Locally conformally Kähler manifolds

lecture 8: LCK manifolds with potential

Misha Verbitsky

HSE and IUM, Moscow

April 7, 2014

LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, $\dim_{\mathbb{C}} M > 1$. Then M is called **locally conformally Kähler** (LCK) if $d\omega = \omega \wedge \theta$, where θ is a closed 1-form, called **the Lee form**.

DEFINITION: A manifold is locally conformally Kähler iff it admits a Kähler form taking values in a positive, flat vector bundle *L*, called **the weight bundle**.

DEFINITION: Deck transform, or monodromy maps of a covering $\tilde{M} \longrightarrow M$ are elements of the group $\operatorname{Aut}_{M}(\tilde{M})$. When \tilde{M} is a universal cover, one has $\operatorname{Aut}_{M}(\tilde{M}) = \pi_{1}(M)$.

DEFINITION: An LCK manifold is a complex manifold such that its universal cover \tilde{M} is equipped with a Kähler form $\tilde{\omega}$, and the deck transform acts on \tilde{M} by Kähler homotheties.

THEOREM: These three definitions are equivalent.

Conical Kähler manifolds (reminder)

DEFINITION: Let (X,g) be a Riemannian manifold, and $C(X) := X \times \mathbb{R}^{>0}$, with the metric $t^2g + dt^2$, where t is a coordinate on $\mathbb{R}^{>0}$. Then C(X) is called **Riemannian cone** of X. **Multiplicative group** $\mathbb{R}^{>0}$ **acts on** C(X) by **homotheties,** $(m,t) \longrightarrow (m, \lambda t)$.

DEFINITION: Let (X,g) be a Riemannian manifold, $C(X) := X \times \mathbb{R}^{>0}$ its Riemannian cone, and h_{λ} the homothety action. Assume that (X,g) is equipped with a complex structure, in such a way that g is Kähler, and h_{λ} acts holomorphically. Then C(X) is called a conical Kähler manifold. In this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic structure on C(X), and h_{λ} acting by homotheties. In particular, Sasakian manifolds are contact. Sasakian geometry is an odd-dimensional counterpart to Kähler geometry

EXAMPLE: Let *L* be a positive holomorphic line bundle on a projective manifold. Then the total space of its unit S^1 -fibration is Sasakian.

3

Vaisman manifolds (reminder)

EXAMPLE: For any given $\lambda \in \mathbb{R}^{>1}$, the quotient $C(X)/h_{\lambda}$ of a conical Kähler manifold is locally conformally Kähler.

DEFINITION: An LCK manifold (M, g, ω, θ) is called **Vaisman** if $\nabla \theta = 0$, where ∇ is the Levi-Civita connection associated with g.

THEOREM: Let M be a Vaisman manifold, \tilde{M} its covering; the pullback of the Lee form θ to \tilde{M} is denoted by the same letter θ . Assume that $d\psi = \theta$ on \tilde{M} (such ψ exists, for example, if \tilde{M} is a universal cover of M). Consider the form $\tilde{\omega} := e^{-\psi}\omega$. Then $(\tilde{M}, \tilde{\omega})$ is a Kähler manifold, isometric to a cone.

THEOREM: Every Vaisman manifold is obtained as $C(X)/\mathbb{Z}$, where X is Sasakian, $\mathbb{Z} = \left\langle (x,t) \mapsto (\varphi(x),qt) \right\rangle$, q > 1, and φ is a Sasakian automorphism of X. Moreover, the triple (X,φ,q) is unique.

Kähler potentials and plurisubharmonic functions (reminder)

DEFINITION: A real-valued smooth function on a complex manifold is called **plurisubharmonic (psh)** if the (1,1)-form $dd^c f$ is positive, and **strictly plurisubharmonic** if $dd^c f$ is an Hermitian form.

REMARK: Since $dd^c f$ is always closed, it is also Kähler when it is strictly positive.

DEFINITION: Let (M, I, ω) be a Kähler manifold. Kähler potential is a function f such that $dd^c f = \omega$.

THEOREM: Let *S* be a Sasakian manifold, $C(S) = S \times \mathbb{R}^{>0}$ its cone, *t* the coordinate along the second variable, and $r = t\frac{d}{dt}$. Then t^2 is a Kähler potential on C(S).

