties.

REMARK: Equivalently, a complex variety is Stein if it admits a closed

holomorphic embedding into Cn.

THEOREM: (K. Oka, 1942) A complex manifold M is Stein if and only

M admits a Kähler metric with a Kähler potential which is positive and

proper (proper = preimages of compact sets are compact).

THEOREM: (H. Cartan, 1951) A complex variety M is Stein if and only if

for any coherent sheaf F on M , its cohomology Hi(F ) vanish for all i > 0.
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Rossi-Andreotti-Siu theorem.

THEOREM: (Rossi 1965, Andreotti-Siu 1970)

Let M be a complex manifold with boundary, dimCM > 2, and ϕ a proper

Kähler potential on M , taking values in [a,∞[, and equal to c in the boundary

of M . Then there exists a Stein variety Ma with isolated singularities,

obtained by gluing a compact domain to M , and it is unique. Moreover, any

holomorphic function on M can be extended to Ma.

Theorem 2: Let M be an LCK manifold with potential, and M̃ its Kähler

Z-covering. Then a metric completion M̃c admits a structure of a complex

manifold, compatible with the complex structure on M̃ ⊂ M̃c.

For the proof see the end of this lecture.

DEFINITION: In assumptions of Theorem 2, the manifold M̃c is called the

cone of an LCK manifold with potential.
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Cone of an LCK manifold with potential.

Theorem 2: Let M be an LCK manifold with potential, and M̃ its Kähler

Z-covering. Then a metric completion M̃c admits a structure of a complex

manifold, compatible with the complex structure on M̃ ⊂ M̃c.

Claim 1: The complement M̃c\M̃ is just one point, called the origin.

Proof: Indeed, let zi = γni(xi) be a sequence of points in M̃ , with each xi in

the fundamental domain ϕ−1([1, λ]) of the Γ = Z-action. Clearly, the distance

between two fundamental domains Mn := γnϕ−1([1, λ]) = ϕ−1([λn, λn+1]) and

Mn+k+2 = γn+k+2ϕ−1([1, λ]) is written as

d(Mn,Mn+k+2) =
k∑
i=0

λn+iv, (∗)

where v is a distance between M0 and M2. Then, zi may converge only if

limi ni = −∞ or if all ni, except finitely many, belong to a set (p, p + 1) for

some p. The second case is irrelevant, because each Mi is compact, and in

the first case, {zi} is always a Cauchy sequence, as follows from (*). All such

{zi} are therefore equivalent, hence converge to the same point in the

metric completion.
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Normal families of functions

DEFINITION: Let M be a complex manifold, and F a family of holomorphic

functions fi ∈ H0(OM). We call F a normal family if for each compact

K ⊂M there exists CK > 0 such that for each f ∈ F, supK |f | 6 CK.

LEMMA: Let M be a complex Hermitian manifold, F ⊂ H0(OM) a normal

family, and K ⊂ M a compact. Then there exists a number AK > 0 such

that supK |f ′| 6 AK.

Proof: Assume otherwise. Then there exists x ∈ K, v ∈ TxM , and a sequence

fi ∈ F such that limi |Dvfi| = ∞. Pick a disk ∆
j
↪→ M with compact closure

in M , tangent to v in x, such that j(0) = x. Let w = tv be the unit tangent

vector. Then sup∆ |fi| < C∆ by the normal family condition. By Schwartz

lemma, this implies |Dwfi| < C∆. However, t−1 limi |Dwfi| = limi |Dvfi| =∞
– contradiction.
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C0-topology on functions

DEFINITION: Let C(M) be the space of functions on a topological space.

Topology of uniform convergence on compacts (also known as compact-

open topology; usually denoted as C0) is a topology on C(M) where a base

of open sets is given by

U(X,C) := {f ∈ C(M) | sup
K
|f | < C},

for all compacts K ⊂ M and C > 0. A sequence fi of functions converges to

f if it converges to f uniformly on all compacts.

REMARK: When M is locally compact, any sequence of continuous functions

converging in C0 converges to a continuous function (prove it!)

REMARK: In a similar way one defines C0-topology on the space of

sections of a bundle.
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C1-topology

DEFINITION: Let B be a vector bundle on a smooth manifold M , and

∇ : B −→B ⊗ Λ1M a connection. Define C1-topology on the space of

sections of B (denoted, as usual, by the same letter B) as one where a sub-

base of open sets is given by C0-open sets on B and ∇−1(W ), where W is an

open set in C0-topology in B ⊗ Λ1M .

REMARK: A sequence fi converges in C1-topology if it converges uniformly

on all compacts, and first derivatives f ′i also converge uniformy on all com-

pacts. This can be seen as a definition of C1-topology.

EXERCISE: Prove that C1-topology is independent from the choice of

a connection.

EXERCISE: Prove that the topological vector space C1M of 1-differentialble

functions on a manifold is complete in C1-topology.
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Arzelà-Ascoli theorem for normal families

THEOREM: Let M be a complex manifold and F ⊂ H0(OM) a normal family

of functions. Denote by F its closure in C0-topology. Then F is compact

and contained in H0(OM).