Deformational stability of LCK manifolds

DEFINITION: Let \mathfrak{A} be a property of compact complex manifolds, and $\mathcal{X} \xrightarrow{\pi} B$ a smooth, proper map, that is, a smooth family of compact manifolds. We say that \mathfrak{A} is **stable under small deformations** if the set of all $z \in B$ such that $X_z := \pi^{-1}(z)$ has \mathfrak{A} is open in B.

EXAMPLE: Property of admitting a Kähler metric is stable under small deformations ("Kodaira stability theorem"). One also says **"Kähler manifolds** are stable with respect to small deformations", or a small deformation of Kähler manifold is again Kähler.

EXAMPLE: Call a complex manifold **Hermitian symplectic** if it admits a symplectic form ω such that its (1,1)-part is Hermitian.

EXERCISE: Prove that a small deformation of a Hermitian symplectic manifold is again Hermitian symplectic

OBSERVATION: LCK manifolds are not stable with respect to small deformations (Belgun). Also, Vaisman manifolds are not stable with respect to small deformations.

Deformations of Vaisman manifolds: automorphic forms and functions

Theorem 1: Let $\mathcal{X} \xrightarrow{\pi} B$ be a smooth, proper, holomorphic map, and $z \in B$ a point. Assume that the fiber $X_z := \pi^{-1}(z)$ is Vaisman (that is, admits a Vaisman metric). Then there exists a neighbourhood $W \ni z$ such that for each $y \in W$, the fiber $X_y := \pi^{-1}(y)$ is LCK.

For the proof, see the next slide.

DEFINITION: Let M be an LCK manifold, (\tilde{M}, ω) is Kähler covering, equipped with an action of $\pi_1(M)$, and $\chi : \pi_1(M) \longrightarrow \mathbb{R}^{>0}$ the weight character, or the character of automorphy which puts $\gamma \in \pi_1(M)$ to a number $\frac{\gamma^* \tilde{\omega}}{\tilde{\omega}}$. Its image $\Gamma \subset \mathbb{R}^{>0}$ is called the monodromy group of an LCK manifold M. We shall always chose \tilde{M} in such a way that Γ acts on \tilde{M} and $M = \tilde{M}/\Gamma$.

DEFINITION: Let M be a manifold, \tilde{M} its Galois covering. A form η on \tilde{M} is called **automorphic** if for any $\gamma \in \pi_1(M)$ acting on \tilde{M} as usual, the form $\gamma^*\eta$ is proportional to η . The character $\chi_\eta(\gamma) := \frac{\gamma^*\tilde{\eta}}{\tilde{\eta}}$ is called **the character of automorphy** for η .

EXAMPLE: Let M be a Vaisman manifold, $\tilde{M} = C(S)$ its Kähler covering, and $\varphi = t^2$ its Kähler potential. Then φ is an automorphic function.

Deformations of Vaisman manifolds

Theorem 1: Let $\mathcal{X} \xrightarrow{\pi} B$ be a smooth, proper, holomorphic map, and $z \in B$ a point. Assume that the fiber $X_z := \pi^{-1}(z)$ is Vaisman (that is, admits a Vaisman metric). Then there exists a neighbourhood $W \ni z$ such that for each $y \in W$, the fiber $X_y := \pi^{-1}(y)$ is LCK.

Proof. Step 1: Let $\tilde{X}_z = C(S)$ be a conical Kähler covering of X_z . By Ehresmann fibration theorem, π is a locally trivial fibration. Replacing B by a sufficiently small open neighbourhood of z, we may assume that π is trivial as a smooth fibration: $\mathcal{X} = X_z \times B$. Consider a covering $\tilde{\mathcal{X}} \longrightarrow \mathcal{X}$ with $\tilde{\mathcal{X}} = \tilde{X}_z \times B$, and let \tilde{X}_y denote the fibers of the projection $\tilde{\mathcal{X}} \xrightarrow{\pi} B$.

Proof. Step 2: Let φ be the automorphic Kähler potential of $\tilde{X}_z = C(S)$. Extend φ to $\tilde{X} = \tilde{X}_z \times B$ using the projection $\tilde{X} \longrightarrow \tilde{X}_z$. Restricting φ to $\tilde{X}_y \subset \tilde{X}$, we obtain an automorphic function φ_y on any \tilde{X}_y .

Proof. Step 3: The form $dd^c\varphi_y$ is closed, automorphic and of type (1,1). Therefore, \tilde{X}_y is LCK whenever the pseudo-Hermitian form $dd^c\varphi_y$ is positive definite. However, the complex structure on X_y smoothly depends on $y \in B$, hence the function $y \longrightarrow dd^c\varphi_y$ is continuous, and its eigenvalues continuously depend on $y \in B$. Therefore, for y sufficiently close to z, these eigenvalues remain positive, and φ_y gives an automorphic Kähler potential.

LCK manifolds with potential

DEFINITION: Let M be an LCK manifold, and $(\tilde{M}, \tilde{\omega})$ its Kähler covering. It is called **LCK manifold with potential** if \tilde{M} admits an automorphic Kähler potential $\varphi : \tilde{M} \longrightarrow \mathbb{R}^{>0}$, $dd^c \varphi = \tilde{\omega}$, which is **proper** (preimage of a compact is again compact).

EXAMPLE: Vaisman manifold is an example of an LCK manifold with potential.

REMARK: The property of being LCK with potential is stable under small deformations (Theorem 1; same proof).

REMARK: For any complex submanifold $Z \subset M$ of an LCK manifold with potential, Z is also an LCK manifold with potential.

Monodromy group of LCK manifolds with potential

PROPOSITION: Let M be an LCK manifold, $\Gamma \subset \mathbb{R}^{>0}$ the monodromy group, and $(\tilde{M}, \tilde{\omega})$ its Kähler covering, with $\tilde{M}/\Gamma = M$. Assume that $\tilde{\omega}$ admits a Γ -automorphic Kähler potential φ . The map φ is proper if and only if $\Gamma = \mathbb{Z}$.

Proof. $\Gamma = \mathbb{Z} \Rightarrow \varphi$ is proper:

Let γ be a generator of \mathbb{Z} , such that $\gamma^* \varphi = \lambda \varphi$, and $\pi : \tilde{M} \longrightarrow \tilde{M}/\Gamma = M$ the quotient map. Then $\varphi^{-1}([1, \lambda[)$ is a fundamental domain of Γ -action. Therefore $\pi : \varphi^{-1}([1, \sqrt{\lambda}]) \longrightarrow M$ is bijective onto its image, which is compact, hence $\varphi^{-1}([1, \sqrt{\lambda}])$ is also compact. This implies that preimage of any closed interval is compact.

Proof. φ is proper $\Rightarrow \Gamma = \mathbb{Z}$:

Assume $\gamma \neq \mathbb{Z}$; then Γ is a dense subgroup of $\mathbb{R}^{>0}$. Fix $x \in \tilde{M}$ and nonempty interval $]a, b[\subset \mathbb{R}^{>0}$, and let $\mathfrak{H} \subset \Gamma$ be the set of all $\gamma \in \Gamma$ such that $\varphi(\gamma(x)) \in]a, b[$ Since Γ is dense, \mathfrak{H} is infinite. However, $\varphi(\mathfrak{H} \cdot x) \subset [a, b]$, hence an infinite discrete set $\mathfrak{H} \cdot x$ is contained in a compact $\varphi^{-1}([a, b])$. Contradiction!

Linear Hopf manifold

DEFINITION: Let $A \in \text{End}(\mathbb{C}^n)$ be an invertible linear endomorphism with all eigenvalues $|\alpha_i| < 1$. The quotient $H := (\mathbb{C}^n \setminus 0)/\langle A \rangle$ is called a linear **Hopf manifold**. When A can be diagonalized, H is called a **diagonal Hopf manifold**.

THEOREM: A linear Hopf manifold is LCK with potential.

Proof in lecture 10.

THEOREM: Let M be an LCK manifold with potential, $\dim_{\mathbb{C}} M > 2$. Then M admits a holomorphic embedding to a linear Hopf manifold.

Proof in lecture 9.

Stein manifolds.

DEFINITION: A complex variety M is called **holomorphically convex** if for any infinite discrete subset $S \subset M$, there exists a holomorphic function $f \in \mathcal{O}_M$ which is unbounded on S.