Proof. Step 1: Let {fi} be a sequence of functions in F. By Tychonoff

theorem, for each compact K, there is a subsequence of {fi} which converges

pointwise on a dense countable subset Z ⊂ K. Taking diagonal subsequence,

we find a subsequence {fpi} ⊂ {fi} which converges pointwise on a dense

countable subset Z ⊂ M . Since |f ′i| is uniformly bounded on compacts, the

limit f := limi fi is Lipschitz on all compact subsets of M . Then it is con-

tinuous, because a pointwise limit of Lipschitz functions is again Lipschitz.

Step 2: Since |f ′i| is uniformly bounded on compacts, we can assume that f ′i
also converges pointwise in Z, and f := limi fi is differentiable. Since a limit

of complex-linear operators is complex linear, Df is complex linear, and f is

holomorphic. This implies that F ∩H0(OM) is compact.
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Metric completion of a Z-covering

THEOREM: (Rossi 1965, Andreotti-Siu 1970)

Let M be a complex manifold with boundary, dimCM > 2, and ϕ a proper

Kähler potential on M , taking values in [a,∞[, and equal to a in the boundary

of M . Then there exists a Stein variety Ma with isolated singularities,

obtained by gluing a compact domain to M , and it is unique. Moreover, any

holomorphic function on M can be extended to Ma.

Theorem 2: Let M be an LCK manifold with potential ϕ : M̃ −→ R>0, where

M̃ is its Kähler Z-covering. Then a metric completion M̃c admits a structure

of a complex manifold, compatible with the complex structure on M̃ ⊂ M̃c.

Proof. Step 1: Apply Rossi-Andreotti-Siu to ϕ−1([a,∞[), we obtain a Stein

variety M̃a containing ϕ−1([a,∞[). Since M̃a contains ϕ−1([a1,∞[) for any

a1 > a, and the Rossi-Andreotti-Siu variety is unique, one has M̃a = M̃a1.

This implies that M̃a =: M̃c is independent from the choice of a ∈ R>0.

It remains to identify M̃c with a metric completion of M̃. By Claim 1,

this is equivalent to the complement M̃c\M̃ being a one-point set.
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Metric completion of a Z-covering (part 2)

Theorem 2: Let M be an LCK manifold with potential ϕ : M̃ −→ R>0, where

M̃ is its Kähler Z-covering. Then a metric completion M̃c admits a structure

of a complex manifold, compatible with the complex structure on M̃ ⊂ M̃c.

It remains to identify M̃c with a metric completion of M̃. By Claim 1,

this is equivalent to the complement M̃c\M̃ being a one-point set.

Step 2: The monodromy group Γ = Z acts on M̃c by holomorphic

automorphisms. Indeed, any holomorphic function (hence, any holomorphic

map) can be extended from M̃ to M̃c uniquely.

Step 3: Denote by γ the generator of Γ which decreases the metric by λ < 1,

and let M̃a
c be a Stein variety associated with ϕ−1(]0, a]) ⊂ M̃ as above. Since

γ(M̃a
c ) = M̃λa

c , for any holomorphic function f on M̃c, one has

sup
z∈M̃a

c

|f(γn(z))| = sup
z∈M̃λna

c

|f(z)| 6 sup
z∈M̃a

c

|f(z)|.

Therefore, {f(γn(z))} is a normal family.
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Metric completion of a Z-covering (part 3)

Step 3: Denote by γ the generator of Γ which decreases the metric by λ < 1,
and let M̃a

c be a Stein variety associated with ϕ−1(]0, a]) ⊂ M̃ as above. Since
γ(M̃a

c ) = M̃λa
c , for any holomorphic function f on M̃c, one has

sup
z∈M̃a

c

|f(γn(z))| = sup
z∈M̃λna

c

|f(z)| 6 sup
z∈M̃a

c

|f(z)|.

Therefore, {f(γn(z))} is a normal family.

Step 4: Let flim be any limit point of the sequence {f(γn(z))}. Since the se-
quence ti := sup

z∈M̃λia
c
|f(z)| is non-increasing, it converges, and supz∈M̃a

c
flim =

lim ti. Similarly, supz∈M̃λa
c
flim = lim ti. By strong maximum principle, a non-

constant holomorphic function on a complex manifold with boundary
cannot have local maxima (even non-strict) outside of the boundary.
Since M̃λa

c does not intersect the boundary of M̃a
c , the function flim must be

constant.

Step 5: Consider now the complement V := M̃c\M̃ , and suppose it has
two distinct points x and y. Let f be a holomorphic function which satisfy
f(x) 6= f(y). Replacing f by an exponent of µf if necessarily, we may assume
that |f(x)| < |f(y). Since γ fixes Z, which is compact, for any limit flim of
the sequence {f(γn(z))}, supremum flim on Z is not equal to infimum
of flim on Z. This is impossible, hence f = const on V , and V is one point.
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