DEFINITION: A complex variety is called **Stein** if it is holomorphically convex, and has no compact complex subvarieties.

REMARK: Equivalently, a complex variety is Stein if it admits a closed holomorphic embedding into \mathbb{C}^n .

THEOREM: (K. Oka, 1942) **A complex manifold** M is Stein if and only M admits a Kähler metric with a Kähler potential which is positive and proper (proper = preimages of compact sets are compact).

THEOREM: (H. Cartan, 1951) **A complex variety** M is Stein if and only if for any coherent sheaf F on M, its cohomology $H^i(F)$ vanish for all i > 0.

Rossi-Andreotti-Siu theorem.

THEOREM: (Rossi 1965, Andreotti-Siu 1970)

Let M be a complex manifold with boundary, $\dim_{\mathbb{C}} M > 2$, and φ a proper Kähler potential on M, taking values in $[a, \infty[$, and equal to c in the boundary of M. Then there exists a Stein variety M_a with isolated singularities, obtained by gluing a compact domain to M, and it is unique. Moreover, any holomorphic function on M can be extended to M_a .

Theorem 2: Let M be an LCK manifold with potential, and \tilde{M} its Kähler \mathbb{Z} -covering. Then a metric completion \tilde{M}_c admits a structure of a complex manifold, compatible with the complex structure on $\tilde{M} \subset \tilde{M}_c$.

For the proof see the end of this lecture.

DEFINITION: In assumptions of Theorem 2, the manifold \tilde{M}_c is called the **cone** of an LCK manifold with potential.

Cone of an LCK manifold with potential.

Theorem 2: Let M be an LCK manifold with potential, and \tilde{M} its Kähler \mathbb{Z} -covering. Then a metric completion \tilde{M}_c admits a structure of a complex manifold, compatible with the complex structure on $\tilde{M} \subset \tilde{M}_c$.

Claim 1: The complement $\tilde{M}_c \setminus \tilde{M}$ is just one point, called the origin.

Proof: Indeed, let $z_i = \gamma^{n_i}(x_i)$ be a sequence of points in \tilde{M} , with each x_i in the fundamental domain $\varphi^{-1}([1,\lambda])$ of the $\Gamma = \mathbb{Z}$ -action. Clearly, the distance between two fundamental domains $M_n := \gamma^n \varphi^{-1}([1,\lambda]) = \varphi^{-1}([\lambda^n, \lambda^{n+1}])$ and $M_{n+k+2} = \gamma^{n+k+2} \varphi^{-1}([1,\lambda])$ is written as

$$d(M_n, M_{n+k+2}) = \sum_{i=0}^k \lambda^{n+i} v, \quad (*)$$

where v is a distance between M_0 and M_2 . Then, z_i may converge only if $\lim_i n_i = -\infty$ or if all n_i , except finitely many, belong to a set (p, p + 1) for some p. The second case is irrelevant, because each M_i is compact, and in the first case, $\{z_i\}$ is always a Cauchy sequence, as follows from (*). All such $\{z_i\}$ are therefore equivalent, hence **converge to the same point in the metric completion.**

Normal families of functions

DEFINITION: Let M be a complex manifold, and \mathcal{F} a family of holomorphic functions $f_i \in H^0(\mathcal{O}_M)$. We call \mathcal{F} a normal family if for each compact $K \subset M$ there exists $C_K > 0$ such that for each $f \in \mathcal{F}$, $\sup_K |f| \leq C_K$.

LEMMA: Let M be a complex Hermitian manifold, $\mathcal{F} \subset H^0(\mathcal{O}_M)$ a normal family, and $K \subset M$ a compact. Then there exists a number $A_K > 0$ such that $\sup_K |f'| \leq A_K$.

Proof: Assume otherwise. Then there exists $x \in K$, $v \in T_x M$, and a sequence $f_i \in \mathcal{F}$ such that $\lim_i |D_v f_i| = \infty$. Pick a disk $\Delta \stackrel{j}{\hookrightarrow} M$ with compact closure in M, tangent to v in x, such that j(0) = x. Let w = tv be the unit tangent vector. Then $\sup_{\Delta} |f_i| < C_{\Delta}$ by the normal family condition. By Schwartz lemma, this implies $|D_w f_i| < C_{\Delta}$. However, $t^{-1} \lim_i |D_w f_i| = \lim_i |D_v f_i| = \infty$ – contradiction.

C^0 -topology on functions

DEFINITION: Let C(M) be the space of functions on a topological space. **Topology of uniform convergence on compacts** (also known as **compact-open topology**; usually denoted as C^0) is a topology on C(M) where a base of open sets is given by

 $U(X,C) := \{ f \in C(M) \mid \sup_{K} |f| < C \},\$

for all compacts $K \subset M$ and C > 0. A sequence f_i of functions converges to f if it converges to f uniformly on all compacts.

REMARK: When M is locally compact, any sequence of continuous functions converging in C^0 converges to a continuous function (prove it!)

REMARK: In a similar way one defines C^0 -topology on the space of sections of a bundle.

C^1 -topology

DEFINITION: Let *B* be a vector bundle on a smooth manifold *M*, and $\nabla : B \longrightarrow B \otimes \Lambda^1 M$ a connection. Define C^1 -topology on the space of sections of *B* (denoted, as usual, by the same letter *B*) as one where a subbase of open sets is given by C^0 -open sets on *B* and $\nabla^{-1}(W)$, where *W* is an open set in C^0 -topology in $B \otimes \Lambda^1 M$.

REMARK: A sequence f_i converges in C^1 -topology if it converges uniformly on all compacts, and first derivatives f'_i also converge uniformy on all compacts. This can be seen as a definition of C^1 -topology.

EXERCISE: Prove that C^1 -topology is independent from the choice of a connection.

EXERCISE: Prove that the topological vector space C^1M of 1-differentialble functions on a manifold is complete in C^1 -topology.

Arzelà-Ascoli theorem for normal families

THEOREM: Let M be a complex manifold and $\mathcal{F} \subset H^0(\mathcal{O}_M)$ a normal family of functions. Denote by $\overline{\mathcal{F}}$ its closure in C^0 -topology. Then $\overline{\mathcal{F}}$ is compact and contained in $H^0(\mathcal{O}_M)$.

Proof. Step 1: Let $\{f_i\}$ be a sequence of functions in \mathcal{F} . By Tychonoff theorem, for each compact K, there is a subsequence of $\{f_i\}$ which converges pointwise on a dense countable subset $Z \subset K$. Taking diagonal subsequence, we find a subsequence $\{f_{p_i}\} \subset \{f_i\}$ which converges pointwise on a dense countable subset $Z \subset M$. Since $|f'_i|$ is uniformly bounded on compacts, the limit $f := \lim_i f_i$ is Lipschitz on all compact subsets of M. Then it is continuous, because a pointwise limit of Lipschitz functions is again Lipschitz.

Step 2: Since $|f'_i|$ is uniformly bounded on compacts, we can assume that f'_i also converges pointwise in Z, and $f := \lim_i f_i$ is differentiable. Since a limit of complex-linear operators is complex linear, Df is complex linear, and f is holomorphic. This implies that $\overline{\mathcal{F}} \cap H^0(\mathcal{O}_M)$ is compact.

Metric completion of a Z-covering

THEOREM: (Rossi 1965, Andreotti-Siu 1970)

Let M be a complex manifold with boundary, $\dim_{\mathbb{C}} M > 2$, and φ a proper Kähler potential on M, taking values in $[a, \infty[$, and equal to a in the boundary of M. Then there exists a Stein variety M_a with isolated singularities, obtained by gluing a compact domain to M, and it is unique. Moreover, any holomorphic function on M can be extended to M_a .

Theorem 2: Let M be an LCK manifold with potential $\varphi : \tilde{M} \longrightarrow \mathbb{R}^{>0}$, where \tilde{M} is its Kähler \mathbb{Z} -covering. Then a metric completion \tilde{M}_c admits a structure of a complex manifold, compatible with the complex structure on $\tilde{M} \subset \tilde{M}_c$.

Proof. Step 1: Apply Rossi-Andreotti-Siu to $\varphi^{-1}([a, \infty[), we obtain a Stein variety <math>\tilde{M}_a$ containing $\varphi^{-1}([a, \infty[))$. Since \tilde{M}_a contains $\varphi^{-1}([a_1, \infty[))$ for any $a_1 > a$, and the Rossi-Andreotti-Siu variety is unique, one has $\tilde{M}_a = \tilde{M}_{a_1}$. This implies that $\tilde{M}_a =: \tilde{M}_c$ is independent from the choice of $a \in \mathbb{R}^{>0}$.

It remains to identify \tilde{M}_c with a metric completion of \tilde{M} . By Claim 1, this is equivalent to the complement $\tilde{M}_c \setminus \tilde{M}$ being a one-point set.

Metric completion of a \mathbb{Z} -covering (part 2)

Theorem 2: Let M be an LCK manifold with potential $\varphi : \tilde{M} \longrightarrow \mathbb{R}^{>0}$, where \tilde{M} is its Kähler \mathbb{Z} -covering. Then a metric completion \tilde{M}_c admits a structure of a complex manifold, compatible with the complex structure on $\tilde{M} \subset \tilde{M}_c$.

It remains to identify \tilde{M}_c with a metric completion of \tilde{M} . By Claim 1, this is equivalent to the complement $\tilde{M}_c \setminus \tilde{M}$ being a one-point set.

Step 2: The monodromy group $\Gamma = \mathbb{Z}$ acts on \tilde{M}_c by holomorphic automorphisms. Indeed, any holomorphic function (hence, any holomorphic map) can be extended from \tilde{M} to \tilde{M}_c uniquely.

Step 3: Denote by γ the generator of Γ which decreases the metric by $\lambda < 1$, and let \tilde{M}_c^a be a Stein variety associated with $\varphi^{-1}(]0,a]) \subset \tilde{M}$ as above. Since $\gamma(\tilde{M}_c^a) = \tilde{M}_c^{\lambda a}$, for any holomorphic function f on \tilde{M}_c , one has

$$\sup_{z\in \tilde{M}^a_c} |f(\gamma^n(z))| = \sup_{z\in \tilde{M}^{\lambda^n_a}_c} |f(z)| \leq \sup_{z\in \tilde{M}^a_c} |f(z)|.$$

Therefore, $\{f(\gamma^n(z))\}$ is a normal family.

Metric completion of a \mathbb{Z} -covering (part 3)

Step 3: Denote by γ the generator of Γ which decreases the metric by $\lambda < 1$, and let \tilde{M}_c^a be a Stein variety associated with $\varphi^{-1}(]0,a]) \subset \tilde{M}$ as above. Since $\gamma(\tilde{M}_c^a) = \tilde{M}_c^{\lambda a}$, for any holomorphic function f on \tilde{M}_c , one has

$$\sup_{z \in \tilde{M}_c^a} |f(\gamma^n(z))| = \sup_{z \in \tilde{M}_c^{\lambda^n_a}} |f(z)| \leq \sup_{z \in \tilde{M}_c^a} |f(z)|.$$

Therefore, $\{f(\gamma^n(z))\}$ is a normal family.

Step 4: Let f_{lim} be any limit point of the sequence $\{f(\gamma^n(z))\}$. Since the sequence $t_i := \sup_{z \in \tilde{M}_c^{\lambda^i a}} |f(z)|$ is non-increasing, it converges, and $\sup_{z \in \tilde{M}_c^a} f_{\text{lim}} = \lim t_i$. Similarly, $\sup_{z \in \tilde{M}_c^{\lambda a}} f_{\text{lim}} = \lim t_i$. By strong maximum principle, a non-constant holomorphic function on a complex manifold with boundary cannot have local maxima (even non-strict) outside of the boundary. Since $\tilde{M}_c^{\lambda a}$ does not intersect the boundary of \tilde{M}_c^a , the function f_{lim} must be constant.

Step 5: Consider now the complement $V := \tilde{M}_c \setminus \tilde{M}$, and suppose it has two distinct points x and y. Let f be a holomorphic function which satisfy $f(x) \neq f(y)$. Replacing f by an exponent of μf if necessarily, we may assume that |f(x)| < |f(y)|. Since γ fixes Z, which is compact, for any limit f_{lim} of the sequence $\{f(\gamma^n(z))\}$, supremum f_{lim} on Z is not equal to infimum of f_{lim} on Z. This is impossible, hence f = const on V, and V is one point.